2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
42 #include <asm/processor.h>
45 #include <asm/machdep.h>
47 #include <asm/syscalls.h>
49 #include <asm/firmware.h>
52 extern unsigned long _get_SP(void);
55 struct task_struct
*last_task_used_math
= NULL
;
56 struct task_struct
*last_task_used_altivec
= NULL
;
57 struct task_struct
*last_task_used_spe
= NULL
;
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
64 void flush_fp_to_thread(struct task_struct
*tsk
)
66 if (tsk
->thread
.regs
) {
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
76 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
85 BUG_ON(tsk
!= current
);
93 void enable_kernel_fp(void)
95 WARN_ON(preemptible());
98 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
101 giveup_fpu(NULL
); /* just enables FP for kernel */
103 giveup_fpu(last_task_used_math
);
104 #endif /* CONFIG_SMP */
106 EXPORT_SYMBOL(enable_kernel_fp
);
108 int dump_task_fpu(struct task_struct
*tsk
, elf_fpregset_t
*fpregs
)
110 if (!tsk
->thread
.regs
)
112 flush_fp_to_thread(current
);
114 memcpy(fpregs
, &tsk
->thread
.fpr
[0], sizeof(*fpregs
));
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
122 WARN_ON(preemptible());
125 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
126 giveup_altivec(current
);
128 giveup_altivec(NULL
); /* just enable AltiVec for kernel - force */
130 giveup_altivec(last_task_used_altivec
);
131 #endif /* CONFIG_SMP */
133 EXPORT_SYMBOL(enable_kernel_altivec
);
136 * Make sure the VMX/Altivec register state in the
137 * the thread_struct is up to date for task tsk.
139 void flush_altivec_to_thread(struct task_struct
*tsk
)
141 if (tsk
->thread
.regs
) {
143 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
145 BUG_ON(tsk
!= current
);
147 giveup_altivec(current
);
153 int dump_task_altivec(struct pt_regs
*regs
, elf_vrregset_t
*vrregs
)
155 flush_altivec_to_thread(current
);
156 memcpy(vrregs
, ¤t
->thread
.vr
[0], sizeof(*vrregs
));
159 #endif /* CONFIG_ALTIVEC */
163 void enable_kernel_spe(void)
165 WARN_ON(preemptible());
168 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
))
171 giveup_spe(NULL
); /* just enable SPE for kernel - force */
173 giveup_spe(last_task_used_spe
);
174 #endif /* __SMP __ */
176 EXPORT_SYMBOL(enable_kernel_spe
);
178 void flush_spe_to_thread(struct task_struct
*tsk
)
180 if (tsk
->thread
.regs
) {
182 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
184 BUG_ON(tsk
!= current
);
192 int dump_spe(struct pt_regs
*regs
, elf_vrregset_t
*evrregs
)
194 flush_spe_to_thread(current
);
195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196 memcpy(evrregs
, ¤t
->thread
.evr
[0], sizeof(u32
) * 35);
199 #endif /* CONFIG_SPE */
203 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204 * and the current task has some state, discard it.
206 void discard_lazy_cpu_state(void)
209 if (last_task_used_math
== current
)
210 last_task_used_math
= NULL
;
211 #ifdef CONFIG_ALTIVEC
212 if (last_task_used_altivec
== current
)
213 last_task_used_altivec
= NULL
;
214 #endif /* CONFIG_ALTIVEC */
216 if (last_task_used_spe
== current
)
217 last_task_used_spe
= NULL
;
221 #endif /* CONFIG_SMP */
223 #ifdef CONFIG_PPC_MERGE /* XXX for now */
224 int set_dabr(unsigned long dabr
)
227 return ppc_md
.set_dabr(dabr
);
229 mtspr(SPRN_DABR
, dabr
);
235 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
236 static DEFINE_PER_CPU(unsigned long, current_dabr
);
239 struct task_struct
*__switch_to(struct task_struct
*prev
,
240 struct task_struct
*new)
242 struct thread_struct
*new_thread
, *old_thread
;
244 struct task_struct
*last
;
247 /* avoid complexity of lazy save/restore of fpu
248 * by just saving it every time we switch out if
249 * this task used the fpu during the last quantum.
251 * If it tries to use the fpu again, it'll trap and
252 * reload its fp regs. So we don't have to do a restore
253 * every switch, just a save.
256 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
258 #ifdef CONFIG_ALTIVEC
260 * If the previous thread used altivec in the last quantum
261 * (thus changing altivec regs) then save them.
262 * We used to check the VRSAVE register but not all apps
263 * set it, so we don't rely on it now (and in fact we need
264 * to save & restore VSCR even if VRSAVE == 0). -- paulus
266 * On SMP we always save/restore altivec regs just to avoid the
267 * complexity of changing processors.
270 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
271 giveup_altivec(prev
);
272 #endif /* CONFIG_ALTIVEC */
275 * If the previous thread used spe in the last quantum
276 * (thus changing spe regs) then save them.
278 * On SMP we always save/restore spe regs just to avoid the
279 * complexity of changing processors.
281 if ((prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_SPE
)))
283 #endif /* CONFIG_SPE */
285 #else /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_altivec -- Cort
290 if (new->thread
.regs
&& last_task_used_altivec
== new)
291 new->thread
.regs
->msr
|= MSR_VEC
;
292 #endif /* CONFIG_ALTIVEC */
294 /* Avoid the trap. On smp this this never happens since
295 * we don't set last_task_used_spe
297 if (new->thread
.regs
&& last_task_used_spe
== new)
298 new->thread
.regs
->msr
|= MSR_SPE
;
299 #endif /* CONFIG_SPE */
301 #endif /* CONFIG_SMP */
303 #ifdef CONFIG_PPC64 /* for now */
304 if (unlikely(__get_cpu_var(current_dabr
) != new->thread
.dabr
)) {
305 set_dabr(new->thread
.dabr
);
306 __get_cpu_var(current_dabr
) = new->thread
.dabr
;
312 new_thread
= &new->thread
;
313 old_thread
= ¤t
->thread
;
317 * Collect processor utilization data per process
319 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
320 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
321 long unsigned start_tb
, current_tb
;
322 start_tb
= old_thread
->start_tb
;
323 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
324 old_thread
->accum_tb
+= (current_tb
- start_tb
);
325 new_thread
->start_tb
= current_tb
;
329 local_irq_save(flags
);
331 account_system_vtime(current
);
332 account_process_vtime(current
);
333 calculate_steal_time();
335 last
= _switch(old_thread
, new_thread
);
337 local_irq_restore(flags
);
342 static int instructions_to_print
= 16;
345 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
346 (REGION_ID(pc) != VMALLOC_REGION_ID))
348 #define BAD_PC(pc) ((pc) < KERNELBASE)
351 static void show_instructions(struct pt_regs
*regs
)
354 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
357 printk("Instruction dump:");
359 for (i
= 0; i
< instructions_to_print
; i
++) {
365 /* We use __get_user here *only* to avoid an OOPS on a
366 * bad address because the pc *should* only be a
369 if (BAD_PC(pc
) || __get_user(instr
, (unsigned int __user
*)pc
)) {
373 printk("<%08x> ", instr
);
375 printk("%08x ", instr
);
384 static struct regbit
{
397 static void printbits(unsigned long val
, struct regbit
*bits
)
399 const char *sep
= "";
402 for (; bits
->bit
; ++bits
)
403 if (val
& bits
->bit
) {
404 printk("%s%s", sep
, bits
->name
);
412 #define REGS_PER_LINE 4
413 #define LAST_VOLATILE 13
416 #define REGS_PER_LINE 8
417 #define LAST_VOLATILE 12
420 void show_regs(struct pt_regs
* regs
)
424 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
425 regs
->nip
, regs
->link
, regs
->ctr
);
426 printk("REGS: %p TRAP: %04lx %s (%s)\n",
427 regs
, regs
->trap
, print_tainted(), system_utsname
.release
);
428 printk("MSR: "REG
" ", regs
->msr
);
429 printbits(regs
->msr
, msr_bits
);
430 printk(" CR: %08lX XER: %08lX\n", regs
->ccr
, regs
->xer
);
432 if (trap
== 0x300 || trap
== 0x600)
433 printk("DAR: "REG
", DSISR: "REG
"\n", regs
->dar
, regs
->dsisr
);
434 printk("TASK = %p[%d] '%s' THREAD: %p",
435 current
, current
->pid
, current
->comm
, task_thread_info(current
));
438 printk(" CPU: %d", smp_processor_id());
439 #endif /* CONFIG_SMP */
441 for (i
= 0; i
< 32; i
++) {
442 if ((i
% REGS_PER_LINE
) == 0)
443 printk("\n" KERN_INFO
"GPR%02d: ", i
);
444 printk(REG
" ", regs
->gpr
[i
]);
445 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
449 #ifdef CONFIG_KALLSYMS
451 * Lookup NIP late so we have the best change of getting the
452 * above info out without failing
454 printk("NIP ["REG
"] ", regs
->nip
);
455 print_symbol("%s\n", regs
->nip
);
456 printk("LR ["REG
"] ", regs
->link
);
457 print_symbol("%s\n", regs
->link
);
459 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
460 if (!user_mode(regs
))
461 show_instructions(regs
);
464 void exit_thread(void)
466 discard_lazy_cpu_state();
469 void flush_thread(void)
472 struct thread_info
*t
= current_thread_info();
474 if (t
->flags
& _TIF_ABI_PENDING
)
475 t
->flags
^= (_TIF_ABI_PENDING
| _TIF_32BIT
);
478 discard_lazy_cpu_state();
480 #ifdef CONFIG_PPC64 /* for now */
481 if (current
->thread
.dabr
) {
482 current
->thread
.dabr
= 0;
489 release_thread(struct task_struct
*t
)
494 * This gets called before we allocate a new thread and copy
495 * the current task into it.
497 void prepare_to_copy(struct task_struct
*tsk
)
499 flush_fp_to_thread(current
);
500 flush_altivec_to_thread(current
);
501 flush_spe_to_thread(current
);
507 int copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
508 unsigned long unused
, struct task_struct
*p
,
509 struct pt_regs
*regs
)
511 struct pt_regs
*childregs
, *kregs
;
512 extern void ret_from_fork(void);
513 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
515 CHECK_FULL_REGS(regs
);
517 sp
-= sizeof(struct pt_regs
);
518 childregs
= (struct pt_regs
*) sp
;
520 if ((childregs
->msr
& MSR_PR
) == 0) {
521 /* for kernel thread, set `current' and stackptr in new task */
522 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
524 childregs
->gpr
[2] = (unsigned long) p
;
526 clear_tsk_thread_flag(p
, TIF_32BIT
);
528 p
->thread
.regs
= NULL
; /* no user register state */
530 childregs
->gpr
[1] = usp
;
531 p
->thread
.regs
= childregs
;
532 if (clone_flags
& CLONE_SETTLS
) {
534 if (!test_thread_flag(TIF_32BIT
))
535 childregs
->gpr
[13] = childregs
->gpr
[6];
538 childregs
->gpr
[2] = childregs
->gpr
[6];
541 childregs
->gpr
[3] = 0; /* Result from fork() */
542 sp
-= STACK_FRAME_OVERHEAD
;
545 * The way this works is that at some point in the future
546 * some task will call _switch to switch to the new task.
547 * That will pop off the stack frame created below and start
548 * the new task running at ret_from_fork. The new task will
549 * do some house keeping and then return from the fork or clone
550 * system call, using the stack frame created above.
552 sp
-= sizeof(struct pt_regs
);
553 kregs
= (struct pt_regs
*) sp
;
554 sp
-= STACK_FRAME_OVERHEAD
;
558 if (cpu_has_feature(CPU_FTR_SLB
)) {
559 unsigned long sp_vsid
= get_kernel_vsid(sp
);
560 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
562 sp_vsid
<<= SLB_VSID_SHIFT
;
563 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
564 p
->thread
.ksp_vsid
= sp_vsid
;
568 * The PPC64 ABI makes use of a TOC to contain function
569 * pointers. The function (ret_from_except) is actually a pointer
570 * to the TOC entry. The first entry is a pointer to the actual
573 kregs
->nip
= *((unsigned long *)ret_from_fork
);
575 kregs
->nip
= (unsigned long)ret_from_fork
;
576 p
->thread
.last_syscall
= -1;
583 * Set up a thread for executing a new program
585 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
588 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
594 * If we exec out of a kernel thread then thread.regs will not be
597 if (!current
->thread
.regs
) {
598 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
599 current
->thread
.regs
= regs
- 1;
602 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
612 regs
->msr
= MSR_USER
;
614 if (!test_thread_flag(TIF_32BIT
)) {
615 unsigned long entry
, toc
;
617 /* start is a relocated pointer to the function descriptor for
618 * the elf _start routine. The first entry in the function
619 * descriptor is the entry address of _start and the second
620 * entry is the TOC value we need to use.
622 __get_user(entry
, (unsigned long __user
*)start
);
623 __get_user(toc
, (unsigned long __user
*)start
+1);
625 /* Check whether the e_entry function descriptor entries
626 * need to be relocated before we can use them.
628 if (load_addr
!= 0) {
634 regs
->msr
= MSR_USER64
;
638 regs
->msr
= MSR_USER32
;
642 discard_lazy_cpu_state();
643 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
644 current
->thread
.fpscr
.val
= 0;
645 #ifdef CONFIG_ALTIVEC
646 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
647 memset(¤t
->thread
.vscr
, 0, sizeof(current
->thread
.vscr
));
648 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
649 current
->thread
.vrsave
= 0;
650 current
->thread
.used_vr
= 0;
651 #endif /* CONFIG_ALTIVEC */
653 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
654 current
->thread
.acc
= 0;
655 current
->thread
.spefscr
= 0;
656 current
->thread
.used_spe
= 0;
657 #endif /* CONFIG_SPE */
660 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
661 | PR_FP_EXC_RES | PR_FP_EXC_INV)
663 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
665 struct pt_regs
*regs
= tsk
->thread
.regs
;
667 /* This is a bit hairy. If we are an SPE enabled processor
668 * (have embedded fp) we store the IEEE exception enable flags in
669 * fpexc_mode. fpexc_mode is also used for setting FP exception
670 * mode (asyn, precise, disabled) for 'Classic' FP. */
671 if (val
& PR_FP_EXC_SW_ENABLE
) {
673 tsk
->thread
.fpexc_mode
= val
&
674 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
681 /* on a CONFIG_SPE this does not hurt us. The bits that
682 * __pack_fe01 use do not overlap with bits used for
683 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
684 * on CONFIG_SPE implementations are reserved so writing to
685 * them does not change anything */
686 if (val
> PR_FP_EXC_PRECISE
)
688 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
689 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
690 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
691 | tsk
->thread
.fpexc_mode
;
695 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
699 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
701 val
= tsk
->thread
.fpexc_mode
;
706 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
707 return put_user(val
, (unsigned int __user
*) adr
);
710 int set_endian(struct task_struct
*tsk
, unsigned int val
)
712 struct pt_regs
*regs
= tsk
->thread
.regs
;
714 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
715 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
721 if (val
== PR_ENDIAN_BIG
)
722 regs
->msr
&= ~MSR_LE
;
723 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
731 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
733 struct pt_regs
*regs
= tsk
->thread
.regs
;
736 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
737 !cpu_has_feature(CPU_FTR_REAL_LE
))
743 if (regs
->msr
& MSR_LE
) {
744 if (cpu_has_feature(CPU_FTR_REAL_LE
))
745 val
= PR_ENDIAN_LITTLE
;
747 val
= PR_ENDIAN_PPC_LITTLE
;
751 return put_user(val
, (unsigned int __user
*)adr
);
754 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
756 tsk
->thread
.align_ctl
= val
;
760 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
762 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
765 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
767 int sys_clone(unsigned long clone_flags
, unsigned long usp
,
768 int __user
*parent_tidp
, void __user
*child_threadptr
,
769 int __user
*child_tidp
, int p6
,
770 struct pt_regs
*regs
)
772 CHECK_FULL_REGS(regs
);
774 usp
= regs
->gpr
[1]; /* stack pointer for child */
776 if (test_thread_flag(TIF_32BIT
)) {
777 parent_tidp
= TRUNC_PTR(parent_tidp
);
778 child_tidp
= TRUNC_PTR(child_tidp
);
781 return do_fork(clone_flags
, usp
, regs
, 0, parent_tidp
, child_tidp
);
784 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
785 unsigned long p4
, unsigned long p5
, unsigned long p6
,
786 struct pt_regs
*regs
)
788 CHECK_FULL_REGS(regs
);
789 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
792 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
793 unsigned long p4
, unsigned long p5
, unsigned long p6
,
794 struct pt_regs
*regs
)
796 CHECK_FULL_REGS(regs
);
797 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1],
798 regs
, 0, NULL
, NULL
);
801 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
802 unsigned long a3
, unsigned long a4
, unsigned long a5
,
803 struct pt_regs
*regs
)
808 filename
= getname((char __user
*) a0
);
809 error
= PTR_ERR(filename
);
810 if (IS_ERR(filename
))
812 flush_fp_to_thread(current
);
813 flush_altivec_to_thread(current
);
814 flush_spe_to_thread(current
);
815 error
= do_execve(filename
, (char __user
* __user
*) a1
,
816 (char __user
* __user
*) a2
, regs
);
819 current
->ptrace
&= ~PT_DTRACE
;
820 task_unlock(current
);
827 int validate_sp(unsigned long sp
, struct task_struct
*p
,
828 unsigned long nbytes
)
830 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
832 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
833 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
836 #ifdef CONFIG_IRQSTACKS
837 stack_page
= (unsigned long) hardirq_ctx
[task_cpu(p
)];
838 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
839 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
842 stack_page
= (unsigned long) softirq_ctx
[task_cpu(p
)];
843 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
844 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
852 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
853 #define FRAME_LR_SAVE 2
854 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
855 #define REGS_MARKER 0x7265677368657265ul
856 #define FRAME_MARKER 12
858 #define MIN_STACK_FRAME 16
859 #define FRAME_LR_SAVE 1
860 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
861 #define REGS_MARKER 0x72656773ul
862 #define FRAME_MARKER 2
865 EXPORT_SYMBOL(validate_sp
);
867 unsigned long get_wchan(struct task_struct
*p
)
869 unsigned long ip
, sp
;
872 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
876 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
880 sp
= *(unsigned long *)sp
;
881 if (!validate_sp(sp
, p
, MIN_STACK_FRAME
))
884 ip
= ((unsigned long *)sp
)[FRAME_LR_SAVE
];
885 if (!in_sched_functions(ip
))
888 } while (count
++ < 16);
892 static int kstack_depth_to_print
= 64;
894 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
896 unsigned long sp
, ip
, lr
, newsp
;
900 sp
= (unsigned long) stack
;
905 asm("mr %0,1" : "=r" (sp
));
907 sp
= tsk
->thread
.ksp
;
911 printk("Call Trace:\n");
913 if (!validate_sp(sp
, tsk
, MIN_STACK_FRAME
))
916 stack
= (unsigned long *) sp
;
918 ip
= stack
[FRAME_LR_SAVE
];
919 if (!firstframe
|| ip
!= lr
) {
920 printk("["REG
"] ["REG
"] ", sp
, ip
);
921 print_symbol("%s", ip
);
923 printk(" (unreliable)");
929 * See if this is an exception frame.
930 * We look for the "regshere" marker in the current frame.
932 if (validate_sp(sp
, tsk
, INT_FRAME_SIZE
)
933 && stack
[FRAME_MARKER
] == REGS_MARKER
) {
934 struct pt_regs
*regs
= (struct pt_regs
*)
935 (sp
+ STACK_FRAME_OVERHEAD
);
936 printk("--- Exception: %lx", regs
->trap
);
937 print_symbol(" at %s\n", regs
->nip
);
939 print_symbol(" LR = %s\n", lr
);
944 } while (count
++ < kstack_depth_to_print
);
947 void dump_stack(void)
949 show_stack(current
, NULL
);
951 EXPORT_SYMBOL(dump_stack
);
954 void ppc64_runlatch_on(void)
958 if (cpu_has_feature(CPU_FTR_CTRL
) && !test_thread_flag(TIF_RUNLATCH
)) {
961 ctrl
= mfspr(SPRN_CTRLF
);
962 ctrl
|= CTRL_RUNLATCH
;
963 mtspr(SPRN_CTRLT
, ctrl
);
965 set_thread_flag(TIF_RUNLATCH
);
969 void ppc64_runlatch_off(void)
973 if (cpu_has_feature(CPU_FTR_CTRL
) && test_thread_flag(TIF_RUNLATCH
)) {
976 clear_thread_flag(TIF_RUNLATCH
);
978 ctrl
= mfspr(SPRN_CTRLF
);
979 ctrl
&= ~CTRL_RUNLATCH
;
980 mtspr(SPRN_CTRLT
, ctrl
);