2 * Fast Ethernet Controller (FCC) driver for Motorola MPC8260.
3 * Copyright (c) 2000 MontaVista Software, Inc. Dan Malek (dmalek@jlc.net)
5 * This version of the driver is a combination of the 8xx fec and
6 * 8260 SCC Ethernet drivers. This version has some additional
7 * configuration options, which should probably be moved out of
8 * here. This driver currently works for the EST SBC8260,
9 * SBS Diablo/BCM, Embedded Planet RPX6, TQM8260, and others.
11 * Right now, I am very watseful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets. Since this is a cache coherent processor and CPM,
17 * I could also preallocate SKB's and use them directly on the interface.
19 * 2004-12 Leo Li (leoli@freescale.com)
20 * - Rework the FCC clock configuration part, make it easier to configure.
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/mii.h>
40 #include <linux/workqueue.h>
41 #include <linux/bitops.h>
43 #include <asm/immap_cpm2.h>
44 #include <asm/pgtable.h>
45 #include <asm/mpc8260.h>
47 #include <asm/uaccess.h>
48 #include <asm/signal.h>
50 /* We can't use the PHY interrupt if we aren't using MDIO. */
51 #if !defined(CONFIG_USE_MDIO)
55 /* If we have a PHY interrupt, we will advertise both full-duplex and half-
56 * duplex capabilities. If we don't have a PHY interrupt, then we will only
57 * advertise half-duplex capabilities.
59 #define MII_ADVERTISE_HALF (ADVERTISE_100HALF | ADVERTISE_10HALF | \
61 #define MII_ADVERTISE_ALL (ADVERTISE_100FULL | ADVERTISE_10FULL | \
64 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_ALL
66 #define MII_ADVERTISE_DEFAULT MII_ADVERTISE_HALF
70 /* The transmitter timeout
72 #define TX_TIMEOUT (2*HZ)
74 #ifdef CONFIG_USE_MDIO
75 /* Forward declarations of some structures to support different PHYs */
79 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
86 const phy_cmd_t
*config
;
87 const phy_cmd_t
*startup
;
88 const phy_cmd_t
*ack_int
;
89 const phy_cmd_t
*shutdown
;
92 /* values for phy_status */
94 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
95 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
96 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
97 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
98 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
99 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
100 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
102 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
103 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
104 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
105 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
106 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
107 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
108 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
109 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
110 #endif /* CONFIG_USE_MDIO */
112 /* The number of Tx and Rx buffers. These are allocated from the page
113 * pool. The code may assume these are power of two, so it is best
114 * to keep them that size.
115 * We don't need to allocate pages for the transmitter. We just use
116 * the skbuffer directly.
118 #define FCC_ENET_RX_PAGES 16
119 #define FCC_ENET_RX_FRSIZE 2048
120 #define FCC_ENET_RX_FRPPG (PAGE_SIZE / FCC_ENET_RX_FRSIZE)
121 #define RX_RING_SIZE (FCC_ENET_RX_FRPPG * FCC_ENET_RX_PAGES)
122 #define TX_RING_SIZE 16 /* Must be power of two */
123 #define TX_RING_MOD_MASK 15 /* for this to work */
125 /* The FCC stores dest/src/type, data, and checksum for receive packets.
126 * size includes support for VLAN
128 #define PKT_MAXBUF_SIZE 1522
129 #define PKT_MINBUF_SIZE 64
131 /* Maximum input DMA size. Must be a should(?) be a multiple of 4.
132 * size includes support for VLAN
134 #define PKT_MAXDMA_SIZE 1524
136 /* Maximum input buffer size. Must be a multiple of 32.
138 #define PKT_MAXBLR_SIZE 1536
140 static int fcc_enet_open(struct net_device
*dev
);
141 static int fcc_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
142 static int fcc_enet_rx(struct net_device
*dev
);
143 static irqreturn_t
fcc_enet_interrupt(int irq
, void *dev_id
, struct pt_regs
*);
144 static int fcc_enet_close(struct net_device
*dev
);
145 static struct net_device_stats
*fcc_enet_get_stats(struct net_device
*dev
);
146 /* static void set_multicast_list(struct net_device *dev); */
147 static void fcc_restart(struct net_device
*dev
, int duplex
);
148 static void fcc_stop(struct net_device
*dev
);
149 static int fcc_enet_set_mac_address(struct net_device
*dev
, void *addr
);
151 /* These will be configurable for the FCC choice.
152 * Multiple ports can be configured. There is little choice among the
153 * I/O pins to the PHY, except the clocks. We will need some board
154 * dependent clock selection.
155 * Why in the hell did I put these inside #ifdef's? I dunno, maybe to
156 * help show what pins are used for each device.
159 /* Since the CLK setting changes greatly from board to board, I changed
160 * it to a easy way. You just need to specify which CLK number to use.
161 * Note that only limited choices can be make on each port.
164 /* FCC1 Clock Source Configuration. There are board specific.
165 Can only choose from CLK9-12 */
166 #ifdef CONFIG_SBC82xx
169 #elif defined(CONFIG_ADS8272)
177 /* FCC2 Clock Source Configuration. There are board specific.
178 Can only choose from CLK13-16 */
179 #ifdef CONFIG_ADS8272
187 /* FCC3 Clock Source Configuration. There are board specific.
188 Can only choose from CLK13-16 */
192 /* Automatically generates register configurations */
193 #define PC_CLK(x) ((uint)(1<<(x-1))) /* FCC CLK I/O ports */
195 #define CMXFCR_RF1CS(x) ((uint)((x-5)<<27)) /* FCC1 Receive Clock Source */
196 #define CMXFCR_TF1CS(x) ((uint)((x-5)<<24)) /* FCC1 Transmit Clock Source */
197 #define CMXFCR_RF2CS(x) ((uint)((x-9)<<19)) /* FCC2 Receive Clock Source */
198 #define CMXFCR_TF2CS(x) ((uint)((x-9)<<16)) /* FCC2 Transmit Clock Source */
199 #define CMXFCR_RF3CS(x) ((uint)((x-9)<<11)) /* FCC3 Receive Clock Source */
200 #define CMXFCR_TF3CS(x) ((uint)((x-9)<<8)) /* FCC3 Transmit Clock Source */
202 #define PC_F1RXCLK PC_CLK(F1_RXCLK)
203 #define PC_F1TXCLK PC_CLK(F1_TXCLK)
204 #define CMX1_CLK_ROUTE (CMXFCR_RF1CS(F1_RXCLK) | CMXFCR_TF1CS(F1_TXCLK))
205 #define CMX1_CLK_MASK ((uint)0xff000000)
207 #define PC_F2RXCLK PC_CLK(F2_RXCLK)
208 #define PC_F2TXCLK PC_CLK(F2_TXCLK)
209 #define CMX2_CLK_ROUTE (CMXFCR_RF2CS(F2_RXCLK) | CMXFCR_TF2CS(F2_TXCLK))
210 #define CMX2_CLK_MASK ((uint)0x00ff0000)
212 #define PC_F3RXCLK PC_CLK(F3_RXCLK)
213 #define PC_F3TXCLK PC_CLK(F3_TXCLK)
214 #define CMX3_CLK_ROUTE (CMXFCR_RF3CS(F3_RXCLK) | CMXFCR_TF3CS(F3_TXCLK))
215 #define CMX3_CLK_MASK ((uint)0x0000ff00)
218 /* I/O Pin assignment for FCC1. I don't yet know the best way to do this,
219 * but there is little variation among the choices.
221 #define PA1_COL ((uint)0x00000001)
222 #define PA1_CRS ((uint)0x00000002)
223 #define PA1_TXER ((uint)0x00000004)
224 #define PA1_TXEN ((uint)0x00000008)
225 #define PA1_RXDV ((uint)0x00000010)
226 #define PA1_RXER ((uint)0x00000020)
227 #define PA1_TXDAT ((uint)0x00003c00)
228 #define PA1_RXDAT ((uint)0x0003c000)
229 #define PA1_PSORA_BOUT (PA1_RXDAT | PA1_TXDAT)
230 #define PA1_PSORA_BIN (PA1_COL | PA1_CRS | PA1_TXER | PA1_TXEN | \
232 #define PA1_DIRA_BOUT (PA1_RXDAT | PA1_CRS | PA1_COL | PA1_RXER | PA1_RXDV)
233 #define PA1_DIRA_BIN (PA1_TXDAT | PA1_TXEN | PA1_TXER)
236 /* I/O Pin assignment for FCC2. I don't yet know the best way to do this,
237 * but there is little variation among the choices.
239 #define PB2_TXER ((uint)0x00000001)
240 #define PB2_RXDV ((uint)0x00000002)
241 #define PB2_TXEN ((uint)0x00000004)
242 #define PB2_RXER ((uint)0x00000008)
243 #define PB2_COL ((uint)0x00000010)
244 #define PB2_CRS ((uint)0x00000020)
245 #define PB2_TXDAT ((uint)0x000003c0)
246 #define PB2_RXDAT ((uint)0x00003c00)
247 #define PB2_PSORB_BOUT (PB2_RXDAT | PB2_TXDAT | PB2_CRS | PB2_COL | \
248 PB2_RXER | PB2_RXDV | PB2_TXER)
249 #define PB2_PSORB_BIN (PB2_TXEN)
250 #define PB2_DIRB_BOUT (PB2_RXDAT | PB2_CRS | PB2_COL | PB2_RXER | PB2_RXDV)
251 #define PB2_DIRB_BIN (PB2_TXDAT | PB2_TXEN | PB2_TXER)
254 /* I/O Pin assignment for FCC3. I don't yet know the best way to do this,
255 * but there is little variation among the choices.
257 #define PB3_RXDV ((uint)0x00004000)
258 #define PB3_RXER ((uint)0x00008000)
259 #define PB3_TXER ((uint)0x00010000)
260 #define PB3_TXEN ((uint)0x00020000)
261 #define PB3_COL ((uint)0x00040000)
262 #define PB3_CRS ((uint)0x00080000)
263 #ifndef CONFIG_RPX8260
264 #define PB3_TXDAT ((uint)0x0f000000)
265 #define PC3_TXDAT ((uint)0x00000000)
267 #define PB3_TXDAT ((uint)0x0f000000)
270 #define PB3_RXDAT ((uint)0x00f00000)
271 #define PB3_PSORB_BOUT (PB3_RXDAT | PB3_TXDAT | PB3_CRS | PB3_COL | \
272 PB3_RXER | PB3_RXDV | PB3_TXER | PB3_TXEN)
273 #define PB3_PSORB_BIN (0)
274 #define PB3_DIRB_BOUT (PB3_RXDAT | PB3_CRS | PB3_COL | PB3_RXER | PB3_RXDV)
275 #define PB3_DIRB_BIN (PB3_TXDAT | PB3_TXEN | PB3_TXER)
277 #define PC3_PSORC_BOUT (PC3_TXDAT)
278 #define PC3_PSORC_BIN (0)
279 #define PC3_DIRC_BOUT (0)
280 #define PC3_DIRC_BIN (PC3_TXDAT)
283 /* MII status/control serial interface.
285 #if defined(CONFIG_RPX8260)
286 /* The EP8260 doesn't use Port C for MDIO */
287 #define PC_MDIO ((uint)0x00000000)
288 #define PC_MDCK ((uint)0x00000000)
289 #elif defined(CONFIG_TQM8260)
290 /* TQM8260 has MDIO and MDCK on PC30 and PC31 respectively */
291 #define PC_MDIO ((uint)0x00000002)
292 #define PC_MDCK ((uint)0x00000001)
293 #elif defined(CONFIG_ADS8272)
294 #define PC_MDIO ((uint)0x00002000)
295 #define PC_MDCK ((uint)0x00001000)
296 #elif defined(CONFIG_EST8260) || defined(CONFIG_ADS8260) || defined(CONFIG_PQ2FADS)
297 #define PC_MDIO ((uint)0x00400000)
298 #define PC_MDCK ((uint)0x00200000)
300 #define PC_MDIO ((uint)0x00000004)
301 #define PC_MDCK ((uint)0x00000020)
304 #if defined(CONFIG_USE_MDIO) && (!defined(PC_MDIO) || !defined(PC_MDCK))
305 #error "Must define PC_MDIO and PC_MDCK if using MDIO"
309 /* default to dynamic config of phy addresses */
310 #define FCC1_PHY_ADDR 0
311 #ifdef CONFIG_PQ2FADS
312 #define FCC2_PHY_ADDR 0
314 #define FCC2_PHY_ADDR 2
316 #define FCC3_PHY_ADDR 3
318 /* A table of information for supporting FCCs. This does two things.
319 * First, we know how many FCCs we have and they are always externally
320 * numbered from zero. Second, it holds control register and I/O
321 * information that could be different among board designs.
323 typedef struct fcc_info
{
337 static fcc_info_t fcc_ports
[] = {
338 #ifdef CONFIG_FCC1_ENET
339 { 0, FCC1_PHY_ADDR
, CPM_CR_FCC1_SBLOCK
, CPM_CR_FCC1_PAGE
, PROFF_FCC1
, SIU_INT_FCC1
,
340 (PC_F1RXCLK
| PC_F1TXCLK
), CMX1_CLK_ROUTE
, CMX1_CLK_MASK
,
343 #ifdef CONFIG_FCC2_ENET
344 { 1, FCC2_PHY_ADDR
, CPM_CR_FCC2_SBLOCK
, CPM_CR_FCC2_PAGE
, PROFF_FCC2
, SIU_INT_FCC2
,
345 (PC_F2RXCLK
| PC_F2TXCLK
), CMX2_CLK_ROUTE
, CMX2_CLK_MASK
,
348 #ifdef CONFIG_FCC3_ENET
349 { 2, FCC3_PHY_ADDR
, CPM_CR_FCC3_SBLOCK
, CPM_CR_FCC3_PAGE
, PROFF_FCC3
, SIU_INT_FCC3
,
350 (PC_F3RXCLK
| PC_F3TXCLK
), CMX3_CLK_ROUTE
, CMX3_CLK_MASK
,
355 /* The FCC buffer descriptors track the ring buffers. The rx_bd_base and
356 * tx_bd_base always point to the base of the buffer descriptors. The
357 * cur_rx and cur_tx point to the currently available buffer.
358 * The dirty_tx tracks the current buffer that is being sent by the
359 * controller. The cur_tx and dirty_tx are equal under both completely
360 * empty and completely full conditions. The empty/ready indicator in
361 * the buffer descriptor determines the actual condition.
363 struct fcc_enet_private
{
364 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
365 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
369 /* CPM dual port RAM relative addresses.
371 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
373 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
374 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
375 volatile fcc_t
*fccp
;
376 volatile fcc_enet_t
*ep
;
377 struct net_device_stats stats
;
381 #ifdef CONFIG_USE_MDIO
386 struct work_struct phy_relink
;
387 struct work_struct phy_display_config
;
392 #endif /* CONFIG_USE_MDIO */
401 static void init_fcc_shutdown(fcc_info_t
*fip
, struct fcc_enet_private
*cep
,
402 volatile cpm2_map_t
*immap
);
403 static void init_fcc_startup(fcc_info_t
*fip
, struct net_device
*dev
);
404 static void init_fcc_ioports(fcc_info_t
*fip
, volatile iop_cpm2_t
*io
,
405 volatile cpm2_map_t
*immap
);
406 static void init_fcc_param(fcc_info_t
*fip
, struct net_device
*dev
,
407 volatile cpm2_map_t
*immap
);
409 #ifdef CONFIG_USE_MDIO
410 static int mii_queue(struct net_device
*dev
, int request
, void (*func
)(uint
, struct net_device
*));
411 static uint
mii_send_receive(fcc_info_t
*fip
, uint cmd
);
412 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
);
414 /* Make MII read/write commands for the FCC.
416 #define mk_mii_read(REG) (0x60020000 | (((REG) & 0x1f) << 18))
417 #define mk_mii_write(REG, VAL) (0x50020000 | (((REG) & 0x1f) << 18) | \
420 #endif /* CONFIG_USE_MDIO */
424 fcc_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
426 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
429 /* Fill in a Tx ring entry */
432 #ifndef final_version
433 if (!cep
->tx_free
|| (bdp
->cbd_sc
& BD_ENET_TX_READY
)) {
434 /* Ooops. All transmit buffers are full. Bail out.
435 * This should not happen, since the tx queue should be stopped.
437 printk("%s: tx queue full!.\n", dev
->name
);
442 /* Clear all of the status flags. */
443 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
445 /* If the frame is short, tell CPM to pad it. */
446 if (skb
->len
<= ETH_ZLEN
)
447 bdp
->cbd_sc
|= BD_ENET_TX_PAD
;
449 bdp
->cbd_sc
&= ~BD_ENET_TX_PAD
;
451 /* Set buffer length and buffer pointer. */
452 bdp
->cbd_datlen
= skb
->len
;
453 bdp
->cbd_bufaddr
= __pa(skb
->data
);
455 spin_lock_irq(&cep
->lock
);
457 /* Save skb pointer. */
458 cep
->tx_skbuff
[cep
->skb_cur
] = skb
;
460 cep
->stats
.tx_bytes
+= skb
->len
;
461 cep
->skb_cur
= (cep
->skb_cur
+1) & TX_RING_MOD_MASK
;
463 /* Send it on its way. Tell CPM its ready, interrupt when done,
464 * its the last BD of the frame, and to put the CRC on the end.
466 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
| BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
469 /* Errata says don't do this. */
470 cep
->fccp
->fcc_ftodr
= 0x8000;
472 dev
->trans_start
= jiffies
;
474 /* If this was the last BD in the ring, start at the beginning again. */
475 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
476 bdp
= cep
->tx_bd_base
;
481 netif_stop_queue(dev
);
483 cep
->cur_tx
= (cbd_t
*)bdp
;
485 spin_unlock_irq(&cep
->lock
);
492 fcc_enet_timeout(struct net_device
*dev
)
494 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
496 printk("%s: transmit timed out.\n", dev
->name
);
497 cep
->stats
.tx_errors
++;
498 #ifndef final_version
502 printk(" Ring data dump: cur_tx %p tx_free %d cur_rx %p.\n",
503 cep
->cur_tx
, cep
->tx_free
,
505 bdp
= cep
->tx_bd_base
;
506 printk(" Tx @base %p :\n", bdp
);
507 for (i
= 0 ; i
< TX_RING_SIZE
; i
++, bdp
++)
508 printk("%04x %04x %08x\n",
512 bdp
= cep
->rx_bd_base
;
513 printk(" Rx @base %p :\n", bdp
);
514 for (i
= 0 ; i
< RX_RING_SIZE
; i
++, bdp
++)
515 printk("%04x %04x %08x\n",
522 netif_wake_queue(dev
);
525 /* The interrupt handler. */
527 fcc_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
529 struct net_device
*dev
= dev_id
;
530 volatile struct fcc_enet_private
*cep
;
535 cep
= (struct fcc_enet_private
*)dev
->priv
;
537 /* Get the interrupt events that caused us to be here.
539 int_events
= cep
->fccp
->fcc_fcce
;
540 cep
->fccp
->fcc_fcce
= (int_events
& cep
->fccp
->fcc_fccm
);
544 /* We have to be careful here to make sure that we aren't
545 * interrupted by a PHY interrupt.
547 disable_irq_nosync(PHY_INTERRUPT
);
550 /* Handle receive event in its own function.
552 if (int_events
& FCC_ENET_RXF
)
555 /* Check for a transmit error. The manual is a little unclear
556 * about this, so the debug code until I get it figured out. It
557 * appears that if TXE is set, then TXB is not set. However,
558 * if carrier sense is lost during frame transmission, the TXE
559 * bit is set, "and continues the buffer transmission normally."
560 * I don't know if "normally" implies TXB is set when the buffer
561 * descriptor is closed.....trial and error :-).
564 /* Transmit OK, or non-fatal error. Update the buffer descriptors.
566 if (int_events
& (FCC_ENET_TXE
| FCC_ENET_TXB
)) {
567 spin_lock(&cep
->lock
);
569 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
)==0) {
570 if (cep
->tx_free
== TX_RING_SIZE
)
573 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
574 cep
->stats
.tx_heartbeat_errors
++;
575 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
576 cep
->stats
.tx_window_errors
++;
577 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
578 cep
->stats
.tx_aborted_errors
++;
579 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
580 cep
->stats
.tx_fifo_errors
++;
581 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
582 cep
->stats
.tx_carrier_errors
++;
585 /* No heartbeat or Lost carrier are not really bad errors.
586 * The others require a restart transmit command.
589 (BD_ENET_TX_LC
| BD_ENET_TX_RL
| BD_ENET_TX_UN
)) {
591 cep
->stats
.tx_errors
++;
594 cep
->stats
.tx_packets
++;
596 /* Deferred means some collisions occurred during transmit,
597 * but we eventually sent the packet OK.
599 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
600 cep
->stats
.collisions
++;
602 /* Free the sk buffer associated with this last transmit. */
603 dev_kfree_skb_irq(cep
->tx_skbuff
[cep
->skb_dirty
]);
604 cep
->tx_skbuff
[cep
->skb_dirty
] = NULL
;
605 cep
->skb_dirty
= (cep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
607 /* Update pointer to next buffer descriptor to be transmitted. */
608 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
609 bdp
= cep
->tx_bd_base
;
613 /* I don't know if we can be held off from processing these
614 * interrupts for more than one frame time. I really hope
615 * not. In such a case, we would now want to check the
616 * currently available BD (cur_tx) and determine if any
617 * buffers between the dirty_tx and cur_tx have also been
618 * sent. We would want to process anything in between that
619 * does not have BD_ENET_TX_READY set.
622 /* Since we have freed up a buffer, the ring is no longer
625 if (!cep
->tx_free
++) {
626 if (netif_queue_stopped(dev
)) {
627 netif_wake_queue(dev
);
631 cep
->dirty_tx
= (cbd_t
*)bdp
;
635 volatile cpm_cpm2_t
*cp
;
637 /* Some transmit errors cause the transmitter to shut
638 * down. We now issue a restart transmit. Since the
639 * errors close the BD and update the pointers, the restart
640 * _should_ pick up without having to reset any of our
641 * pointers either. Also, To workaround 8260 device erratum
642 * CPM37, we must disable and then re-enable the transmitter
643 * following a Late Collision, Underrun, or Retry Limit error.
645 cep
->fccp
->fcc_gfmr
&= ~FCC_GFMR_ENT
;
646 udelay(10); /* wait a few microseconds just on principle */
647 cep
->fccp
->fcc_gfmr
|= FCC_GFMR_ENT
;
651 mk_cr_cmd(cep
->fip
->fc_cpmpage
, cep
->fip
->fc_cpmblock
,
652 0x0c, CPM_CR_RESTART_TX
) | CPM_CR_FLG
;
653 while (cp
->cp_cpcr
& CPM_CR_FLG
);
655 spin_unlock(&cep
->lock
);
658 /* Check for receive busy, i.e. packets coming but no place to
661 if (int_events
& FCC_ENET_BSY
) {
662 cep
->fccp
->fcc_fcce
= FCC_ENET_BSY
;
663 cep
->stats
.rx_dropped
++;
667 enable_irq(PHY_INTERRUPT
);
672 /* During a receive, the cur_rx points to the current incoming buffer.
673 * When we update through the ring, if the next incoming buffer has
674 * not been given to the system, we just set the empty indicator,
675 * effectively tossing the packet.
678 fcc_enet_rx(struct net_device
*dev
)
680 struct fcc_enet_private
*cep
;
685 cep
= (struct fcc_enet_private
*)dev
->priv
;
687 /* First, grab all of the stats for the incoming packet.
688 * These get messed up if we get called due to a busy condition.
693 if (bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)
696 #ifndef final_version
697 /* Since we have allocated space to hold a complete frame, both
698 * the first and last indicators should be set.
700 if ((bdp
->cbd_sc
& (BD_ENET_RX_FIRST
| BD_ENET_RX_LAST
)) !=
701 (BD_ENET_RX_FIRST
| BD_ENET_RX_LAST
))
702 printk("CPM ENET: rcv is not first+last\n");
705 /* Frame too long or too short. */
706 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
))
707 cep
->stats
.rx_length_errors
++;
708 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
709 cep
->stats
.rx_frame_errors
++;
710 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
711 cep
->stats
.rx_crc_errors
++;
712 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
713 cep
->stats
.rx_crc_errors
++;
714 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) /* Late Collision */
715 cep
->stats
.rx_frame_errors
++;
718 (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
| BD_ENET_RX_CR
719 | BD_ENET_RX_OV
| BD_ENET_RX_CL
)))
721 /* Process the incoming frame. */
722 cep
->stats
.rx_packets
++;
724 /* Remove the FCS from the packet length. */
725 pkt_len
= bdp
->cbd_datlen
- 4;
726 cep
->stats
.rx_bytes
+= pkt_len
;
728 /* This does 16 byte alignment, much more than we need. */
729 skb
= dev_alloc_skb(pkt_len
);
732 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
733 cep
->stats
.rx_dropped
++;
737 skb_put(skb
,pkt_len
); /* Make room */
738 eth_copy_and_sum(skb
,
739 (unsigned char *)__va(bdp
->cbd_bufaddr
),
741 skb
->protocol
=eth_type_trans(skb
,dev
);
746 /* Clear the status flags for this buffer. */
747 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
749 /* Mark the buffer empty. */
750 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
752 /* Update BD pointer to next entry. */
753 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
754 bdp
= cep
->rx_bd_base
;
759 cep
->cur_rx
= (cbd_t
*)bdp
;
765 fcc_enet_close(struct net_device
*dev
)
767 #ifdef CONFIG_USE_MDIO
768 struct fcc_enet_private
*fep
= dev
->priv
;
771 netif_stop_queue(dev
);
773 #ifdef CONFIG_USE_MDIO
775 mii_do_cmd(dev
, fep
->phy
->shutdown
);
781 static struct net_device_stats
*fcc_enet_get_stats(struct net_device
*dev
)
783 struct fcc_enet_private
*cep
= (struct fcc_enet_private
*)dev
->priv
;
788 #ifdef CONFIG_USE_MDIO
790 /* NOTE: Most of the following comes from the FEC driver for 860. The
791 * overall structure of MII code has been retained (as it's proved stable
792 * and well-tested), but actual transfer requests are processed "at once"
793 * instead of being queued (there's no interrupt-driven MII transfer
794 * mechanism, one has to toggle the data/clock bits manually).
797 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
799 struct fcc_enet_private
*fep
;
802 /* Add PHY address to register command. */
804 regval
|= fep
->phy_addr
<< 23;
808 tmp
= mii_send_receive(fep
->fip
, regval
);
815 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
822 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++)
823 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
826 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
828 volatile struct fcc_enet_private
*fep
= dev
->priv
;
829 uint s
= fep
->phy_status
;
831 s
&= ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
833 if (mii_reg
& BMSR_LSTATUS
)
835 if (mii_reg
& BMSR_RFAULT
)
837 if (mii_reg
& BMSR_ANEGCOMPLETE
)
843 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
845 volatile struct fcc_enet_private
*fep
= dev
->priv
;
846 uint s
= fep
->phy_status
;
848 s
&= ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
850 if (mii_reg
& BMCR_ANENABLE
)
852 if (mii_reg
& BMCR_LOOPBACK
)
858 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
860 volatile struct fcc_enet_private
*fep
= dev
->priv
;
861 uint s
= fep
->phy_status
;
863 s
&= ~(PHY_CONF_SPMASK
);
865 if (mii_reg
& ADVERTISE_10HALF
)
867 if (mii_reg
& ADVERTISE_10FULL
)
869 if (mii_reg
& ADVERTISE_100HALF
)
870 s
|= PHY_CONF_100HDX
;
871 if (mii_reg
& ADVERTISE_100FULL
)
872 s
|= PHY_CONF_100FDX
;
877 /* ------------------------------------------------------------------------- */
878 /* Generic PHY support. Should work for all PHYs, but does not support link
881 #ifdef CONFIG_FCC_GENERIC_PHY
883 static phy_info_t phy_info_generic
= {
884 0x00000000, /* 0-->match any PHY */
887 (const phy_cmd_t
[]) { /* config */
888 /* advertise only half-duplex capabilities */
889 { mk_mii_write(MII_ADVERTISE
, MII_ADVERTISE_HALF
),
892 /* enable auto-negotiation */
893 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
), mii_parse_cr
},
896 (const phy_cmd_t
[]) { /* startup */
897 /* restart auto-negotiation */
898 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
),
902 (const phy_cmd_t
[]) { /* ack_int */
903 /* We don't actually use the ack_int table with a generic
904 * PHY, but putting a reference to mii_parse_sr here keeps
905 * us from getting a compiler warning about unused static
906 * functions in the case where we only compile in generic
909 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
912 (const phy_cmd_t
[]) { /* shutdown */
916 #endif /* ifdef CONFIG_FCC_GENERIC_PHY */
918 /* ------------------------------------------------------------------------- */
919 /* The Level one LXT970 is used by many boards */
921 #ifdef CONFIG_FCC_LXT970
923 #define MII_LXT970_MIRROR 16 /* Mirror register */
924 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
925 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
926 #define MII_LXT970_CONFIG 19 /* Configuration Register */
927 #define MII_LXT970_CSR 20 /* Chip Status Register */
929 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
931 volatile struct fcc_enet_private
*fep
= dev
->priv
;
932 uint s
= fep
->phy_status
;
934 s
&= ~(PHY_STAT_SPMASK
);
936 if (mii_reg
& 0x0800) {
937 if (mii_reg
& 0x1000)
938 s
|= PHY_STAT_100FDX
;
940 s
|= PHY_STAT_100HDX
;
942 if (mii_reg
& 0x1000)
951 static phy_info_t phy_info_lxt970
= {
955 (const phy_cmd_t
[]) { /* config */
957 // { mk_mii_write(MII_ADVERTISE, 0x0021), NULL },
959 /* Set default operation of 100-TX....for some reason
960 * some of these bits are set on power up, which is wrong.
962 { mk_mii_write(MII_LXT970_CONFIG
, 0), NULL
},
964 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
965 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
968 (const phy_cmd_t
[]) { /* startup - enable interrupts */
969 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
970 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
973 (const phy_cmd_t
[]) { /* ack_int */
974 /* read SR and ISR to acknowledge */
976 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
977 { mk_mii_read(MII_LXT970_ISR
), NULL
},
979 /* find out the current status */
981 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
984 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
985 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
990 #endif /* CONFIG_FEC_LXT970 */
992 /* ------------------------------------------------------------------------- */
993 /* The Level one LXT971 is used on some of my custom boards */
995 #ifdef CONFIG_FCC_LXT971
997 /* register definitions for the 971 */
999 #define MII_LXT971_PCR 16 /* Port Control Register */
1000 #define MII_LXT971_SR2 17 /* Status Register 2 */
1001 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
1002 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
1003 #define MII_LXT971_LCR 20 /* LED Control Register */
1004 #define MII_LXT971_TCR 30 /* Transmit Control Register */
1007 * I had some nice ideas of running the MDIO faster...
1008 * The 971 should support 8MHz and I tried it, but things acted really
1009 * weird, so 2.5 MHz ought to be enough for anyone...
1012 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
1014 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1015 uint s
= fep
->phy_status
;
1017 s
&= ~(PHY_STAT_SPMASK
);
1019 if (mii_reg
& 0x4000) {
1020 if (mii_reg
& 0x0200)
1021 s
|= PHY_STAT_100FDX
;
1023 s
|= PHY_STAT_100HDX
;
1025 if (mii_reg
& 0x0200)
1026 s
|= PHY_STAT_10FDX
;
1028 s
|= PHY_STAT_10HDX
;
1030 if (mii_reg
& 0x0008)
1031 s
|= PHY_STAT_FAULT
;
1033 fep
->phy_status
= s
;
1036 static phy_info_t phy_info_lxt971
= {
1040 (const phy_cmd_t
[]) { /* config */
1041 /* configure link capabilities to advertise */
1042 { mk_mii_write(MII_ADVERTISE
, MII_ADVERTISE_DEFAULT
),
1045 /* enable auto-negotiation */
1046 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
), mii_parse_cr
},
1049 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1050 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
1052 /* restart auto-negotiation */
1053 { mk_mii_write(MII_BMCR
, BMCR_ANENABLE
| BMCR_ANRESTART
),
1057 (const phy_cmd_t
[]) { /* ack_int */
1058 /* find out the current status */
1059 { mk_mii_read(MII_BMSR
), NULL
},
1060 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1061 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
1063 /* we only need to read ISR to acknowledge */
1064 { mk_mii_read(MII_LXT971_ISR
), NULL
},
1067 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1068 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
1073 #endif /* CONFIG_FCC_LXT971 */
1075 /* ------------------------------------------------------------------------- */
1076 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1078 #ifdef CONFIG_FCC_QS6612
1080 /* register definitions */
1082 #define MII_QS6612_MCR 17 /* Mode Control Register */
1083 #define MII_QS6612_FTR 27 /* Factory Test Register */
1084 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1085 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1086 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1087 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1089 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
1091 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1092 uint s
= fep
->phy_status
;
1094 s
&= ~(PHY_STAT_SPMASK
);
1096 switch((mii_reg
>> 2) & 7) {
1097 case 1: s
|= PHY_STAT_10HDX
; break;
1098 case 2: s
|= PHY_STAT_100HDX
; break;
1099 case 5: s
|= PHY_STAT_10FDX
; break;
1100 case 6: s
|= PHY_STAT_100FDX
; break;
1103 fep
->phy_status
= s
;
1106 static phy_info_t phy_info_qs6612
= {
1110 (const phy_cmd_t
[]) { /* config */
1111 // { mk_mii_write(MII_ADVERTISE, 0x061), NULL }, /* 10 Mbps */
1113 /* The PHY powers up isolated on the RPX,
1114 * so send a command to allow operation.
1117 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1119 /* parse cr and anar to get some info */
1121 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1122 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1125 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1126 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1127 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
1130 (const phy_cmd_t
[]) { /* ack_int */
1132 /* we need to read ISR, SR and ANER to acknowledge */
1134 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1135 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1136 { mk_mii_read(MII_EXPANSION
), NULL
},
1138 /* read pcr to get info */
1140 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1143 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1144 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1150 #endif /* CONFIG_FEC_QS6612 */
1153 /* ------------------------------------------------------------------------- */
1154 /* The Davicom DM9131 is used on the HYMOD board */
1156 #ifdef CONFIG_FCC_DM9131
1158 /* register definitions */
1160 #define MII_DM9131_ACR 16 /* Aux. Config Register */
1161 #define MII_DM9131_ACSR 17 /* Aux. Config/Status Register */
1162 #define MII_DM9131_10TCSR 18 /* 10BaseT Config/Status Reg. */
1163 #define MII_DM9131_INTR 21 /* Interrupt Register */
1164 #define MII_DM9131_RECR 22 /* Receive Error Counter Reg. */
1165 #define MII_DM9131_DISCR 23 /* Disconnect Counter Register */
1167 static void mii_parse_dm9131_acsr(uint mii_reg
, struct net_device
*dev
)
1169 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1170 uint s
= fep
->phy_status
;
1172 s
&= ~(PHY_STAT_SPMASK
);
1174 switch ((mii_reg
>> 12) & 0xf) {
1175 case 1: s
|= PHY_STAT_10HDX
; break;
1176 case 2: s
|= PHY_STAT_10FDX
; break;
1177 case 4: s
|= PHY_STAT_100HDX
; break;
1178 case 8: s
|= PHY_STAT_100FDX
; break;
1181 fep
->phy_status
= s
;
1184 static phy_info_t phy_info_dm9131
= {
1188 (const phy_cmd_t
[]) { /* config */
1189 /* parse cr and anar to get some info */
1190 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1191 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1194 (const phy_cmd_t
[]) { /* startup - enable interrupts */
1195 { mk_mii_write(MII_DM9131_INTR
, 0x0002), NULL
},
1196 { mk_mii_write(MII_BMCR
, 0x1200), NULL
}, /* autonegotiate */
1199 (const phy_cmd_t
[]) { /* ack_int */
1201 /* we need to read INTR, SR and ANER to acknowledge */
1203 { mk_mii_read(MII_DM9131_INTR
), NULL
},
1204 { mk_mii_read(MII_BMSR
), mii_parse_sr
},
1205 { mk_mii_read(MII_EXPANSION
), NULL
},
1207 /* read acsr to get info */
1209 { mk_mii_read(MII_DM9131_ACSR
), mii_parse_dm9131_acsr
},
1212 (const phy_cmd_t
[]) { /* shutdown - disable interrupts */
1213 { mk_mii_write(MII_DM9131_INTR
, 0x0f00), NULL
},
1219 #endif /* CONFIG_FEC_DM9131 */
1220 #ifdef CONFIG_FCC_DM9161
1221 /* ------------------------------------------------------------------------- */
1222 /* DM9161 Control register values */
1223 #define MIIM_DM9161_CR_STOP 0x0400
1224 #define MIIM_DM9161_CR_RSTAN 0x1200
1226 #define MIIM_DM9161_SCR 0x10
1227 #define MIIM_DM9161_SCR_INIT 0x0610
1229 /* DM9161 Specified Configuration and Status Register */
1230 #define MIIM_DM9161_SCSR 0x11
1231 #define MIIM_DM9161_SCSR_100F 0x8000
1232 #define MIIM_DM9161_SCSR_100H 0x4000
1233 #define MIIM_DM9161_SCSR_10F 0x2000
1234 #define MIIM_DM9161_SCSR_10H 0x1000
1235 /* DM9161 10BT register */
1236 #define MIIM_DM9161_10BTCSR 0x12
1237 #define MIIM_DM9161_10BTCSR_INIT 0x7800
1238 /* DM9161 Interrupt Register */
1239 #define MIIM_DM9161_INTR 0x15
1240 #define MIIM_DM9161_INTR_PEND 0x8000
1241 #define MIIM_DM9161_INTR_DPLX_MASK 0x0800
1242 #define MIIM_DM9161_INTR_SPD_MASK 0x0400
1243 #define MIIM_DM9161_INTR_LINK_MASK 0x0200
1244 #define MIIM_DM9161_INTR_MASK 0x0100
1245 #define MIIM_DM9161_INTR_DPLX_CHANGE 0x0010
1246 #define MIIM_DM9161_INTR_SPD_CHANGE 0x0008
1247 #define MIIM_DM9161_INTR_LINK_CHANGE 0x0004
1248 #define MIIM_DM9161_INTR_INIT 0x0000
1249 #define MIIM_DM9161_INTR_STOP \
1250 (MIIM_DM9161_INTR_DPLX_MASK | MIIM_DM9161_INTR_SPD_MASK \
1251 | MIIM_DM9161_INTR_LINK_MASK | MIIM_DM9161_INTR_MASK)
1253 static void mii_parse_dm9161_sr(uint mii_reg
, struct net_device
* dev
)
1255 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1256 uint regstat
, timeout
=0xffff;
1258 while(!(mii_reg
& 0x0020) && timeout
--)
1260 regstat
=mk_mii_read(MII_BMSR
);
1261 regstat
|= fep
->phy_addr
<<23;
1262 mii_reg
= mii_send_receive(fep
->fip
,regstat
);
1265 mii_parse_sr(mii_reg
, dev
);
1268 static void mii_parse_dm9161_scsr(uint mii_reg
, struct net_device
* dev
)
1270 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1271 uint s
= fep
->phy_status
;
1273 s
&= ~(PHY_STAT_SPMASK
);
1274 switch((mii_reg
>>12) & 0xf) {
1277 s
|= PHY_STAT_10HDX
;
1278 printk("10BaseT Half Duplex\n");
1283 s
|= PHY_STAT_10FDX
;
1284 printk("10BaseT Full Duplex\n");
1289 s
|= PHY_STAT_100HDX
;
1290 printk("100BaseT Half Duplex\n");
1295 s
|= PHY_STAT_100FDX
;
1296 printk("100BaseT Full Duplex\n");
1301 fep
->phy_status
= s
;
1305 static void mii_dm9161_wait(uint mii_reg
, struct net_device
*dev
)
1309 /* Davicom takes a bit to come up after a reset,
1310 * so wait here for a bit */
1311 schedule_timeout_uninterruptible(timeout
);
1314 static phy_info_t phy_info_dm9161
= {
1317 (const phy_cmd_t
[]) { /* config */
1318 { mk_mii_write(MII_BMCR
, MIIM_DM9161_CR_STOP
), NULL
},
1319 /* Do not bypass the scrambler/descrambler */
1320 { mk_mii_write(MIIM_DM9161_SCR
, MIIM_DM9161_SCR_INIT
), NULL
},
1321 /* Configure 10BTCSR register */
1322 { mk_mii_write(MIIM_DM9161_10BTCSR
, MIIM_DM9161_10BTCSR_INIT
),NULL
},
1323 /* Configure some basic stuff */
1324 { mk_mii_write(MII_BMCR
, 0x1000), NULL
},
1325 { mk_mii_read(MII_BMCR
), mii_parse_cr
},
1326 { mk_mii_read(MII_ADVERTISE
), mii_parse_anar
},
1329 (const phy_cmd_t
[]) { /* startup */
1330 /* Restart Auto Negotiation */
1331 { mk_mii_write(MII_BMCR
, MIIM_DM9161_CR_RSTAN
), NULL
},
1332 /* Status is read once to clear old link state */
1333 { mk_mii_read(MII_BMSR
), mii_dm9161_wait
},
1334 /* Auto-negotiate */
1335 { mk_mii_read(MII_BMSR
), mii_parse_dm9161_sr
},
1336 /* Read the status */
1337 { mk_mii_read(MIIM_DM9161_SCSR
), mii_parse_dm9161_scsr
},
1338 /* Clear any pending interrupts */
1339 { mk_mii_read(MIIM_DM9161_INTR
), NULL
},
1340 /* Enable Interrupts */
1341 { mk_mii_write(MIIM_DM9161_INTR
, MIIM_DM9161_INTR_INIT
), NULL
},
1344 (const phy_cmd_t
[]) { /* ack_int */
1345 { mk_mii_read(MIIM_DM9161_INTR
), NULL
},
1347 { mk_mii_read(MII_BMSR
), NULL
},
1348 { mk_mii_read(MII_BMSR
), mii_parse_dm9161_sr
},
1349 { mk_mii_read(MIIM_DM9161_SCSR
), mii_parse_dm9161_scsr
},
1353 (const phy_cmd_t
[]) { /* shutdown */
1354 { mk_mii_read(MIIM_DM9161_INTR
),NULL
},
1355 { mk_mii_write(MIIM_DM9161_INTR
, MIIM_DM9161_INTR_STOP
), NULL
},
1359 #endif /* CONFIG_FCC_DM9161 */
1361 static phy_info_t
*phy_info
[] = {
1363 #ifdef CONFIG_FCC_LXT970
1365 #endif /* CONFIG_FEC_LXT970 */
1367 #ifdef CONFIG_FCC_LXT971
1369 #endif /* CONFIG_FEC_LXT971 */
1371 #ifdef CONFIG_FCC_QS6612
1373 #endif /* CONFIG_FEC_QS6612 */
1375 #ifdef CONFIG_FCC_DM9131
1377 #endif /* CONFIG_FEC_DM9131 */
1379 #ifdef CONFIG_FCC_DM9161
1381 #endif /* CONFIG_FCC_DM9161 */
1383 #ifdef CONFIG_FCC_GENERIC_PHY
1384 /* Generic PHY support. This must be the last PHY in the table.
1385 * It will be used to support any PHY that doesn't match a previous
1386 * entry in the table.
1389 #endif /* CONFIG_FCC_GENERIC_PHY */
1394 static void mii_display_status(void *data
)
1396 struct net_device
*dev
= data
;
1397 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1398 uint s
= fep
->phy_status
;
1400 if (!fep
->link
&& !fep
->old_link
) {
1401 /* Link is still down - don't print anything */
1405 printk("%s: status: ", dev
->name
);
1408 printk("link down");
1412 switch(s
& PHY_STAT_SPMASK
) {
1413 case PHY_STAT_100FDX
: printk(", 100 Mbps Full Duplex"); break;
1414 case PHY_STAT_100HDX
: printk(", 100 Mbps Half Duplex"); break;
1415 case PHY_STAT_10FDX
: printk(", 10 Mbps Full Duplex"); break;
1416 case PHY_STAT_10HDX
: printk(", 10 Mbps Half Duplex"); break;
1418 printk(", Unknown speed/duplex");
1421 if (s
& PHY_STAT_ANC
)
1422 printk(", auto-negotiation complete");
1425 if (s
& PHY_STAT_FAULT
)
1426 printk(", remote fault");
1431 static void mii_display_config(void *data
)
1433 struct net_device
*dev
= data
;
1434 volatile struct fcc_enet_private
*fep
= dev
->priv
;
1435 uint s
= fep
->phy_status
;
1437 printk("%s: config: auto-negotiation ", dev
->name
);
1439 if (s
& PHY_CONF_ANE
)
1444 if (s
& PHY_CONF_100FDX
)
1446 if (s
& PHY_CONF_100HDX
)
1448 if (s
& PHY_CONF_10FDX
)
1450 if (s
& PHY_CONF_10HDX
)
1452 if (!(s
& PHY_CONF_SPMASK
))
1453 printk(", No speed/duplex selected?");
1455 if (s
& PHY_CONF_LOOP
)
1456 printk(", loopback enabled");
1460 fep
->sequence_done
= 1;
1463 static void mii_relink(struct net_device
*dev
)
1465 struct fcc_enet_private
*fep
= dev
->priv
;
1468 fep
->old_link
= fep
->link
;
1469 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1472 printk(" mii_relink: link=%d\n", fep
->link
);
1477 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1479 fcc_restart(dev
, duplex
);
1481 printk(" mii_relink: duplex=%d\n", duplex
);
1486 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1488 struct fcc_enet_private
*fep
= dev
->priv
;
1492 schedule_work(&fep
->phy_relink
);
1495 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1497 struct fcc_enet_private
*fep
= dev
->priv
;
1499 schedule_work(&fep
->phy_display_config
);
1502 phy_cmd_t phy_cmd_relink
[] = { { mk_mii_read(MII_BMCR
), mii_queue_relink
},
1504 phy_cmd_t phy_cmd_config
[] = { { mk_mii_read(MII_BMCR
), mii_queue_config
},
1508 /* Read remainder of PHY ID.
1511 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1513 struct fcc_enet_private
*fep
;
1517 printk("mii_reg: %08x\n", mii_reg
);
1518 fep
->phy_id
|= (mii_reg
& 0xffff);
1520 for(i
= 0; phy_info
[i
]; i
++)
1521 if((phy_info
[i
]->id
== (fep
->phy_id
>> 4)) || !phy_info
[i
]->id
)
1525 panic("%s: PHY id 0x%08x is not supported!\n",
1526 dev
->name
, fep
->phy_id
);
1528 fep
->phy
= phy_info
[i
];
1529 fep
->phy_id_done
= 1;
1531 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1532 dev
->name
, fep
->phy_addr
, fep
->phy
->name
, fep
->phy_id
);
1535 /* Scan all of the MII PHY addresses looking for someone to respond
1536 * with a valid ID. This usually happens quickly.
1539 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1541 struct fcc_enet_private
*fep
;
1546 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff) {
1548 /* Got first part of ID, now get remainder. */
1549 fep
->phy_id
= phytype
<< 16;
1550 mii_queue(dev
, mk_mii_read(MII_PHYSID2
), mii_discover_phy3
);
1553 if (fep
->phy_addr
< 32) {
1554 mii_queue(dev
, mk_mii_read(MII_PHYSID1
),
1557 printk("fec: No PHY device found.\n");
1561 #endif /* CONFIG_USE_MDIO */
1563 #ifdef PHY_INTERRUPT
1564 /* This interrupt occurs when the PHY detects a link change. */
1566 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
1568 struct net_device
*dev
= dev_id
;
1569 struct fcc_enet_private
*fep
= dev
->priv
;
1570 fcc_info_t
*fip
= fep
->fip
;
1573 /* We don't want to be interrupted by an FCC
1576 disable_irq_nosync(fip
->fc_interrupt
);
1578 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1579 /* restart and display status */
1580 mii_do_cmd(dev
, phy_cmd_relink
);
1582 enable_irq(fip
->fc_interrupt
);
1586 #endif /* ifdef PHY_INTERRUPT */
1588 #if 0 /* This should be fixed someday */
1589 /* Set or clear the multicast filter for this adaptor.
1590 * Skeleton taken from sunlance driver.
1591 * The CPM Ethernet implementation allows Multicast as well as individual
1592 * MAC address filtering. Some of the drivers check to make sure it is
1593 * a group multicast address, and discard those that are not. I guess I
1594 * will do the same for now, but just remove the test if you want
1595 * individual filtering as well (do the upper net layers want or support
1596 * this kind of feature?).
1599 set_multicast_list(struct net_device
*dev
)
1601 struct fcc_enet_private
*cep
;
1602 struct dev_mc_list
*dmi
;
1603 u_char
*mcptr
, *tdptr
;
1604 volatile fcc_enet_t
*ep
;
1607 cep
= (struct fcc_enet_private
*)dev
->priv
;
1610 /* Get pointer to FCC area in parameter RAM.
1612 ep
= (fcc_enet_t
*)dev
->base_addr
;
1614 if (dev
->flags
&IFF_PROMISC
) {
1616 /* Log any net taps. */
1617 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
1618 cep
->fccp
->fcc_fpsmr
|= FCC_PSMR_PRO
;
1621 cep
->fccp
->fcc_fpsmr
&= ~FCC_PSMR_PRO
;
1623 if (dev
->flags
& IFF_ALLMULTI
) {
1624 /* Catch all multicast addresses, so set the
1625 * filter to all 1's.
1627 ep
->fen_gaddrh
= 0xffffffff;
1628 ep
->fen_gaddrl
= 0xffffffff;
1631 /* Clear filter and add the addresses in the list.
1638 for (i
=0; i
<dev
->mc_count
; i
++, dmi
= dmi
->next
) {
1640 /* Only support group multicast for now.
1642 if (!(dmi
->dmi_addr
[0] & 1))
1645 /* The address in dmi_addr is LSB first,
1646 * and taddr is MSB first. We have to
1647 * copy bytes MSB first from dmi_addr.
1649 mcptr
= (u_char
*)dmi
->dmi_addr
+ 5;
1650 tdptr
= (u_char
*)&ep
->fen_taddrh
;
1652 *tdptr
++ = *mcptr
--;
1654 /* Ask CPM to run CRC and set bit in
1657 cpmp
->cp_cpcr
= mk_cr_cmd(cep
->fip
->fc_cpmpage
,
1658 cep
->fip
->fc_cpmblock
, 0x0c,
1659 CPM_CR_SET_GADDR
) | CPM_CR_FLG
;
1661 while (cpmp
->cp_cpcr
& CPM_CR_FLG
);
1669 /* Set the individual MAC address.
1671 int fcc_enet_set_mac_address(struct net_device
*dev
, void *p
)
1673 struct sockaddr
*addr
= (struct sockaddr
*) p
;
1674 struct fcc_enet_private
*cep
;
1675 volatile fcc_enet_t
*ep
;
1679 cep
= (struct fcc_enet_private
*)(dev
->priv
);
1682 if (netif_running(dev
))
1685 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1687 eap
= (unsigned char *) &(ep
->fen_paddrh
);
1688 for (i
=5; i
>=0; i
--)
1689 *eap
++ = addr
->sa_data
[i
];
1695 /* Initialize the CPM Ethernet on FCC.
1697 static int __init
fec_enet_init(void)
1699 struct net_device
*dev
;
1700 struct fcc_enet_private
*cep
;
1703 volatile cpm2_map_t
*immap
;
1704 volatile iop_cpm2_t
*io
;
1706 immap
= (cpm2_map_t
*)CPM_MAP_ADDR
; /* and to internal registers */
1707 io
= &immap
->im_ioport
;
1709 np
= sizeof(fcc_ports
) / sizeof(fcc_info_t
);
1713 /* Create an Ethernet device instance.
1715 dev
= alloc_etherdev(sizeof(*cep
));
1720 spin_lock_init(&cep
->lock
);
1723 init_fcc_shutdown(fip
, cep
, immap
);
1724 init_fcc_ioports(fip
, io
, immap
);
1725 init_fcc_param(fip
, dev
, immap
);
1727 dev
->base_addr
= (unsigned long)(cep
->ep
);
1729 /* The CPM Ethernet specific entries in the device
1732 dev
->open
= fcc_enet_open
;
1733 dev
->hard_start_xmit
= fcc_enet_start_xmit
;
1734 dev
->tx_timeout
= fcc_enet_timeout
;
1735 dev
->watchdog_timeo
= TX_TIMEOUT
;
1736 dev
->stop
= fcc_enet_close
;
1737 dev
->get_stats
= fcc_enet_get_stats
;
1738 /* dev->set_multicast_list = set_multicast_list; */
1739 dev
->set_mac_address
= fcc_enet_set_mac_address
;
1741 init_fcc_startup(fip
, dev
);
1743 err
= register_netdev(dev
);
1749 printk("%s: FCC ENET Version 0.3, ", dev
->name
);
1751 printk("%02x:", dev
->dev_addr
[i
]);
1752 printk("%02x\n", dev
->dev_addr
[5]);
1754 #ifdef CONFIG_USE_MDIO
1755 /* Queue up command to detect the PHY and initialize the
1756 * remainder of the interface.
1758 cep
->phy_id_done
= 0;
1759 cep
->phy_addr
= fip
->fc_phyaddr
;
1760 mii_queue(dev
, mk_mii_read(MII_PHYSID1
), mii_discover_phy
);
1761 INIT_WORK(&cep
->phy_relink
, mii_display_status
, dev
);
1762 INIT_WORK(&cep
->phy_display_config
, mii_display_config
, dev
);
1763 #endif /* CONFIG_USE_MDIO */
1770 module_init(fec_enet_init
);
1772 /* Make sure the device is shut down during initialization.
1775 init_fcc_shutdown(fcc_info_t
*fip
, struct fcc_enet_private
*cep
,
1776 volatile cpm2_map_t
*immap
)
1778 volatile fcc_enet_t
*ep
;
1779 volatile fcc_t
*fccp
;
1781 /* Get pointer to FCC area in parameter RAM.
1783 ep
= (fcc_enet_t
*)(&immap
->im_dprambase
[fip
->fc_proff
]);
1785 /* And another to the FCC register area.
1787 fccp
= (volatile fcc_t
*)(&immap
->im_fcc
[fip
->fc_fccnum
]);
1788 cep
->fccp
= fccp
; /* Keep the pointers handy */
1791 /* Disable receive and transmit in case someone left it running.
1793 fccp
->fcc_gfmr
&= ~(FCC_GFMR_ENR
| FCC_GFMR_ENT
);
1796 /* Initialize the I/O pins for the FCC Ethernet.
1799 init_fcc_ioports(fcc_info_t
*fip
, volatile iop_cpm2_t
*io
,
1800 volatile cpm2_map_t
*immap
)
1803 /* FCC1 pins are on port A/C. FCC2/3 are port B/C.
1805 if (fip
->fc_proff
== PROFF_FCC1
) {
1806 /* Configure port A and C pins for FCC1 Ethernet.
1808 io
->iop_pdira
&= ~PA1_DIRA_BOUT
;
1809 io
->iop_pdira
|= PA1_DIRA_BIN
;
1810 io
->iop_psora
&= ~PA1_PSORA_BOUT
;
1811 io
->iop_psora
|= PA1_PSORA_BIN
;
1812 io
->iop_ppara
|= (PA1_DIRA_BOUT
| PA1_DIRA_BIN
);
1814 if (fip
->fc_proff
== PROFF_FCC2
) {
1815 /* Configure port B and C pins for FCC Ethernet.
1817 io
->iop_pdirb
&= ~PB2_DIRB_BOUT
;
1818 io
->iop_pdirb
|= PB2_DIRB_BIN
;
1819 io
->iop_psorb
&= ~PB2_PSORB_BOUT
;
1820 io
->iop_psorb
|= PB2_PSORB_BIN
;
1821 io
->iop_pparb
|= (PB2_DIRB_BOUT
| PB2_DIRB_BIN
);
1823 if (fip
->fc_proff
== PROFF_FCC3
) {
1824 /* Configure port B and C pins for FCC Ethernet.
1826 io
->iop_pdirb
&= ~PB3_DIRB_BOUT
;
1827 io
->iop_pdirb
|= PB3_DIRB_BIN
;
1828 io
->iop_psorb
&= ~PB3_PSORB_BOUT
;
1829 io
->iop_psorb
|= PB3_PSORB_BIN
;
1830 io
->iop_pparb
|= (PB3_DIRB_BOUT
| PB3_DIRB_BIN
);
1832 io
->iop_pdirc
&= ~PC3_DIRC_BOUT
;
1833 io
->iop_pdirc
|= PC3_DIRC_BIN
;
1834 io
->iop_psorc
&= ~PC3_PSORC_BOUT
;
1835 io
->iop_psorc
|= PC3_PSORC_BIN
;
1836 io
->iop_pparc
|= (PC3_DIRC_BOUT
| PC3_DIRC_BIN
);
1840 /* Port C has clocks......
1842 io
->iop_psorc
&= ~(fip
->fc_trxclocks
);
1843 io
->iop_pdirc
&= ~(fip
->fc_trxclocks
);
1844 io
->iop_pparc
|= fip
->fc_trxclocks
;
1846 #ifdef CONFIG_USE_MDIO
1847 /* ....and the MII serial clock/data.
1849 io
->iop_pdatc
|= (fip
->fc_mdio
| fip
->fc_mdck
);
1850 io
->iop_podrc
&= ~(fip
->fc_mdio
| fip
->fc_mdck
);
1851 io
->iop_pdirc
|= (fip
->fc_mdio
| fip
->fc_mdck
);
1852 io
->iop_pparc
&= ~(fip
->fc_mdio
| fip
->fc_mdck
);
1853 #endif /* CONFIG_USE_MDIO */
1855 /* Configure Serial Interface clock routing.
1856 * First, clear all FCC bits to zero,
1857 * then set the ones we want.
1859 immap
->im_cpmux
.cmx_fcr
&= ~(fip
->fc_clockmask
);
1860 immap
->im_cpmux
.cmx_fcr
|= fip
->fc_clockroute
;
1864 init_fcc_param(fcc_info_t
*fip
, struct net_device
*dev
,
1865 volatile cpm2_map_t
*immap
)
1868 unsigned long mem_addr
;
1871 struct fcc_enet_private
*cep
;
1872 volatile fcc_enet_t
*ep
;
1873 volatile cbd_t
*bdp
;
1874 volatile cpm_cpm2_t
*cp
;
1876 cep
= (struct fcc_enet_private
*)(dev
->priv
);
1882 /* Zero the whole thing.....I must have missed some individually.
1883 * It works when I do this.
1885 memset((char *)ep
, 0, sizeof(fcc_enet_t
));
1887 /* Allocate space for the buffer descriptors from regular memory.
1888 * Initialize base addresses for the buffer descriptors.
1890 cep
->rx_bd_base
= (cbd_t
*)kmalloc(sizeof(cbd_t
) * RX_RING_SIZE
,
1891 GFP_KERNEL
| GFP_DMA
);
1892 ep
->fen_genfcc
.fcc_rbase
= __pa(cep
->rx_bd_base
);
1893 cep
->tx_bd_base
= (cbd_t
*)kmalloc(sizeof(cbd_t
) * TX_RING_SIZE
,
1894 GFP_KERNEL
| GFP_DMA
);
1895 ep
->fen_genfcc
.fcc_tbase
= __pa(cep
->tx_bd_base
);
1897 cep
->dirty_tx
= cep
->cur_tx
= cep
->tx_bd_base
;
1898 cep
->cur_rx
= cep
->rx_bd_base
;
1900 ep
->fen_genfcc
.fcc_rstate
= (CPMFCR_GBL
| CPMFCR_EB
) << 24;
1901 ep
->fen_genfcc
.fcc_tstate
= (CPMFCR_GBL
| CPMFCR_EB
) << 24;
1903 /* Set maximum bytes per receive buffer.
1904 * It must be a multiple of 32.
1906 ep
->fen_genfcc
.fcc_mrblr
= PKT_MAXBLR_SIZE
;
1908 /* Allocate space in the reserved FCC area of DPRAM for the
1909 * internal buffers. No one uses this space (yet), so we
1910 * can do this. Later, we will add resource management for
1913 mem_addr
= CPM_FCC_SPECIAL_BASE
+ (fip
->fc_fccnum
* 128);
1914 ep
->fen_genfcc
.fcc_riptr
= mem_addr
;
1915 ep
->fen_genfcc
.fcc_tiptr
= mem_addr
+32;
1916 ep
->fen_padptr
= mem_addr
+64;
1917 memset((char *)(&(immap
->im_dprambase
[(mem_addr
+64)])), 0x88, 32);
1919 ep
->fen_genfcc
.fcc_rbptr
= 0;
1920 ep
->fen_genfcc
.fcc_tbptr
= 0;
1921 ep
->fen_genfcc
.fcc_rcrc
= 0;
1922 ep
->fen_genfcc
.fcc_tcrc
= 0;
1923 ep
->fen_genfcc
.fcc_res1
= 0;
1924 ep
->fen_genfcc
.fcc_res2
= 0;
1926 ep
->fen_camptr
= 0; /* CAM isn't used in this driver */
1928 /* Set CRC preset and mask.
1930 ep
->fen_cmask
= 0xdebb20e3;
1931 ep
->fen_cpres
= 0xffffffff;
1933 ep
->fen_crcec
= 0; /* CRC Error counter */
1934 ep
->fen_alec
= 0; /* alignment error counter */
1935 ep
->fen_disfc
= 0; /* discard frame counter */
1936 ep
->fen_retlim
= 15; /* Retry limit threshold */
1937 ep
->fen_pper
= 0; /* Normal persistence */
1939 /* Clear hash filter tables.
1946 /* Clear the Out-of-sequence TxBD.
1948 ep
->fen_tfcstat
= 0;
1952 ep
->fen_mflr
= PKT_MAXBUF_SIZE
; /* maximum frame length register */
1953 ep
->fen_minflr
= PKT_MINBUF_SIZE
; /* minimum frame length register */
1955 /* Set Ethernet station address.
1957 * This is supplied in the board information structure, so we
1958 * copy that into the controller.
1959 * So, far we have only been given one Ethernet address. We make
1960 * it unique by setting a few bits in the upper byte of the
1961 * non-static part of the address.
1963 eap
= (unsigned char *)&(ep
->fen_paddrh
);
1964 for (i
=5; i
>=0; i
--) {
1967 * The EP8260 only uses FCC3, so we can safely give it the real
1970 #ifdef CONFIG_SBC82xx
1972 /* bd->bi_enetaddr holds the SCC0 address; the FCC
1973 devices count up from there */
1974 dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
] & ~3;
1975 dev
->dev_addr
[i
] += 1 + fip
->fc_fccnum
;
1976 *eap
++ = dev
->dev_addr
[i
];
1979 #ifndef CONFIG_RPX8260
1981 dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
];
1982 dev
->dev_addr
[i
] |= (1 << (7 - fip
->fc_fccnum
));
1983 *eap
++ = dev
->dev_addr
[i
];
1987 *eap
++ = dev
->dev_addr
[i
] = bd
->bi_enetaddr
[i
];
1996 ep
->fen_maxd1
= PKT_MAXDMA_SIZE
; /* maximum DMA1 length */
1997 ep
->fen_maxd2
= PKT_MAXDMA_SIZE
; /* maximum DMA2 length */
1999 /* Clear stat counters, in case we ever enable RMON.
2016 ep
->fen_rfthr
= 0; /* Suggested by manual */
2020 /* Now allocate the host memory pages and initialize the
2021 * buffer descriptors.
2023 bdp
= cep
->tx_bd_base
;
2024 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2026 /* Initialize the BD for every fragment in the page.
2029 bdp
->cbd_datlen
= 0;
2030 bdp
->cbd_bufaddr
= 0;
2034 /* Set the last buffer to wrap.
2037 bdp
->cbd_sc
|= BD_SC_WRAP
;
2039 bdp
= cep
->rx_bd_base
;
2040 for (i
=0; i
<FCC_ENET_RX_PAGES
; i
++) {
2044 mem_addr
= __get_free_page(GFP_KERNEL
);
2046 /* Initialize the BD for every fragment in the page.
2048 for (j
=0; j
<FCC_ENET_RX_FRPPG
; j
++) {
2049 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
| BD_ENET_RX_INTR
;
2050 bdp
->cbd_datlen
= 0;
2051 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2052 mem_addr
+= FCC_ENET_RX_FRSIZE
;
2057 /* Set the last buffer to wrap.
2060 bdp
->cbd_sc
|= BD_SC_WRAP
;
2062 /* Let's re-initialize the channel now. We have to do it later
2063 * than the manual describes because we have just now finished
2064 * the BD initialization.
2066 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
, 0x0c,
2067 CPM_CR_INIT_TRX
) | CPM_CR_FLG
;
2068 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2070 cep
->skb_cur
= cep
->skb_dirty
= 0;
2076 init_fcc_startup(fcc_info_t
*fip
, struct net_device
*dev
)
2078 volatile fcc_t
*fccp
;
2079 struct fcc_enet_private
*cep
;
2081 cep
= (struct fcc_enet_private
*)(dev
->priv
);
2084 #ifdef CONFIG_RPX8260
2085 #ifdef PHY_INTERRUPT
2086 /* Route PHY interrupt to IRQ. The following code only works for
2087 * IRQ1 - IRQ7. It does not work for Port C interrupts.
2089 *((volatile u_char
*) (RPX_CSR_ADDR
+ 13)) &= ~BCSR13_FETH_IRQMASK
;
2090 *((volatile u_char
*) (RPX_CSR_ADDR
+ 13)) |=
2091 ((PHY_INTERRUPT
- SIU_INT_IRQ1
+ 1) << 4);
2093 /* Initialize MDIO pins. */
2094 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) &= ~BCSR4_MII_MDC
;
2095 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |=
2096 BCSR4_MII_READ
| BCSR4_MII_MDIO
;
2097 /* Enable external LXT971 PHY. */
2098 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |= BCSR4_EN_PHY
;
2100 *((volatile u_char
*) (RPX_CSR_ADDR
+ 4)) |= BCSR4_EN_MII
;
2102 #endif /* ifdef CONFIG_RPX8260 */
2104 fccp
->fcc_fcce
= 0xffff; /* Clear any pending events */
2106 /* Leave FCC interrupts masked for now. Will be unmasked by
2111 /* Install our interrupt handler.
2113 if (request_irq(fip
->fc_interrupt
, fcc_enet_interrupt
, 0, "fenet",
2115 printk("Can't get FCC IRQ %d\n", fip
->fc_interrupt
);
2117 #ifdef PHY_INTERRUPT
2118 #ifdef CONFIG_ADS8272
2119 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, IRQF_SHARED
,
2121 printk(KERN_CRIT
"Can't get MII IRQ %d\n", PHY_INTERRUPT
);
2123 /* Make IRQn edge triggered. This does not work if PHY_INTERRUPT is
2126 ((volatile cpm2_map_t
*) CPM_MAP_ADDR
)->im_intctl
.ic_siexr
|=
2127 (1 << (14 - (PHY_INTERRUPT
- SIU_INT_IRQ1
)));
2129 if (request_irq(PHY_INTERRUPT
, mii_link_interrupt
, 0,
2131 printk(KERN_CRIT
"Can't get MII IRQ %d\n", PHY_INTERRUPT
);
2133 #endif /* PHY_INTERRUPT */
2135 /* Set GFMR to enable Ethernet operating mode.
2137 fccp
->fcc_gfmr
= (FCC_GFMR_TCI
| FCC_GFMR_MODE_ENET
);
2139 /* Set sync/delimiters.
2141 fccp
->fcc_fdsr
= 0xd555;
2143 /* Set protocol specific processing mode for Ethernet.
2144 * This has to be adjusted for Full Duplex operation after we can
2145 * determine how to detect that.
2147 fccp
->fcc_fpsmr
= FCC_PSMR_ENCRC
;
2149 #ifdef CONFIG_PQ2ADS
2150 /* Enable the PHY. */
2151 *(volatile uint
*)(BCSR_ADDR
+ 4) &= ~BCSR1_FETHIEN
;
2152 *(volatile uint
*)(BCSR_ADDR
+ 4) |= BCSR1_FETH_RST
;
2154 #if defined(CONFIG_PQ2ADS) || defined(CONFIG_PQ2FADS)
2155 /* Enable the 2nd PHY. */
2156 *(volatile uint
*)(BCSR_ADDR
+ 12) &= ~BCSR3_FETHIEN2
;
2157 *(volatile uint
*)(BCSR_ADDR
+ 12) |= BCSR3_FETH2_RST
;
2160 #if defined(CONFIG_USE_MDIO) || defined(CONFIG_TQM8260)
2161 /* start in full duplex mode, and negotiate speed
2163 fcc_restart (dev
, 1);
2165 /* start in half duplex mode
2167 fcc_restart (dev
, 0);
2171 #ifdef CONFIG_USE_MDIO
2172 /* MII command/status interface.
2173 * I'm not going to describe all of the details. You can find the
2174 * protocol definition in many other places, including the data sheet
2175 * of most PHY parts.
2176 * I wonder what "they" were thinking (maybe weren't) when they leave
2177 * the I2C in the CPM but I have to toggle these bits......
2179 #ifdef CONFIG_RPX8260
2180 /* The EP8260 has the MDIO pins in a BCSR instead of on Port C
2181 * like most other boards.
2183 #define MDIO_ADDR ((volatile u_char *)(RPX_CSR_ADDR + 4))
2184 #define MAKE_MDIO_OUTPUT *MDIO_ADDR &= ~BCSR4_MII_READ
2185 #define MAKE_MDIO_INPUT *MDIO_ADDR |= BCSR4_MII_READ | BCSR4_MII_MDIO
2186 #define OUT_MDIO(bit) \
2188 *MDIO_ADDR |= BCSR4_MII_MDIO; \
2190 *MDIO_ADDR &= ~BCSR4_MII_MDIO;
2191 #define IN_MDIO (*MDIO_ADDR & BCSR4_MII_MDIO)
2192 #define OUT_MDC(bit) \
2194 *MDIO_ADDR |= BCSR4_MII_MDC; \
2196 *MDIO_ADDR &= ~BCSR4_MII_MDC;
2197 #else /* ifdef CONFIG_RPX8260 */
2198 /* This is for the usual case where the MDIO pins are on Port C.
2200 #define MDIO_ADDR (((volatile cpm2_map_t *)CPM_MAP_ADDR)->im_ioport)
2201 #define MAKE_MDIO_OUTPUT MDIO_ADDR.iop_pdirc |= fip->fc_mdio
2202 #define MAKE_MDIO_INPUT MDIO_ADDR.iop_pdirc &= ~fip->fc_mdio
2203 #define OUT_MDIO(bit) \
2205 MDIO_ADDR.iop_pdatc |= fip->fc_mdio; \
2207 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdio;
2208 #define IN_MDIO ((MDIO_ADDR.iop_pdatc) & fip->fc_mdio)
2209 #define OUT_MDC(bit) \
2211 MDIO_ADDR.iop_pdatc |= fip->fc_mdck; \
2213 MDIO_ADDR.iop_pdatc &= ~fip->fc_mdck;
2214 #endif /* ifdef CONFIG_RPX8260 */
2217 mii_send_receive(fcc_info_t
*fip
, uint cmd
)
2220 int read_op
, i
, off
;
2223 read_op
= ((cmd
& 0xf0000000) == 0x60000000);
2230 for (i
= 0; i
< 32; i
++)
2240 for (i
= 0, off
= 31; i
< (read_op
? 14 : 32); i
++, --off
)
2242 OUT_MDIO((cmd
>> off
) & 0x00000001);
2261 for (i
= 0; i
< 16; i
++)
2281 #endif /* CONFIG_USE_MDIO */
2284 fcc_stop(struct net_device
*dev
)
2286 struct fcc_enet_private
*fep
= (struct fcc_enet_private
*)(dev
->priv
);
2287 volatile fcc_t
*fccp
= fep
->fccp
;
2288 fcc_info_t
*fip
= fep
->fip
;
2289 volatile fcc_enet_t
*ep
= fep
->ep
;
2290 volatile cpm_cpm2_t
*cp
= cpmp
;
2291 volatile cbd_t
*bdp
;
2294 if ((fccp
->fcc_gfmr
& (FCC_GFMR_ENR
| FCC_GFMR_ENT
)) == 0)
2295 return; /* already down */
2299 /* issue the graceful stop tx command */
2300 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2301 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
,
2302 0x0c, CPM_CR_GRA_STOP_TX
) | CPM_CR_FLG
;
2303 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2305 /* Disable transmit/receive */
2306 fccp
->fcc_gfmr
&= ~(FCC_GFMR_ENR
| FCC_GFMR_ENT
);
2308 /* issue the restart tx command */
2309 fccp
->fcc_fcce
= FCC_ENET_GRA
;
2310 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2311 cp
->cp_cpcr
= mk_cr_cmd(fip
->fc_cpmpage
, fip
->fc_cpmblock
,
2312 0x0c, CPM_CR_RESTART_TX
) | CPM_CR_FLG
;
2313 while (cp
->cp_cpcr
& CPM_CR_FLG
);
2315 /* free tx buffers */
2316 fep
->skb_cur
= fep
->skb_dirty
= 0;
2317 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2318 if (fep
->tx_skbuff
[i
] != NULL
) {
2319 dev_kfree_skb(fep
->tx_skbuff
[i
]);
2320 fep
->tx_skbuff
[i
] = NULL
;
2323 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2324 fep
->tx_free
= TX_RING_SIZE
;
2325 ep
->fen_genfcc
.fcc_tbptr
= ep
->fen_genfcc
.fcc_tbase
;
2327 /* Initialize the tx buffer descriptors. */
2328 bdp
= fep
->tx_bd_base
;
2329 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2331 bdp
->cbd_datlen
= 0;
2332 bdp
->cbd_bufaddr
= 0;
2335 /* Set the last buffer to wrap. */
2337 bdp
->cbd_sc
|= BD_SC_WRAP
;
2341 fcc_restart(struct net_device
*dev
, int duplex
)
2343 struct fcc_enet_private
*fep
= (struct fcc_enet_private
*)(dev
->priv
);
2344 volatile fcc_t
*fccp
= fep
->fccp
;
2346 /* stop any transmissions in progress */
2350 fccp
->fcc_fpsmr
|= FCC_PSMR_FDE
| FCC_PSMR_LPB
;
2352 fccp
->fcc_fpsmr
&= ~(FCC_PSMR_FDE
| FCC_PSMR_LPB
);
2354 /* Enable interrupts for transmit error, complete frame
2355 * received, and any transmit buffer we have also set the
2358 fccp
->fcc_fccm
= (FCC_ENET_TXE
| FCC_ENET_RXF
| FCC_ENET_TXB
);
2360 /* Enable transmit/receive */
2361 fccp
->fcc_gfmr
|= FCC_GFMR_ENR
| FCC_GFMR_ENT
;
2365 fcc_enet_open(struct net_device
*dev
)
2367 struct fcc_enet_private
*fep
= dev
->priv
;
2369 #ifdef CONFIG_USE_MDIO
2370 fep
->sequence_done
= 0;
2374 fcc_restart(dev
, 0); /* always start in half-duplex */
2375 mii_do_cmd(dev
, fep
->phy
->ack_int
);
2376 mii_do_cmd(dev
, fep
->phy
->config
);
2377 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
2378 while(!fep
->sequence_done
)
2381 mii_do_cmd(dev
, fep
->phy
->startup
);
2382 netif_start_queue(dev
);
2383 return 0; /* Success */
2385 return -ENODEV
; /* No PHY we understand */
2388 fcc_restart(dev
, 0); /* always start in half-duplex */
2389 netif_start_queue(dev
);
2390 return 0; /* Always succeed */
2391 #endif /* CONFIG_USE_MDIO */