2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
56 #include <asm/processor.h>
57 #include <asm/nvram.h>
58 #include <asm/cache.h>
59 #include <asm/machdep.h>
60 #include <asm/uaccess.h>
64 #include <asm/div64.h>
66 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
70 #ifdef CONFIG_PPC_ISERIES
71 #include <asm/iseries/it_lp_queue.h>
72 #include <asm/iseries/hv_call_xm.h>
76 /* keep track of when we need to update the rtc */
77 time_t last_rtc_update
;
78 #ifdef CONFIG_PPC_ISERIES
79 unsigned long iSeries_recal_titan
= 0;
80 unsigned long iSeries_recal_tb
= 0;
81 static unsigned long first_settimeofday
= 1;
84 /* The decrementer counts down by 128 every 128ns on a 601. */
85 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
87 #define XSEC_PER_SEC (1024*1024)
90 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92 /* compute ((xsec << 12) * max) >> 32 */
93 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96 unsigned long tb_ticks_per_jiffy
;
97 unsigned long tb_ticks_per_usec
= 100; /* sane default */
98 EXPORT_SYMBOL(tb_ticks_per_usec
);
99 unsigned long tb_ticks_per_sec
;
100 EXPORT_SYMBOL(tb_ticks_per_sec
); /* for cputime_t conversions */
104 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
105 u64 last_tick_len
; /* units are ns / 2^TICKLEN_SCALE */
106 u64 ticklen_to_xs
; /* 0.64 fraction */
108 /* If last_tick_len corresponds to about 1/HZ seconds, then
109 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
110 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112 DEFINE_SPINLOCK(rtc_lock
);
113 EXPORT_SYMBOL_GPL(rtc_lock
);
116 unsigned tb_to_ns_shift
;
118 struct gettimeofday_struct do_gtod
;
120 extern unsigned long wall_jiffies
;
122 extern struct timezone sys_tz
;
123 static long timezone_offset
;
125 unsigned long ppc_proc_freq
;
126 unsigned long ppc_tb_freq
;
128 static u64 tb_last_jiffy __cacheline_aligned_in_smp
;
129 static DEFINE_PER_CPU(u64
, last_jiffy
);
131 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
133 * Factors for converting from cputime_t (timebase ticks) to
134 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
135 * These are all stored as 0.64 fixed-point binary fractions.
137 u64 __cputime_jiffies_factor
;
138 EXPORT_SYMBOL(__cputime_jiffies_factor
);
139 u64 __cputime_msec_factor
;
140 EXPORT_SYMBOL(__cputime_msec_factor
);
141 u64 __cputime_sec_factor
;
142 EXPORT_SYMBOL(__cputime_sec_factor
);
143 u64 __cputime_clockt_factor
;
144 EXPORT_SYMBOL(__cputime_clockt_factor
);
146 static void calc_cputime_factors(void)
148 struct div_result res
;
150 div128_by_32(HZ
, 0, tb_ticks_per_sec
, &res
);
151 __cputime_jiffies_factor
= res
.result_low
;
152 div128_by_32(1000, 0, tb_ticks_per_sec
, &res
);
153 __cputime_msec_factor
= res
.result_low
;
154 div128_by_32(1, 0, tb_ticks_per_sec
, &res
);
155 __cputime_sec_factor
= res
.result_low
;
156 div128_by_32(USER_HZ
, 0, tb_ticks_per_sec
, &res
);
157 __cputime_clockt_factor
= res
.result_low
;
161 * Read the PURR on systems that have it, otherwise the timebase.
163 static u64
read_purr(void)
165 if (cpu_has_feature(CPU_FTR_PURR
))
166 return mfspr(SPRN_PURR
);
171 * Account time for a transition between system, hard irq
174 void account_system_vtime(struct task_struct
*tsk
)
179 local_irq_save(flags
);
181 delta
= now
- get_paca()->startpurr
;
182 get_paca()->startpurr
= now
;
183 if (!in_interrupt()) {
184 delta
+= get_paca()->system_time
;
185 get_paca()->system_time
= 0;
187 account_system_time(tsk
, 0, delta
);
188 local_irq_restore(flags
);
192 * Transfer the user and system times accumulated in the paca
193 * by the exception entry and exit code to the generic process
194 * user and system time records.
195 * Must be called with interrupts disabled.
197 void account_process_vtime(struct task_struct
*tsk
)
201 utime
= get_paca()->user_time
;
202 get_paca()->user_time
= 0;
203 account_user_time(tsk
, utime
);
206 static void account_process_time(struct pt_regs
*regs
)
208 int cpu
= smp_processor_id();
210 account_process_vtime(current
);
212 if (rcu_pending(cpu
))
213 rcu_check_callbacks(cpu
, user_mode(regs
));
215 run_posix_cpu_timers(current
);
218 #ifdef CONFIG_PPC_SPLPAR
220 * Stuff for accounting stolen time.
222 struct cpu_purr_data
{
223 int initialized
; /* thread is running */
224 u64 tb0
; /* timebase at origin time */
225 u64 purr0
; /* PURR at origin time */
226 u64 tb
; /* last TB value read */
227 u64 purr
; /* last PURR value read */
228 u64 stolen
; /* stolen time so far */
232 static DEFINE_PER_CPU(struct cpu_purr_data
, cpu_purr_data
);
234 static void snapshot_tb_and_purr(void *data
)
236 struct cpu_purr_data
*p
= &__get_cpu_var(cpu_purr_data
);
239 p
->purr0
= mfspr(SPRN_PURR
);
247 * Called during boot when all cpus have come up.
249 void snapshot_timebases(void)
253 if (!cpu_has_feature(CPU_FTR_PURR
))
255 for_each_possible_cpu(cpu
)
256 spin_lock_init(&per_cpu(cpu_purr_data
, cpu
).lock
);
257 on_each_cpu(snapshot_tb_and_purr
, NULL
, 0, 1);
260 void calculate_steal_time(void)
264 struct cpu_purr_data
*p0
, *pme
, *phim
;
267 if (!cpu_has_feature(CPU_FTR_PURR
))
269 cpu
= smp_processor_id();
270 pme
= &per_cpu(cpu_purr_data
, cpu
);
271 if (!pme
->initialized
)
272 return; /* this can happen in early boot */
273 p0
= &per_cpu(cpu_purr_data
, cpu
& ~1);
274 phim
= &per_cpu(cpu_purr_data
, cpu
^ 1);
275 spin_lock(&p0
->lock
);
277 purr
= mfspr(SPRN_PURR
) - pme
->purr0
;
278 if (!phim
->initialized
|| !cpu_online(cpu
^ 1)) {
279 stolen
= (tb
- pme
->tb
) - (purr
- pme
->purr
);
284 stolen
= phim
->tb
- t0
- phim
->purr
- purr
- p0
->stolen
;
287 account_steal_time(current
, stolen
);
288 p0
->stolen
+= stolen
;
292 spin_unlock(&p0
->lock
);
296 * Must be called before the cpu is added to the online map when
297 * a cpu is being brought up at runtime.
299 static void snapshot_purr(void)
303 struct cpu_purr_data
*p0
, *pme
, *phim
;
306 if (!cpu_has_feature(CPU_FTR_PURR
))
308 cpu
= smp_processor_id();
309 pme
= &per_cpu(cpu_purr_data
, cpu
);
310 p0
= &per_cpu(cpu_purr_data
, cpu
& ~1);
311 phim
= &per_cpu(cpu_purr_data
, cpu
^ 1);
312 spin_lock_irqsave(&p0
->lock
, flags
);
313 pme
->tb
= pme
->tb0
= mftb();
314 purr
= mfspr(SPRN_PURR
);
315 if (!phim
->initialized
) {
319 /* set p->purr and p->purr0 for no change in p0->stolen */
320 pme
->purr
= phim
->tb
- phim
->tb0
- phim
->purr
- p0
->stolen
;
321 pme
->purr0
= purr
- pme
->purr
;
323 pme
->initialized
= 1;
324 spin_unlock_irqrestore(&p0
->lock
, flags
);
327 #endif /* CONFIG_PPC_SPLPAR */
329 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
330 #define calc_cputime_factors()
331 #define account_process_time(regs) update_process_times(user_mode(regs))
332 #define calculate_steal_time() do { } while (0)
335 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
336 #define snapshot_purr() do { } while (0)
340 * Called when a cpu comes up after the system has finished booting,
341 * i.e. as a result of a hotplug cpu action.
343 void snapshot_timebase(void)
345 __get_cpu_var(last_jiffy
) = get_tb();
349 void __delay(unsigned long loops
)
357 /* the RTCL register wraps at 1000000000 */
358 diff
= get_rtcl() - start
;
361 } while (diff
< loops
);
364 while (get_tbl() - start
< loops
)
369 EXPORT_SYMBOL(__delay
);
371 void udelay(unsigned long usecs
)
373 __delay(tb_ticks_per_usec
* usecs
);
375 EXPORT_SYMBOL(udelay
);
377 static __inline__
void timer_check_rtc(void)
380 * update the rtc when needed, this should be performed on the
381 * right fraction of a second. Half or full second ?
382 * Full second works on mk48t59 clocks, others need testing.
383 * Note that this update is basically only used through
384 * the adjtimex system calls. Setting the HW clock in
385 * any other way is a /dev/rtc and userland business.
386 * This is still wrong by -0.5/+1.5 jiffies because of the
387 * timer interrupt resolution and possible delay, but here we
388 * hit a quantization limit which can only be solved by higher
389 * resolution timers and decoupling time management from timer
390 * interrupts. This is also wrong on the clocks
391 * which require being written at the half second boundary.
392 * We should have an rtc call that only sets the minutes and
393 * seconds like on Intel to avoid problems with non UTC clocks.
395 if (ppc_md
.set_rtc_time
&& ntp_synced() &&
396 xtime
.tv_sec
- last_rtc_update
>= 659 &&
397 abs((xtime
.tv_nsec
/1000) - (1000000-1000000/HZ
)) < 500000/HZ
) {
399 to_tm(xtime
.tv_sec
+ 1 + timezone_offset
, &tm
);
402 if (ppc_md
.set_rtc_time(&tm
) == 0)
403 last_rtc_update
= xtime
.tv_sec
+ 1;
405 /* Try again one minute later */
406 last_rtc_update
+= 60;
411 * This version of gettimeofday has microsecond resolution.
413 static inline void __do_gettimeofday(struct timeval
*tv
)
415 unsigned long sec
, usec
;
417 struct gettimeofday_vars
*temp_varp
;
418 u64 temp_tb_to_xs
, temp_stamp_xsec
;
421 * These calculations are faster (gets rid of divides)
422 * if done in units of 1/2^20 rather than microseconds.
423 * The conversion to microseconds at the end is done
424 * without a divide (and in fact, without a multiply)
426 temp_varp
= do_gtod
.varp
;
428 /* Sampling the time base must be done after loading
429 * do_gtod.varp in order to avoid racing with update_gtod.
431 data_barrier(temp_varp
);
432 tb_ticks
= get_tb() - temp_varp
->tb_orig_stamp
;
433 temp_tb_to_xs
= temp_varp
->tb_to_xs
;
434 temp_stamp_xsec
= temp_varp
->stamp_xsec
;
435 xsec
= temp_stamp_xsec
+ mulhdu(tb_ticks
, temp_tb_to_xs
);
436 sec
= xsec
/ XSEC_PER_SEC
;
437 usec
= (unsigned long)xsec
& (XSEC_PER_SEC
- 1);
438 usec
= SCALE_XSEC(usec
, 1000000);
444 void do_gettimeofday(struct timeval
*tv
)
447 /* do this the old way */
448 unsigned long flags
, seq
;
449 unsigned int sec
, nsec
, usec
;
452 seq
= read_seqbegin_irqsave(&xtime_lock
, flags
);
454 nsec
= xtime
.tv_nsec
+ tb_ticks_since(tb_last_jiffy
);
455 } while (read_seqretry_irqrestore(&xtime_lock
, seq
, flags
));
457 while (usec
>= 1000000) {
465 __do_gettimeofday(tv
);
468 EXPORT_SYMBOL(do_gettimeofday
);
471 * There are two copies of tb_to_xs and stamp_xsec so that no
472 * lock is needed to access and use these values in
473 * do_gettimeofday. We alternate the copies and as long as a
474 * reasonable time elapses between changes, there will never
475 * be inconsistent values. ntpd has a minimum of one minute
478 static inline void update_gtod(u64 new_tb_stamp
, u64 new_stamp_xsec
,
482 struct gettimeofday_vars
*temp_varp
;
484 temp_idx
= (do_gtod
.var_idx
== 0);
485 temp_varp
= &do_gtod
.vars
[temp_idx
];
487 temp_varp
->tb_to_xs
= new_tb_to_xs
;
488 temp_varp
->tb_orig_stamp
= new_tb_stamp
;
489 temp_varp
->stamp_xsec
= new_stamp_xsec
;
491 do_gtod
.varp
= temp_varp
;
492 do_gtod
.var_idx
= temp_idx
;
495 * tb_update_count is used to allow the userspace gettimeofday code
496 * to assure itself that it sees a consistent view of the tb_to_xs and
497 * stamp_xsec variables. It reads the tb_update_count, then reads
498 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
499 * the two values of tb_update_count match and are even then the
500 * tb_to_xs and stamp_xsec values are consistent. If not, then it
501 * loops back and reads them again until this criteria is met.
502 * We expect the caller to have done the first increment of
503 * vdso_data->tb_update_count already.
505 vdso_data
->tb_orig_stamp
= new_tb_stamp
;
506 vdso_data
->stamp_xsec
= new_stamp_xsec
;
507 vdso_data
->tb_to_xs
= new_tb_to_xs
;
508 vdso_data
->wtom_clock_sec
= wall_to_monotonic
.tv_sec
;
509 vdso_data
->wtom_clock_nsec
= wall_to_monotonic
.tv_nsec
;
511 ++(vdso_data
->tb_update_count
);
515 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
516 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
517 * difference tb - tb_orig_stamp small enough to always fit inside a
518 * 32 bits number. This is a requirement of our fast 32 bits userland
519 * implementation in the vdso. If we "miss" a call to this function
520 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
521 * with a too big difference, then the vdso will fallback to calling
524 static __inline__
void timer_recalc_offset(u64 cur_tb
)
526 unsigned long offset
;
529 u64 tb
, xsec_old
, xsec_new
;
530 struct gettimeofday_vars
*varp
;
534 tlen
= current_tick_length();
535 offset
= cur_tb
- do_gtod
.varp
->tb_orig_stamp
;
536 if (tlen
== last_tick_len
&& offset
< 0x80000000u
)
538 if (tlen
!= last_tick_len
) {
539 t2x
= mulhdu(tlen
<< TICKLEN_SHIFT
, ticklen_to_xs
);
540 last_tick_len
= tlen
;
542 t2x
= do_gtod
.varp
->tb_to_xs
;
543 new_stamp_xsec
= (u64
) xtime
.tv_nsec
* XSEC_PER_SEC
;
544 do_div(new_stamp_xsec
, 1000000000);
545 new_stamp_xsec
+= (u64
) xtime
.tv_sec
* XSEC_PER_SEC
;
547 ++vdso_data
->tb_update_count
;
551 * Make sure time doesn't go backwards for userspace gettimeofday.
555 xsec_old
= mulhdu(tb
- varp
->tb_orig_stamp
, varp
->tb_to_xs
)
557 xsec_new
= mulhdu(tb
- cur_tb
, t2x
) + new_stamp_xsec
;
558 if (xsec_new
< xsec_old
)
559 new_stamp_xsec
+= xsec_old
- xsec_new
;
561 update_gtod(cur_tb
, new_stamp_xsec
, t2x
);
565 unsigned long profile_pc(struct pt_regs
*regs
)
567 unsigned long pc
= instruction_pointer(regs
);
569 if (in_lock_functions(pc
))
574 EXPORT_SYMBOL(profile_pc
);
577 #ifdef CONFIG_PPC_ISERIES
580 * This function recalibrates the timebase based on the 49-bit time-of-day
581 * value in the Titan chip. The Titan is much more accurate than the value
582 * returned by the service processor for the timebase frequency.
585 static void iSeries_tb_recal(void)
587 struct div_result divres
;
588 unsigned long titan
, tb
;
590 titan
= HvCallXm_loadTod();
591 if ( iSeries_recal_titan
) {
592 unsigned long tb_ticks
= tb
- iSeries_recal_tb
;
593 unsigned long titan_usec
= (titan
- iSeries_recal_titan
) >> 12;
594 unsigned long new_tb_ticks_per_sec
= (tb_ticks
* USEC_PER_SEC
)/titan_usec
;
595 unsigned long new_tb_ticks_per_jiffy
= (new_tb_ticks_per_sec
+(HZ
/2))/HZ
;
596 long tick_diff
= new_tb_ticks_per_jiffy
- tb_ticks_per_jiffy
;
598 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
599 new_tb_ticks_per_sec
= new_tb_ticks_per_jiffy
* HZ
;
601 if ( tick_diff
< 0 ) {
602 tick_diff
= -tick_diff
;
606 if ( tick_diff
< tb_ticks_per_jiffy
/25 ) {
607 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
608 new_tb_ticks_per_jiffy
, sign
, tick_diff
);
609 tb_ticks_per_jiffy
= new_tb_ticks_per_jiffy
;
610 tb_ticks_per_sec
= new_tb_ticks_per_sec
;
611 calc_cputime_factors();
612 div128_by_32( XSEC_PER_SEC
, 0, tb_ticks_per_sec
, &divres
);
613 do_gtod
.tb_ticks_per_sec
= tb_ticks_per_sec
;
614 tb_to_xs
= divres
.result_low
;
615 do_gtod
.varp
->tb_to_xs
= tb_to_xs
;
616 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
617 vdso_data
->tb_to_xs
= tb_to_xs
;
620 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
621 " new tb_ticks_per_jiffy = %lu\n"
622 " old tb_ticks_per_jiffy = %lu\n",
623 new_tb_ticks_per_jiffy
, tb_ticks_per_jiffy
);
627 iSeries_recal_titan
= titan
;
628 iSeries_recal_tb
= tb
;
633 * For iSeries shared processors, we have to let the hypervisor
634 * set the hardware decrementer. We set a virtual decrementer
635 * in the lppaca and call the hypervisor if the virtual
636 * decrementer is less than the current value in the hardware
637 * decrementer. (almost always the new decrementer value will
638 * be greater than the current hardware decementer so the hypervisor
639 * call will not be needed)
643 * timer_interrupt - gets called when the decrementer overflows,
644 * with interrupts disabled.
646 void timer_interrupt(struct pt_regs
* regs
)
649 int cpu
= smp_processor_id();
654 if (atomic_read(&ppc_n_lost_interrupts
) != 0)
660 profile_tick(CPU_PROFILING
, regs
);
661 calculate_steal_time();
663 #ifdef CONFIG_PPC_ISERIES
664 get_lppaca()->int_dword
.fields
.decr_int
= 0;
667 while ((ticks
= tb_ticks_since(per_cpu(last_jiffy
, cpu
)))
668 >= tb_ticks_per_jiffy
) {
669 /* Update last_jiffy */
670 per_cpu(last_jiffy
, cpu
) += tb_ticks_per_jiffy
;
671 /* Handle RTCL overflow on 601 */
672 if (__USE_RTC() && per_cpu(last_jiffy
, cpu
) >= 1000000000)
673 per_cpu(last_jiffy
, cpu
) -= 1000000000;
676 * We cannot disable the decrementer, so in the period
677 * between this cpu's being marked offline in cpu_online_map
678 * and calling stop-self, it is taking timer interrupts.
679 * Avoid calling into the scheduler rebalancing code if this
682 if (!cpu_is_offline(cpu
))
683 account_process_time(regs
);
686 * No need to check whether cpu is offline here; boot_cpuid
687 * should have been fixed up by now.
689 if (cpu
!= boot_cpuid
)
692 write_seqlock(&xtime_lock
);
693 tb_next_jiffy
= tb_last_jiffy
+ tb_ticks_per_jiffy
;
694 if (per_cpu(last_jiffy
, cpu
) >= tb_next_jiffy
) {
695 tb_last_jiffy
= tb_next_jiffy
;
697 timer_recalc_offset(tb_last_jiffy
);
700 write_sequnlock(&xtime_lock
);
703 next_dec
= tb_ticks_per_jiffy
- ticks
;
706 #ifdef CONFIG_PPC_ISERIES
707 if (hvlpevent_is_pending())
708 process_hvlpevents(regs
);
712 /* collect purr register values often, for accurate calculations */
713 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
714 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
715 cu
->current_tb
= mfspr(SPRN_PURR
);
722 void wakeup_decrementer(void)
727 * The timebase gets saved on sleep and restored on wakeup,
728 * so all we need to do is to reset the decrementer.
730 ticks
= tb_ticks_since(__get_cpu_var(last_jiffy
));
731 if (ticks
< tb_ticks_per_jiffy
)
732 ticks
= tb_ticks_per_jiffy
- ticks
;
739 void __init
smp_space_timers(unsigned int max_cpus
)
742 unsigned long half
= tb_ticks_per_jiffy
/ 2;
743 unsigned long offset
= tb_ticks_per_jiffy
/ max_cpus
;
744 u64 previous_tb
= per_cpu(last_jiffy
, boot_cpuid
);
746 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
747 previous_tb
-= tb_ticks_per_jiffy
;
749 * The stolen time calculation for POWER5 shared-processor LPAR
750 * systems works better if the two threads' timebase interrupts
751 * are staggered by half a jiffy with respect to each other.
753 for_each_possible_cpu(i
) {
756 if (i
== (boot_cpuid
^ 1))
757 per_cpu(last_jiffy
, i
) =
758 per_cpu(last_jiffy
, boot_cpuid
) - half
;
760 per_cpu(last_jiffy
, i
) =
761 per_cpu(last_jiffy
, i
^ 1) + half
;
763 previous_tb
+= offset
;
764 per_cpu(last_jiffy
, i
) = previous_tb
;
771 * Scheduler clock - returns current time in nanosec units.
773 * Note: mulhdu(a, b) (multiply high double unsigned) returns
774 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
775 * are 64-bit unsigned numbers.
777 unsigned long long sched_clock(void)
781 return mulhdu(get_tb(), tb_to_ns_scale
) << tb_to_ns_shift
;
784 int do_settimeofday(struct timespec
*tv
)
786 time_t wtm_sec
, new_sec
= tv
->tv_sec
;
787 long wtm_nsec
, new_nsec
= tv
->tv_nsec
;
790 unsigned long tb_delta
;
792 if ((unsigned long)tv
->tv_nsec
>= NSEC_PER_SEC
)
795 write_seqlock_irqsave(&xtime_lock
, flags
);
798 * Updating the RTC is not the job of this code. If the time is
799 * stepped under NTP, the RTC will be updated after STA_UNSYNC
800 * is cleared. Tools like clock/hwclock either copy the RTC
801 * to the system time, in which case there is no point in writing
802 * to the RTC again, or write to the RTC but then they don't call
803 * settimeofday to perform this operation.
805 #ifdef CONFIG_PPC_ISERIES
806 if (first_settimeofday
) {
808 first_settimeofday
= 0;
812 /* Make userspace gettimeofday spin until we're done. */
813 ++vdso_data
->tb_update_count
;
817 * Subtract off the number of nanoseconds since the
818 * beginning of the last tick.
819 * Note that since we don't increment jiffies_64 anywhere other
820 * than in do_timer (since we don't have a lost tick problem),
821 * wall_jiffies will always be the same as jiffies,
822 * and therefore the (jiffies - wall_jiffies) computation
825 tb_delta
= tb_ticks_since(tb_last_jiffy
);
826 tb_delta
= mulhdu(tb_delta
, do_gtod
.varp
->tb_to_xs
); /* in xsec */
827 new_nsec
-= SCALE_XSEC(tb_delta
, 1000000000);
829 wtm_sec
= wall_to_monotonic
.tv_sec
+ (xtime
.tv_sec
- new_sec
);
830 wtm_nsec
= wall_to_monotonic
.tv_nsec
+ (xtime
.tv_nsec
- new_nsec
);
832 set_normalized_timespec(&xtime
, new_sec
, new_nsec
);
833 set_normalized_timespec(&wall_to_monotonic
, wtm_sec
, wtm_nsec
);
835 /* In case of a large backwards jump in time with NTP, we want the
836 * clock to be updated as soon as the PLL is again in lock.
838 last_rtc_update
= new_sec
- 658;
842 new_xsec
= xtime
.tv_nsec
;
844 new_xsec
*= XSEC_PER_SEC
;
845 do_div(new_xsec
, NSEC_PER_SEC
);
847 new_xsec
+= (u64
)xtime
.tv_sec
* XSEC_PER_SEC
;
848 update_gtod(tb_last_jiffy
, new_xsec
, do_gtod
.varp
->tb_to_xs
);
850 vdso_data
->tz_minuteswest
= sys_tz
.tz_minuteswest
;
851 vdso_data
->tz_dsttime
= sys_tz
.tz_dsttime
;
853 write_sequnlock_irqrestore(&xtime_lock
, flags
);
858 EXPORT_SYMBOL(do_settimeofday
);
860 static int __init
get_freq(char *name
, int cells
, unsigned long *val
)
862 struct device_node
*cpu
;
863 const unsigned int *fp
;
866 /* The cpu node should have timebase and clock frequency properties */
867 cpu
= of_find_node_by_type(NULL
, "cpu");
870 fp
= get_property(cpu
, name
, NULL
);
873 *val
= of_read_ulong(fp
, cells
);
882 void __init
generic_calibrate_decr(void)
884 ppc_tb_freq
= DEFAULT_TB_FREQ
; /* hardcoded default */
886 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq
) &&
887 !get_freq("timebase-frequency", 1, &ppc_tb_freq
)) {
889 printk(KERN_ERR
"WARNING: Estimating decrementer frequency "
893 ppc_proc_freq
= DEFAULT_PROC_FREQ
; /* hardcoded default */
895 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq
) &&
896 !get_freq("clock-frequency", 1, &ppc_proc_freq
)) {
898 printk(KERN_ERR
"WARNING: Estimating processor frequency "
903 /* Set the time base to zero */
907 /* Clear any pending timer interrupts */
908 mtspr(SPRN_TSR
, TSR_ENW
| TSR_WIS
| TSR_DIS
| TSR_FIS
);
910 /* Enable decrementer interrupt */
911 mtspr(SPRN_TCR
, TCR_DIE
);
915 unsigned long get_boot_time(void)
919 if (ppc_md
.get_boot_time
)
920 return ppc_md
.get_boot_time();
921 if (!ppc_md
.get_rtc_time
)
923 ppc_md
.get_rtc_time(&tm
);
924 return mktime(tm
.tm_year
+1900, tm
.tm_mon
+1, tm
.tm_mday
,
925 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
);
928 /* This function is only called on the boot processor */
929 void __init
time_init(void)
932 unsigned long tm
= 0;
933 struct div_result res
;
937 if (ppc_md
.time_init
!= NULL
)
938 timezone_offset
= ppc_md
.time_init();
941 /* 601 processor: dec counts down by 128 every 128ns */
942 ppc_tb_freq
= 1000000000;
943 tb_last_jiffy
= get_rtcl();
945 /* Normal PowerPC with timebase register */
946 ppc_md
.calibrate_decr();
947 printk(KERN_DEBUG
"time_init: decrementer frequency = %lu.%.6lu MHz\n",
948 ppc_tb_freq
/ 1000000, ppc_tb_freq
% 1000000);
949 printk(KERN_DEBUG
"time_init: processor frequency = %lu.%.6lu MHz\n",
950 ppc_proc_freq
/ 1000000, ppc_proc_freq
% 1000000);
951 tb_last_jiffy
= get_tb();
954 tb_ticks_per_jiffy
= ppc_tb_freq
/ HZ
;
955 tb_ticks_per_sec
= ppc_tb_freq
;
956 tb_ticks_per_usec
= ppc_tb_freq
/ 1000000;
957 tb_to_us
= mulhwu_scale_factor(ppc_tb_freq
, 1000000);
958 calc_cputime_factors();
961 * Calculate the length of each tick in ns. It will not be
962 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
963 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
966 x
= (u64
) NSEC_PER_SEC
* tb_ticks_per_jiffy
+ ppc_tb_freq
- 1;
967 do_div(x
, ppc_tb_freq
);
969 last_tick_len
= x
<< TICKLEN_SCALE
;
972 * Compute ticklen_to_xs, which is a factor which gets multiplied
973 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
975 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
976 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
977 * which turns out to be N = 51 - SHIFT_HZ.
978 * This gives the result as a 0.64 fixed-point fraction.
979 * That value is reduced by an offset amounting to 1 xsec per
980 * 2^31 timebase ticks to avoid problems with time going backwards
981 * by 1 xsec when we do timer_recalc_offset due to losing the
982 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
983 * since there are 2^20 xsec in a second.
985 div128_by_32((1ULL << 51) - ppc_tb_freq
, 0,
986 tb_ticks_per_jiffy
<< SHIFT_HZ
, &res
);
987 div128_by_32(res
.result_high
, res
.result_low
, NSEC_PER_SEC
, &res
);
988 ticklen_to_xs
= res
.result_low
;
990 /* Compute tb_to_xs from tick_nsec */
991 tb_to_xs
= mulhdu(last_tick_len
<< TICKLEN_SHIFT
, ticklen_to_xs
);
994 * Compute scale factor for sched_clock.
995 * The calibrate_decr() function has set tb_ticks_per_sec,
996 * which is the timebase frequency.
997 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
998 * the 128-bit result as a 64.64 fixed-point number.
999 * We then shift that number right until it is less than 1.0,
1000 * giving us the scale factor and shift count to use in
1003 div128_by_32(1000000000, 0, tb_ticks_per_sec
, &res
);
1004 scale
= res
.result_low
;
1005 for (shift
= 0; res
.result_high
!= 0; ++shift
) {
1006 scale
= (scale
>> 1) | (res
.result_high
<< 63);
1007 res
.result_high
>>= 1;
1009 tb_to_ns_scale
= scale
;
1010 tb_to_ns_shift
= shift
;
1012 tm
= get_boot_time();
1014 write_seqlock_irqsave(&xtime_lock
, flags
);
1016 /* If platform provided a timezone (pmac), we correct the time */
1017 if (timezone_offset
) {
1018 sys_tz
.tz_minuteswest
= -timezone_offset
/ 60;
1019 sys_tz
.tz_dsttime
= 0;
1020 tm
-= timezone_offset
;
1025 do_gtod
.varp
= &do_gtod
.vars
[0];
1026 do_gtod
.var_idx
= 0;
1027 do_gtod
.varp
->tb_orig_stamp
= tb_last_jiffy
;
1028 __get_cpu_var(last_jiffy
) = tb_last_jiffy
;
1029 do_gtod
.varp
->stamp_xsec
= (u64
) xtime
.tv_sec
* XSEC_PER_SEC
;
1030 do_gtod
.tb_ticks_per_sec
= tb_ticks_per_sec
;
1031 do_gtod
.varp
->tb_to_xs
= tb_to_xs
;
1032 do_gtod
.tb_to_us
= tb_to_us
;
1034 vdso_data
->tb_orig_stamp
= tb_last_jiffy
;
1035 vdso_data
->tb_update_count
= 0;
1036 vdso_data
->tb_ticks_per_sec
= tb_ticks_per_sec
;
1037 vdso_data
->stamp_xsec
= (u64
) xtime
.tv_sec
* XSEC_PER_SEC
;
1038 vdso_data
->tb_to_xs
= tb_to_xs
;
1042 last_rtc_update
= xtime
.tv_sec
;
1043 set_normalized_timespec(&wall_to_monotonic
,
1044 -xtime
.tv_sec
, -xtime
.tv_nsec
);
1045 write_sequnlock_irqrestore(&xtime_lock
, flags
);
1047 /* Not exact, but the timer interrupt takes care of this */
1048 set_dec(tb_ticks_per_jiffy
);
1053 #define STARTOFTIME 1970
1054 #define SECDAY 86400L
1055 #define SECYR (SECDAY * 365)
1056 #define leapyear(year) ((year) % 4 == 0 && \
1057 ((year) % 100 != 0 || (year) % 400 == 0))
1058 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1059 #define days_in_month(a) (month_days[(a) - 1])
1061 static int month_days
[12] = {
1062 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1066 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1068 void GregorianDay(struct rtc_time
* tm
)
1073 int MonthOffset
[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1075 lastYear
= tm
->tm_year
- 1;
1078 * Number of leap corrections to apply up to end of last year
1080 leapsToDate
= lastYear
/ 4 - lastYear
/ 100 + lastYear
/ 400;
1083 * This year is a leap year if it is divisible by 4 except when it is
1084 * divisible by 100 unless it is divisible by 400
1086 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1088 day
= tm
->tm_mon
> 2 && leapyear(tm
->tm_year
);
1090 day
+= lastYear
*365 + leapsToDate
+ MonthOffset
[tm
->tm_mon
-1] +
1093 tm
->tm_wday
= day
% 7;
1096 void to_tm(int tim
, struct rtc_time
* tm
)
1099 register long hms
, day
;
1104 /* Hours, minutes, seconds are easy */
1105 tm
->tm_hour
= hms
/ 3600;
1106 tm
->tm_min
= (hms
% 3600) / 60;
1107 tm
->tm_sec
= (hms
% 3600) % 60;
1109 /* Number of years in days */
1110 for (i
= STARTOFTIME
; day
>= days_in_year(i
); i
++)
1111 day
-= days_in_year(i
);
1114 /* Number of months in days left */
1115 if (leapyear(tm
->tm_year
))
1116 days_in_month(FEBRUARY
) = 29;
1117 for (i
= 1; day
>= days_in_month(i
); i
++)
1118 day
-= days_in_month(i
);
1119 days_in_month(FEBRUARY
) = 28;
1122 /* Days are what is left over (+1) from all that. */
1123 tm
->tm_mday
= day
+ 1;
1126 * Determine the day of week
1131 /* Auxiliary function to compute scaling factors */
1132 /* Actually the choice of a timebase running at 1/4 the of the bus
1133 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1134 * It makes this computation very precise (27-28 bits typically) which
1135 * is optimistic considering the stability of most processor clock
1136 * oscillators and the precision with which the timebase frequency
1137 * is measured but does not harm.
1139 unsigned mulhwu_scale_factor(unsigned inscale
, unsigned outscale
)
1141 unsigned mlt
=0, tmp
, err
;
1142 /* No concern for performance, it's done once: use a stupid
1143 * but safe and compact method to find the multiplier.
1146 for (tmp
= 1U<<31; tmp
!= 0; tmp
>>= 1) {
1147 if (mulhwu(inscale
, mlt
|tmp
) < outscale
)
1151 /* We might still be off by 1 for the best approximation.
1152 * A side effect of this is that if outscale is too large
1153 * the returned value will be zero.
1154 * Many corner cases have been checked and seem to work,
1155 * some might have been forgotten in the test however.
1158 err
= inscale
* (mlt
+1);
1159 if (err
<= inscale
/2)
1165 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1168 void div128_by_32(u64 dividend_high
, u64 dividend_low
,
1169 unsigned divisor
, struct div_result
*dr
)
1171 unsigned long a
, b
, c
, d
;
1172 unsigned long w
, x
, y
, z
;
1175 a
= dividend_high
>> 32;
1176 b
= dividend_high
& 0xffffffff;
1177 c
= dividend_low
>> 32;
1178 d
= dividend_low
& 0xffffffff;
1181 ra
= ((u64
)(a
- (w
* divisor
)) << 32) + b
;
1183 rb
= ((u64
) do_div(ra
, divisor
) << 32) + c
;
1186 rc
= ((u64
) do_div(rb
, divisor
) << 32) + d
;
1189 do_div(rc
, divisor
);
1192 dr
->result_high
= ((u64
)w
<< 32) + x
;
1193 dr
->result_low
= ((u64
)y
<< 32) + z
;