[PATCH] briq_panel: read() and write() get __user pointers, damnit
[linux-2.6/verdex.git] / kernel / fork.c
blobf9b014e3e7002e243ca8120f8f81aa33bf0f0f81
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
49 #include <asm/pgtable.h>
50 #include <asm/pgalloc.h>
51 #include <asm/uaccess.h>
52 #include <asm/mmu_context.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlbflush.h>
57 * Protected counters by write_lock_irq(&tasklist_lock)
59 unsigned long total_forks; /* Handle normal Linux uptimes. */
60 int nr_threads; /* The idle threads do not count.. */
62 int max_threads; /* tunable limit on nr_threads */
64 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
66 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
68 int nr_processes(void)
70 int cpu;
71 int total = 0;
73 for_each_online_cpu(cpu)
74 total += per_cpu(process_counts, cpu);
76 return total;
79 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
80 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
81 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
82 static kmem_cache_t *task_struct_cachep;
83 #endif
85 /* SLAB cache for signal_struct structures (tsk->signal) */
86 static kmem_cache_t *signal_cachep;
88 /* SLAB cache for sighand_struct structures (tsk->sighand) */
89 kmem_cache_t *sighand_cachep;
91 /* SLAB cache for files_struct structures (tsk->files) */
92 kmem_cache_t *files_cachep;
94 /* SLAB cache for fs_struct structures (tsk->fs) */
95 kmem_cache_t *fs_cachep;
97 /* SLAB cache for vm_area_struct structures */
98 kmem_cache_t *vm_area_cachep;
100 /* SLAB cache for mm_struct structures (tsk->mm) */
101 static kmem_cache_t *mm_cachep;
103 void free_task(struct task_struct *tsk)
105 free_thread_info(tsk->thread_info);
106 rt_mutex_debug_task_free(tsk);
107 free_task_struct(tsk);
109 EXPORT_SYMBOL(free_task);
111 void __put_task_struct(struct task_struct *tsk)
113 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 WARN_ON(atomic_read(&tsk->usage));
115 WARN_ON(tsk == current);
117 security_task_free(tsk);
118 free_uid(tsk->user);
119 put_group_info(tsk->group_info);
120 delayacct_tsk_free(tsk);
122 if (!profile_handoff_task(tsk))
123 free_task(tsk);
126 void __init fork_init(unsigned long mempages)
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 #endif
132 /* create a slab on which task_structs can be allocated */
133 task_struct_cachep =
134 kmem_cache_create("task_struct", sizeof(struct task_struct),
135 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
141 * of memory.
143 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
146 * we need to allow at least 20 threads to boot a system
148 if(max_threads < 20)
149 max_threads = 20;
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 init_task.signal->rlim[RLIMIT_NPROC];
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 struct task_struct *tsk;
160 struct thread_info *ti;
162 prepare_to_copy(orig);
164 tsk = alloc_task_struct();
165 if (!tsk)
166 return NULL;
168 ti = alloc_thread_info(tsk);
169 if (!ti) {
170 free_task_struct(tsk);
171 return NULL;
174 *tsk = *orig;
175 tsk->thread_info = ti;
176 setup_thread_stack(tsk, orig);
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk->usage,2);
180 atomic_set(&tsk->fs_excl, 0);
181 tsk->btrace_seq = 0;
182 tsk->splice_pipe = NULL;
183 return tsk;
186 #ifdef CONFIG_MMU
187 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
189 struct vm_area_struct *mpnt, *tmp, **pprev;
190 struct rb_node **rb_link, *rb_parent;
191 int retval;
192 unsigned long charge;
193 struct mempolicy *pol;
195 down_write(&oldmm->mmap_sem);
196 flush_cache_mm(oldmm);
198 * Not linked in yet - no deadlock potential:
200 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
202 mm->locked_vm = 0;
203 mm->mmap = NULL;
204 mm->mmap_cache = NULL;
205 mm->free_area_cache = oldmm->mmap_base;
206 mm->cached_hole_size = ~0UL;
207 mm->map_count = 0;
208 cpus_clear(mm->cpu_vm_mask);
209 mm->mm_rb = RB_ROOT;
210 rb_link = &mm->mm_rb.rb_node;
211 rb_parent = NULL;
212 pprev = &mm->mmap;
214 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
215 struct file *file;
217 if (mpnt->vm_flags & VM_DONTCOPY) {
218 long pages = vma_pages(mpnt);
219 mm->total_vm -= pages;
220 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
221 -pages);
222 continue;
224 charge = 0;
225 if (mpnt->vm_flags & VM_ACCOUNT) {
226 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
227 if (security_vm_enough_memory(len))
228 goto fail_nomem;
229 charge = len;
231 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
232 if (!tmp)
233 goto fail_nomem;
234 *tmp = *mpnt;
235 pol = mpol_copy(vma_policy(mpnt));
236 retval = PTR_ERR(pol);
237 if (IS_ERR(pol))
238 goto fail_nomem_policy;
239 vma_set_policy(tmp, pol);
240 tmp->vm_flags &= ~VM_LOCKED;
241 tmp->vm_mm = mm;
242 tmp->vm_next = NULL;
243 anon_vma_link(tmp);
244 file = tmp->vm_file;
245 if (file) {
246 struct inode *inode = file->f_dentry->d_inode;
247 get_file(file);
248 if (tmp->vm_flags & VM_DENYWRITE)
249 atomic_dec(&inode->i_writecount);
251 /* insert tmp into the share list, just after mpnt */
252 spin_lock(&file->f_mapping->i_mmap_lock);
253 tmp->vm_truncate_count = mpnt->vm_truncate_count;
254 flush_dcache_mmap_lock(file->f_mapping);
255 vma_prio_tree_add(tmp, mpnt);
256 flush_dcache_mmap_unlock(file->f_mapping);
257 spin_unlock(&file->f_mapping->i_mmap_lock);
261 * Link in the new vma and copy the page table entries.
263 *pprev = tmp;
264 pprev = &tmp->vm_next;
266 __vma_link_rb(mm, tmp, rb_link, rb_parent);
267 rb_link = &tmp->vm_rb.rb_right;
268 rb_parent = &tmp->vm_rb;
270 mm->map_count++;
271 retval = copy_page_range(mm, oldmm, mpnt);
273 if (tmp->vm_ops && tmp->vm_ops->open)
274 tmp->vm_ops->open(tmp);
276 if (retval)
277 goto out;
279 retval = 0;
280 out:
281 up_write(&mm->mmap_sem);
282 flush_tlb_mm(oldmm);
283 up_write(&oldmm->mmap_sem);
284 return retval;
285 fail_nomem_policy:
286 kmem_cache_free(vm_area_cachep, tmp);
287 fail_nomem:
288 retval = -ENOMEM;
289 vm_unacct_memory(charge);
290 goto out;
293 static inline int mm_alloc_pgd(struct mm_struct * mm)
295 mm->pgd = pgd_alloc(mm);
296 if (unlikely(!mm->pgd))
297 return -ENOMEM;
298 return 0;
301 static inline void mm_free_pgd(struct mm_struct * mm)
303 pgd_free(mm->pgd);
305 #else
306 #define dup_mmap(mm, oldmm) (0)
307 #define mm_alloc_pgd(mm) (0)
308 #define mm_free_pgd(mm)
309 #endif /* CONFIG_MMU */
311 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
313 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
314 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
316 #include <linux/init_task.h>
318 static struct mm_struct * mm_init(struct mm_struct * mm)
320 atomic_set(&mm->mm_users, 1);
321 atomic_set(&mm->mm_count, 1);
322 init_rwsem(&mm->mmap_sem);
323 INIT_LIST_HEAD(&mm->mmlist);
324 mm->core_waiters = 0;
325 mm->nr_ptes = 0;
326 set_mm_counter(mm, file_rss, 0);
327 set_mm_counter(mm, anon_rss, 0);
328 spin_lock_init(&mm->page_table_lock);
329 rwlock_init(&mm->ioctx_list_lock);
330 mm->ioctx_list = NULL;
331 mm->free_area_cache = TASK_UNMAPPED_BASE;
332 mm->cached_hole_size = ~0UL;
334 if (likely(!mm_alloc_pgd(mm))) {
335 mm->def_flags = 0;
336 return mm;
338 free_mm(mm);
339 return NULL;
343 * Allocate and initialize an mm_struct.
345 struct mm_struct * mm_alloc(void)
347 struct mm_struct * mm;
349 mm = allocate_mm();
350 if (mm) {
351 memset(mm, 0, sizeof(*mm));
352 mm = mm_init(mm);
354 return mm;
358 * Called when the last reference to the mm
359 * is dropped: either by a lazy thread or by
360 * mmput. Free the page directory and the mm.
362 void fastcall __mmdrop(struct mm_struct *mm)
364 BUG_ON(mm == &init_mm);
365 mm_free_pgd(mm);
366 destroy_context(mm);
367 free_mm(mm);
371 * Decrement the use count and release all resources for an mm.
373 void mmput(struct mm_struct *mm)
375 might_sleep();
377 if (atomic_dec_and_test(&mm->mm_users)) {
378 exit_aio(mm);
379 exit_mmap(mm);
380 if (!list_empty(&mm->mmlist)) {
381 spin_lock(&mmlist_lock);
382 list_del(&mm->mmlist);
383 spin_unlock(&mmlist_lock);
385 put_swap_token(mm);
386 mmdrop(mm);
389 EXPORT_SYMBOL_GPL(mmput);
392 * get_task_mm - acquire a reference to the task's mm
394 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
395 * this kernel workthread has transiently adopted a user mm with use_mm,
396 * to do its AIO) is not set and if so returns a reference to it, after
397 * bumping up the use count. User must release the mm via mmput()
398 * after use. Typically used by /proc and ptrace.
400 struct mm_struct *get_task_mm(struct task_struct *task)
402 struct mm_struct *mm;
404 task_lock(task);
405 mm = task->mm;
406 if (mm) {
407 if (task->flags & PF_BORROWED_MM)
408 mm = NULL;
409 else
410 atomic_inc(&mm->mm_users);
412 task_unlock(task);
413 return mm;
415 EXPORT_SYMBOL_GPL(get_task_mm);
417 /* Please note the differences between mmput and mm_release.
418 * mmput is called whenever we stop holding onto a mm_struct,
419 * error success whatever.
421 * mm_release is called after a mm_struct has been removed
422 * from the current process.
424 * This difference is important for error handling, when we
425 * only half set up a mm_struct for a new process and need to restore
426 * the old one. Because we mmput the new mm_struct before
427 * restoring the old one. . .
428 * Eric Biederman 10 January 1998
430 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
432 struct completion *vfork_done = tsk->vfork_done;
434 /* Get rid of any cached register state */
435 deactivate_mm(tsk, mm);
437 /* notify parent sleeping on vfork() */
438 if (vfork_done) {
439 tsk->vfork_done = NULL;
440 complete(vfork_done);
442 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
443 u32 __user * tidptr = tsk->clear_child_tid;
444 tsk->clear_child_tid = NULL;
447 * We don't check the error code - if userspace has
448 * not set up a proper pointer then tough luck.
450 put_user(0, tidptr);
451 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
456 * Allocate a new mm structure and copy contents from the
457 * mm structure of the passed in task structure.
459 static struct mm_struct *dup_mm(struct task_struct *tsk)
461 struct mm_struct *mm, *oldmm = current->mm;
462 int err;
464 if (!oldmm)
465 return NULL;
467 mm = allocate_mm();
468 if (!mm)
469 goto fail_nomem;
471 memcpy(mm, oldmm, sizeof(*mm));
473 if (!mm_init(mm))
474 goto fail_nomem;
476 if (init_new_context(tsk, mm))
477 goto fail_nocontext;
479 err = dup_mmap(mm, oldmm);
480 if (err)
481 goto free_pt;
483 mm->hiwater_rss = get_mm_rss(mm);
484 mm->hiwater_vm = mm->total_vm;
486 return mm;
488 free_pt:
489 mmput(mm);
491 fail_nomem:
492 return NULL;
494 fail_nocontext:
496 * If init_new_context() failed, we cannot use mmput() to free the mm
497 * because it calls destroy_context()
499 mm_free_pgd(mm);
500 free_mm(mm);
501 return NULL;
504 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
506 struct mm_struct * mm, *oldmm;
507 int retval;
509 tsk->min_flt = tsk->maj_flt = 0;
510 tsk->nvcsw = tsk->nivcsw = 0;
512 tsk->mm = NULL;
513 tsk->active_mm = NULL;
516 * Are we cloning a kernel thread?
518 * We need to steal a active VM for that..
520 oldmm = current->mm;
521 if (!oldmm)
522 return 0;
524 if (clone_flags & CLONE_VM) {
525 atomic_inc(&oldmm->mm_users);
526 mm = oldmm;
527 goto good_mm;
530 retval = -ENOMEM;
531 mm = dup_mm(tsk);
532 if (!mm)
533 goto fail_nomem;
535 good_mm:
536 tsk->mm = mm;
537 tsk->active_mm = mm;
538 return 0;
540 fail_nomem:
541 return retval;
544 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
546 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
547 /* We don't need to lock fs - think why ;-) */
548 if (fs) {
549 atomic_set(&fs->count, 1);
550 rwlock_init(&fs->lock);
551 fs->umask = old->umask;
552 read_lock(&old->lock);
553 fs->rootmnt = mntget(old->rootmnt);
554 fs->root = dget(old->root);
555 fs->pwdmnt = mntget(old->pwdmnt);
556 fs->pwd = dget(old->pwd);
557 if (old->altroot) {
558 fs->altrootmnt = mntget(old->altrootmnt);
559 fs->altroot = dget(old->altroot);
560 } else {
561 fs->altrootmnt = NULL;
562 fs->altroot = NULL;
564 read_unlock(&old->lock);
566 return fs;
569 struct fs_struct *copy_fs_struct(struct fs_struct *old)
571 return __copy_fs_struct(old);
574 EXPORT_SYMBOL_GPL(copy_fs_struct);
576 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
578 if (clone_flags & CLONE_FS) {
579 atomic_inc(&current->fs->count);
580 return 0;
582 tsk->fs = __copy_fs_struct(current->fs);
583 if (!tsk->fs)
584 return -ENOMEM;
585 return 0;
588 static int count_open_files(struct fdtable *fdt)
590 int size = fdt->max_fdset;
591 int i;
593 /* Find the last open fd */
594 for (i = size/(8*sizeof(long)); i > 0; ) {
595 if (fdt->open_fds->fds_bits[--i])
596 break;
598 i = (i+1) * 8 * sizeof(long);
599 return i;
602 static struct files_struct *alloc_files(void)
604 struct files_struct *newf;
605 struct fdtable *fdt;
607 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
608 if (!newf)
609 goto out;
611 atomic_set(&newf->count, 1);
613 spin_lock_init(&newf->file_lock);
614 newf->next_fd = 0;
615 fdt = &newf->fdtab;
616 fdt->max_fds = NR_OPEN_DEFAULT;
617 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
618 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
619 fdt->open_fds = (fd_set *)&newf->open_fds_init;
620 fdt->fd = &newf->fd_array[0];
621 INIT_RCU_HEAD(&fdt->rcu);
622 fdt->free_files = NULL;
623 fdt->next = NULL;
624 rcu_assign_pointer(newf->fdt, fdt);
625 out:
626 return newf;
630 * Allocate a new files structure and copy contents from the
631 * passed in files structure.
632 * errorp will be valid only when the returned files_struct is NULL.
634 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
636 struct files_struct *newf;
637 struct file **old_fds, **new_fds;
638 int open_files, size, i, expand;
639 struct fdtable *old_fdt, *new_fdt;
641 *errorp = -ENOMEM;
642 newf = alloc_files();
643 if (!newf)
644 goto out;
646 spin_lock(&oldf->file_lock);
647 old_fdt = files_fdtable(oldf);
648 new_fdt = files_fdtable(newf);
649 size = old_fdt->max_fdset;
650 open_files = count_open_files(old_fdt);
651 expand = 0;
654 * Check whether we need to allocate a larger fd array or fd set.
655 * Note: we're not a clone task, so the open count won't change.
657 if (open_files > new_fdt->max_fdset) {
658 new_fdt->max_fdset = 0;
659 expand = 1;
661 if (open_files > new_fdt->max_fds) {
662 new_fdt->max_fds = 0;
663 expand = 1;
666 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
667 if (expand) {
668 spin_unlock(&oldf->file_lock);
669 spin_lock(&newf->file_lock);
670 *errorp = expand_files(newf, open_files-1);
671 spin_unlock(&newf->file_lock);
672 if (*errorp < 0)
673 goto out_release;
674 new_fdt = files_fdtable(newf);
676 * Reacquire the oldf lock and a pointer to its fd table
677 * who knows it may have a new bigger fd table. We need
678 * the latest pointer.
680 spin_lock(&oldf->file_lock);
681 old_fdt = files_fdtable(oldf);
684 old_fds = old_fdt->fd;
685 new_fds = new_fdt->fd;
687 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
688 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
690 for (i = open_files; i != 0; i--) {
691 struct file *f = *old_fds++;
692 if (f) {
693 get_file(f);
694 } else {
696 * The fd may be claimed in the fd bitmap but not yet
697 * instantiated in the files array if a sibling thread
698 * is partway through open(). So make sure that this
699 * fd is available to the new process.
701 FD_CLR(open_files - i, new_fdt->open_fds);
703 rcu_assign_pointer(*new_fds++, f);
705 spin_unlock(&oldf->file_lock);
707 /* compute the remainder to be cleared */
708 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
710 /* This is long word aligned thus could use a optimized version */
711 memset(new_fds, 0, size);
713 if (new_fdt->max_fdset > open_files) {
714 int left = (new_fdt->max_fdset-open_files)/8;
715 int start = open_files / (8 * sizeof(unsigned long));
717 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
718 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
721 out:
722 return newf;
724 out_release:
725 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
726 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
727 free_fd_array(new_fdt->fd, new_fdt->max_fds);
728 kmem_cache_free(files_cachep, newf);
729 return NULL;
732 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
734 struct files_struct *oldf, *newf;
735 int error = 0;
738 * A background process may not have any files ...
740 oldf = current->files;
741 if (!oldf)
742 goto out;
744 if (clone_flags & CLONE_FILES) {
745 atomic_inc(&oldf->count);
746 goto out;
750 * Note: we may be using current for both targets (See exec.c)
751 * This works because we cache current->files (old) as oldf. Don't
752 * break this.
754 tsk->files = NULL;
755 newf = dup_fd(oldf, &error);
756 if (!newf)
757 goto out;
759 tsk->files = newf;
760 error = 0;
761 out:
762 return error;
766 * Helper to unshare the files of the current task.
767 * We don't want to expose copy_files internals to
768 * the exec layer of the kernel.
771 int unshare_files(void)
773 struct files_struct *files = current->files;
774 int rc;
776 BUG_ON(!files);
778 /* This can race but the race causes us to copy when we don't
779 need to and drop the copy */
780 if(atomic_read(&files->count) == 1)
782 atomic_inc(&files->count);
783 return 0;
785 rc = copy_files(0, current);
786 if(rc)
787 current->files = files;
788 return rc;
791 EXPORT_SYMBOL(unshare_files);
793 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
795 struct sighand_struct *sig;
797 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
798 atomic_inc(&current->sighand->count);
799 return 0;
801 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
802 rcu_assign_pointer(tsk->sighand, sig);
803 if (!sig)
804 return -ENOMEM;
805 atomic_set(&sig->count, 1);
806 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
807 return 0;
810 void __cleanup_sighand(struct sighand_struct *sighand)
812 if (atomic_dec_and_test(&sighand->count))
813 kmem_cache_free(sighand_cachep, sighand);
816 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
818 struct signal_struct *sig;
819 int ret;
821 if (clone_flags & CLONE_THREAD) {
822 atomic_inc(&current->signal->count);
823 atomic_inc(&current->signal->live);
824 taskstats_tgid_alloc(current->signal);
825 return 0;
827 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
828 tsk->signal = sig;
829 if (!sig)
830 return -ENOMEM;
832 ret = copy_thread_group_keys(tsk);
833 if (ret < 0) {
834 kmem_cache_free(signal_cachep, sig);
835 return ret;
838 atomic_set(&sig->count, 1);
839 atomic_set(&sig->live, 1);
840 init_waitqueue_head(&sig->wait_chldexit);
841 sig->flags = 0;
842 sig->group_exit_code = 0;
843 sig->group_exit_task = NULL;
844 sig->group_stop_count = 0;
845 sig->curr_target = NULL;
846 init_sigpending(&sig->shared_pending);
847 INIT_LIST_HEAD(&sig->posix_timers);
849 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
850 sig->it_real_incr.tv64 = 0;
851 sig->real_timer.function = it_real_fn;
852 sig->tsk = tsk;
854 sig->it_virt_expires = cputime_zero;
855 sig->it_virt_incr = cputime_zero;
856 sig->it_prof_expires = cputime_zero;
857 sig->it_prof_incr = cputime_zero;
859 sig->leader = 0; /* session leadership doesn't inherit */
860 sig->tty_old_pgrp = 0;
862 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
863 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
864 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
865 sig->sched_time = 0;
866 INIT_LIST_HEAD(&sig->cpu_timers[0]);
867 INIT_LIST_HEAD(&sig->cpu_timers[1]);
868 INIT_LIST_HEAD(&sig->cpu_timers[2]);
869 taskstats_tgid_init(sig);
871 task_lock(current->group_leader);
872 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
873 task_unlock(current->group_leader);
875 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
877 * New sole thread in the process gets an expiry time
878 * of the whole CPU time limit.
880 tsk->it_prof_expires =
881 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
883 acct_init_pacct(&sig->pacct);
885 return 0;
888 void __cleanup_signal(struct signal_struct *sig)
890 exit_thread_group_keys(sig);
891 taskstats_tgid_free(sig);
892 kmem_cache_free(signal_cachep, sig);
895 static inline void cleanup_signal(struct task_struct *tsk)
897 struct signal_struct *sig = tsk->signal;
899 atomic_dec(&sig->live);
901 if (atomic_dec_and_test(&sig->count))
902 __cleanup_signal(sig);
905 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
907 unsigned long new_flags = p->flags;
909 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
910 new_flags |= PF_FORKNOEXEC;
911 if (!(clone_flags & CLONE_PTRACE))
912 p->ptrace = 0;
913 p->flags = new_flags;
916 asmlinkage long sys_set_tid_address(int __user *tidptr)
918 current->clear_child_tid = tidptr;
920 return current->pid;
923 static inline void rt_mutex_init_task(struct task_struct *p)
925 #ifdef CONFIG_RT_MUTEXES
926 spin_lock_init(&p->pi_lock);
927 plist_head_init(&p->pi_waiters, &p->pi_lock);
928 p->pi_blocked_on = NULL;
929 #endif
933 * This creates a new process as a copy of the old one,
934 * but does not actually start it yet.
936 * It copies the registers, and all the appropriate
937 * parts of the process environment (as per the clone
938 * flags). The actual kick-off is left to the caller.
940 static struct task_struct *copy_process(unsigned long clone_flags,
941 unsigned long stack_start,
942 struct pt_regs *regs,
943 unsigned long stack_size,
944 int __user *parent_tidptr,
945 int __user *child_tidptr,
946 int pid)
948 int retval;
949 struct task_struct *p = NULL;
951 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
952 return ERR_PTR(-EINVAL);
955 * Thread groups must share signals as well, and detached threads
956 * can only be started up within the thread group.
958 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
959 return ERR_PTR(-EINVAL);
962 * Shared signal handlers imply shared VM. By way of the above,
963 * thread groups also imply shared VM. Blocking this case allows
964 * for various simplifications in other code.
966 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
967 return ERR_PTR(-EINVAL);
969 retval = security_task_create(clone_flags);
970 if (retval)
971 goto fork_out;
973 retval = -ENOMEM;
974 p = dup_task_struct(current);
975 if (!p)
976 goto fork_out;
978 #ifdef CONFIG_TRACE_IRQFLAGS
979 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
980 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
981 #endif
982 retval = -EAGAIN;
983 if (atomic_read(&p->user->processes) >=
984 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
985 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
986 p->user != &root_user)
987 goto bad_fork_free;
990 atomic_inc(&p->user->__count);
991 atomic_inc(&p->user->processes);
992 get_group_info(p->group_info);
995 * If multiple threads are within copy_process(), then this check
996 * triggers too late. This doesn't hurt, the check is only there
997 * to stop root fork bombs.
999 if (nr_threads >= max_threads)
1000 goto bad_fork_cleanup_count;
1002 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1003 goto bad_fork_cleanup_count;
1005 if (p->binfmt && !try_module_get(p->binfmt->module))
1006 goto bad_fork_cleanup_put_domain;
1008 p->did_exec = 0;
1009 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1010 copy_flags(clone_flags, p);
1011 p->pid = pid;
1012 retval = -EFAULT;
1013 if (clone_flags & CLONE_PARENT_SETTID)
1014 if (put_user(p->pid, parent_tidptr))
1015 goto bad_fork_cleanup_delays_binfmt;
1017 INIT_LIST_HEAD(&p->children);
1018 INIT_LIST_HEAD(&p->sibling);
1019 p->vfork_done = NULL;
1020 spin_lock_init(&p->alloc_lock);
1022 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1023 init_sigpending(&p->pending);
1025 p->utime = cputime_zero;
1026 p->stime = cputime_zero;
1027 p->sched_time = 0;
1028 p->rchar = 0; /* I/O counter: bytes read */
1029 p->wchar = 0; /* I/O counter: bytes written */
1030 p->syscr = 0; /* I/O counter: read syscalls */
1031 p->syscw = 0; /* I/O counter: write syscalls */
1032 acct_clear_integrals(p);
1034 p->it_virt_expires = cputime_zero;
1035 p->it_prof_expires = cputime_zero;
1036 p->it_sched_expires = 0;
1037 INIT_LIST_HEAD(&p->cpu_timers[0]);
1038 INIT_LIST_HEAD(&p->cpu_timers[1]);
1039 INIT_LIST_HEAD(&p->cpu_timers[2]);
1041 p->lock_depth = -1; /* -1 = no lock */
1042 do_posix_clock_monotonic_gettime(&p->start_time);
1043 p->security = NULL;
1044 p->io_context = NULL;
1045 p->io_wait = NULL;
1046 p->audit_context = NULL;
1047 cpuset_fork(p);
1048 #ifdef CONFIG_NUMA
1049 p->mempolicy = mpol_copy(p->mempolicy);
1050 if (IS_ERR(p->mempolicy)) {
1051 retval = PTR_ERR(p->mempolicy);
1052 p->mempolicy = NULL;
1053 goto bad_fork_cleanup_cpuset;
1055 mpol_fix_fork_child_flag(p);
1056 #endif
1057 #ifdef CONFIG_TRACE_IRQFLAGS
1058 p->irq_events = 0;
1059 p->hardirqs_enabled = 0;
1060 p->hardirq_enable_ip = 0;
1061 p->hardirq_enable_event = 0;
1062 p->hardirq_disable_ip = _THIS_IP_;
1063 p->hardirq_disable_event = 0;
1064 p->softirqs_enabled = 1;
1065 p->softirq_enable_ip = _THIS_IP_;
1066 p->softirq_enable_event = 0;
1067 p->softirq_disable_ip = 0;
1068 p->softirq_disable_event = 0;
1069 p->hardirq_context = 0;
1070 p->softirq_context = 0;
1071 #endif
1072 #ifdef CONFIG_LOCKDEP
1073 p->lockdep_depth = 0; /* no locks held yet */
1074 p->curr_chain_key = 0;
1075 p->lockdep_recursion = 0;
1076 #endif
1078 rt_mutex_init_task(p);
1080 #ifdef CONFIG_DEBUG_MUTEXES
1081 p->blocked_on = NULL; /* not blocked yet */
1082 #endif
1084 p->tgid = p->pid;
1085 if (clone_flags & CLONE_THREAD)
1086 p->tgid = current->tgid;
1088 if ((retval = security_task_alloc(p)))
1089 goto bad_fork_cleanup_policy;
1090 if ((retval = audit_alloc(p)))
1091 goto bad_fork_cleanup_security;
1092 /* copy all the process information */
1093 if ((retval = copy_semundo(clone_flags, p)))
1094 goto bad_fork_cleanup_audit;
1095 if ((retval = copy_files(clone_flags, p)))
1096 goto bad_fork_cleanup_semundo;
1097 if ((retval = copy_fs(clone_flags, p)))
1098 goto bad_fork_cleanup_files;
1099 if ((retval = copy_sighand(clone_flags, p)))
1100 goto bad_fork_cleanup_fs;
1101 if ((retval = copy_signal(clone_flags, p)))
1102 goto bad_fork_cleanup_sighand;
1103 if ((retval = copy_mm(clone_flags, p)))
1104 goto bad_fork_cleanup_signal;
1105 if ((retval = copy_keys(clone_flags, p)))
1106 goto bad_fork_cleanup_mm;
1107 if ((retval = copy_namespace(clone_flags, p)))
1108 goto bad_fork_cleanup_keys;
1109 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1110 if (retval)
1111 goto bad_fork_cleanup_namespace;
1113 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1115 * Clear TID on mm_release()?
1117 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1118 p->robust_list = NULL;
1119 #ifdef CONFIG_COMPAT
1120 p->compat_robust_list = NULL;
1121 #endif
1122 INIT_LIST_HEAD(&p->pi_state_list);
1123 p->pi_state_cache = NULL;
1126 * sigaltstack should be cleared when sharing the same VM
1128 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1129 p->sas_ss_sp = p->sas_ss_size = 0;
1132 * Syscall tracing should be turned off in the child regardless
1133 * of CLONE_PTRACE.
1135 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1136 #ifdef TIF_SYSCALL_EMU
1137 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1138 #endif
1140 /* Our parent execution domain becomes current domain
1141 These must match for thread signalling to apply */
1143 p->parent_exec_id = p->self_exec_id;
1145 /* ok, now we should be set up.. */
1146 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1147 p->pdeath_signal = 0;
1148 p->exit_state = 0;
1151 * Ok, make it visible to the rest of the system.
1152 * We dont wake it up yet.
1154 p->group_leader = p;
1155 INIT_LIST_HEAD(&p->thread_group);
1156 INIT_LIST_HEAD(&p->ptrace_children);
1157 INIT_LIST_HEAD(&p->ptrace_list);
1159 /* Perform scheduler related setup. Assign this task to a CPU. */
1160 sched_fork(p, clone_flags);
1162 /* Need tasklist lock for parent etc handling! */
1163 write_lock_irq(&tasklist_lock);
1166 * The task hasn't been attached yet, so its cpus_allowed mask will
1167 * not be changed, nor will its assigned CPU.
1169 * The cpus_allowed mask of the parent may have changed after it was
1170 * copied first time - so re-copy it here, then check the child's CPU
1171 * to ensure it is on a valid CPU (and if not, just force it back to
1172 * parent's CPU). This avoids alot of nasty races.
1174 p->cpus_allowed = current->cpus_allowed;
1175 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1176 !cpu_online(task_cpu(p))))
1177 set_task_cpu(p, smp_processor_id());
1179 /* CLONE_PARENT re-uses the old parent */
1180 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1181 p->real_parent = current->real_parent;
1182 else
1183 p->real_parent = current;
1184 p->parent = p->real_parent;
1186 spin_lock(&current->sighand->siglock);
1189 * Process group and session signals need to be delivered to just the
1190 * parent before the fork or both the parent and the child after the
1191 * fork. Restart if a signal comes in before we add the new process to
1192 * it's process group.
1193 * A fatal signal pending means that current will exit, so the new
1194 * thread can't slip out of an OOM kill (or normal SIGKILL).
1196 recalc_sigpending();
1197 if (signal_pending(current)) {
1198 spin_unlock(&current->sighand->siglock);
1199 write_unlock_irq(&tasklist_lock);
1200 retval = -ERESTARTNOINTR;
1201 goto bad_fork_cleanup_namespace;
1204 if (clone_flags & CLONE_THREAD) {
1205 p->group_leader = current->group_leader;
1206 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1208 if (!cputime_eq(current->signal->it_virt_expires,
1209 cputime_zero) ||
1210 !cputime_eq(current->signal->it_prof_expires,
1211 cputime_zero) ||
1212 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1213 !list_empty(&current->signal->cpu_timers[0]) ||
1214 !list_empty(&current->signal->cpu_timers[1]) ||
1215 !list_empty(&current->signal->cpu_timers[2])) {
1217 * Have child wake up on its first tick to check
1218 * for process CPU timers.
1220 p->it_prof_expires = jiffies_to_cputime(1);
1225 * inherit ioprio
1227 p->ioprio = current->ioprio;
1229 if (likely(p->pid)) {
1230 add_parent(p);
1231 if (unlikely(p->ptrace & PT_PTRACED))
1232 __ptrace_link(p, current->parent);
1234 if (thread_group_leader(p)) {
1235 p->signal->tty = current->signal->tty;
1236 p->signal->pgrp = process_group(current);
1237 p->signal->session = current->signal->session;
1238 attach_pid(p, PIDTYPE_PGID, process_group(p));
1239 attach_pid(p, PIDTYPE_SID, p->signal->session);
1241 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1242 __get_cpu_var(process_counts)++;
1244 attach_pid(p, PIDTYPE_PID, p->pid);
1245 nr_threads++;
1248 total_forks++;
1249 spin_unlock(&current->sighand->siglock);
1250 write_unlock_irq(&tasklist_lock);
1251 proc_fork_connector(p);
1252 return p;
1254 bad_fork_cleanup_namespace:
1255 exit_namespace(p);
1256 bad_fork_cleanup_keys:
1257 exit_keys(p);
1258 bad_fork_cleanup_mm:
1259 if (p->mm)
1260 mmput(p->mm);
1261 bad_fork_cleanup_signal:
1262 cleanup_signal(p);
1263 bad_fork_cleanup_sighand:
1264 __cleanup_sighand(p->sighand);
1265 bad_fork_cleanup_fs:
1266 exit_fs(p); /* blocking */
1267 bad_fork_cleanup_files:
1268 exit_files(p); /* blocking */
1269 bad_fork_cleanup_semundo:
1270 exit_sem(p);
1271 bad_fork_cleanup_audit:
1272 audit_free(p);
1273 bad_fork_cleanup_security:
1274 security_task_free(p);
1275 bad_fork_cleanup_policy:
1276 #ifdef CONFIG_NUMA
1277 mpol_free(p->mempolicy);
1278 bad_fork_cleanup_cpuset:
1279 #endif
1280 cpuset_exit(p);
1281 bad_fork_cleanup_delays_binfmt:
1282 delayacct_tsk_free(p);
1283 if (p->binfmt)
1284 module_put(p->binfmt->module);
1285 bad_fork_cleanup_put_domain:
1286 module_put(task_thread_info(p)->exec_domain->module);
1287 bad_fork_cleanup_count:
1288 put_group_info(p->group_info);
1289 atomic_dec(&p->user->processes);
1290 free_uid(p->user);
1291 bad_fork_free:
1292 free_task(p);
1293 fork_out:
1294 return ERR_PTR(retval);
1297 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1299 memset(regs, 0, sizeof(struct pt_regs));
1300 return regs;
1303 struct task_struct * __devinit fork_idle(int cpu)
1305 struct task_struct *task;
1306 struct pt_regs regs;
1308 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1309 if (!task)
1310 return ERR_PTR(-ENOMEM);
1311 init_idle(task, cpu);
1313 return task;
1316 static inline int fork_traceflag (unsigned clone_flags)
1318 if (clone_flags & CLONE_UNTRACED)
1319 return 0;
1320 else if (clone_flags & CLONE_VFORK) {
1321 if (current->ptrace & PT_TRACE_VFORK)
1322 return PTRACE_EVENT_VFORK;
1323 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1324 if (current->ptrace & PT_TRACE_CLONE)
1325 return PTRACE_EVENT_CLONE;
1326 } else if (current->ptrace & PT_TRACE_FORK)
1327 return PTRACE_EVENT_FORK;
1329 return 0;
1333 * Ok, this is the main fork-routine.
1335 * It copies the process, and if successful kick-starts
1336 * it and waits for it to finish using the VM if required.
1338 long do_fork(unsigned long clone_flags,
1339 unsigned long stack_start,
1340 struct pt_regs *regs,
1341 unsigned long stack_size,
1342 int __user *parent_tidptr,
1343 int __user *child_tidptr)
1345 struct task_struct *p;
1346 int trace = 0;
1347 struct pid *pid = alloc_pid();
1348 long nr;
1350 if (!pid)
1351 return -EAGAIN;
1352 nr = pid->nr;
1353 if (unlikely(current->ptrace)) {
1354 trace = fork_traceflag (clone_flags);
1355 if (trace)
1356 clone_flags |= CLONE_PTRACE;
1359 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1361 * Do this prior waking up the new thread - the thread pointer
1362 * might get invalid after that point, if the thread exits quickly.
1364 if (!IS_ERR(p)) {
1365 struct completion vfork;
1367 if (clone_flags & CLONE_VFORK) {
1368 p->vfork_done = &vfork;
1369 init_completion(&vfork);
1372 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1374 * We'll start up with an immediate SIGSTOP.
1376 sigaddset(&p->pending.signal, SIGSTOP);
1377 set_tsk_thread_flag(p, TIF_SIGPENDING);
1380 if (!(clone_flags & CLONE_STOPPED))
1381 wake_up_new_task(p, clone_flags);
1382 else
1383 p->state = TASK_STOPPED;
1385 if (unlikely (trace)) {
1386 current->ptrace_message = nr;
1387 ptrace_notify ((trace << 8) | SIGTRAP);
1390 if (clone_flags & CLONE_VFORK) {
1391 wait_for_completion(&vfork);
1392 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1393 current->ptrace_message = nr;
1394 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1397 } else {
1398 free_pid(pid);
1399 nr = PTR_ERR(p);
1401 return nr;
1404 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1405 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1406 #endif
1408 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1410 struct sighand_struct *sighand = data;
1412 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1413 SLAB_CTOR_CONSTRUCTOR)
1414 spin_lock_init(&sighand->siglock);
1417 void __init proc_caches_init(void)
1419 sighand_cachep = kmem_cache_create("sighand_cache",
1420 sizeof(struct sighand_struct), 0,
1421 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1422 sighand_ctor, NULL);
1423 signal_cachep = kmem_cache_create("signal_cache",
1424 sizeof(struct signal_struct), 0,
1425 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1426 files_cachep = kmem_cache_create("files_cache",
1427 sizeof(struct files_struct), 0,
1428 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1429 fs_cachep = kmem_cache_create("fs_cache",
1430 sizeof(struct fs_struct), 0,
1431 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1432 vm_area_cachep = kmem_cache_create("vm_area_struct",
1433 sizeof(struct vm_area_struct), 0,
1434 SLAB_PANIC, NULL, NULL);
1435 mm_cachep = kmem_cache_create("mm_struct",
1436 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1437 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1442 * Check constraints on flags passed to the unshare system call and
1443 * force unsharing of additional process context as appropriate.
1445 static inline void check_unshare_flags(unsigned long *flags_ptr)
1448 * If unsharing a thread from a thread group, must also
1449 * unshare vm.
1451 if (*flags_ptr & CLONE_THREAD)
1452 *flags_ptr |= CLONE_VM;
1455 * If unsharing vm, must also unshare signal handlers.
1457 if (*flags_ptr & CLONE_VM)
1458 *flags_ptr |= CLONE_SIGHAND;
1461 * If unsharing signal handlers and the task was created
1462 * using CLONE_THREAD, then must unshare the thread
1464 if ((*flags_ptr & CLONE_SIGHAND) &&
1465 (atomic_read(&current->signal->count) > 1))
1466 *flags_ptr |= CLONE_THREAD;
1469 * If unsharing namespace, must also unshare filesystem information.
1471 if (*flags_ptr & CLONE_NEWNS)
1472 *flags_ptr |= CLONE_FS;
1476 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1478 static int unshare_thread(unsigned long unshare_flags)
1480 if (unshare_flags & CLONE_THREAD)
1481 return -EINVAL;
1483 return 0;
1487 * Unshare the filesystem structure if it is being shared
1489 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1491 struct fs_struct *fs = current->fs;
1493 if ((unshare_flags & CLONE_FS) &&
1494 (fs && atomic_read(&fs->count) > 1)) {
1495 *new_fsp = __copy_fs_struct(current->fs);
1496 if (!*new_fsp)
1497 return -ENOMEM;
1500 return 0;
1504 * Unshare the namespace structure if it is being shared
1506 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1508 struct namespace *ns = current->namespace;
1510 if ((unshare_flags & CLONE_NEWNS) &&
1511 (ns && atomic_read(&ns->count) > 1)) {
1512 if (!capable(CAP_SYS_ADMIN))
1513 return -EPERM;
1515 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1516 if (!*new_nsp)
1517 return -ENOMEM;
1520 return 0;
1524 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1525 * supported yet
1527 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1529 struct sighand_struct *sigh = current->sighand;
1531 if ((unshare_flags & CLONE_SIGHAND) &&
1532 (sigh && atomic_read(&sigh->count) > 1))
1533 return -EINVAL;
1534 else
1535 return 0;
1539 * Unshare vm if it is being shared
1541 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1543 struct mm_struct *mm = current->mm;
1545 if ((unshare_flags & CLONE_VM) &&
1546 (mm && atomic_read(&mm->mm_users) > 1)) {
1547 return -EINVAL;
1550 return 0;
1554 * Unshare file descriptor table if it is being shared
1556 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1558 struct files_struct *fd = current->files;
1559 int error = 0;
1561 if ((unshare_flags & CLONE_FILES) &&
1562 (fd && atomic_read(&fd->count) > 1)) {
1563 *new_fdp = dup_fd(fd, &error);
1564 if (!*new_fdp)
1565 return error;
1568 return 0;
1572 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1573 * supported yet
1575 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1577 if (unshare_flags & CLONE_SYSVSEM)
1578 return -EINVAL;
1580 return 0;
1584 * unshare allows a process to 'unshare' part of the process
1585 * context which was originally shared using clone. copy_*
1586 * functions used by do_fork() cannot be used here directly
1587 * because they modify an inactive task_struct that is being
1588 * constructed. Here we are modifying the current, active,
1589 * task_struct.
1591 asmlinkage long sys_unshare(unsigned long unshare_flags)
1593 int err = 0;
1594 struct fs_struct *fs, *new_fs = NULL;
1595 struct namespace *ns, *new_ns = NULL;
1596 struct sighand_struct *sigh, *new_sigh = NULL;
1597 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1598 struct files_struct *fd, *new_fd = NULL;
1599 struct sem_undo_list *new_ulist = NULL;
1601 check_unshare_flags(&unshare_flags);
1603 /* Return -EINVAL for all unsupported flags */
1604 err = -EINVAL;
1605 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1606 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1607 goto bad_unshare_out;
1609 if ((err = unshare_thread(unshare_flags)))
1610 goto bad_unshare_out;
1611 if ((err = unshare_fs(unshare_flags, &new_fs)))
1612 goto bad_unshare_cleanup_thread;
1613 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1614 goto bad_unshare_cleanup_fs;
1615 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1616 goto bad_unshare_cleanup_ns;
1617 if ((err = unshare_vm(unshare_flags, &new_mm)))
1618 goto bad_unshare_cleanup_sigh;
1619 if ((err = unshare_fd(unshare_flags, &new_fd)))
1620 goto bad_unshare_cleanup_vm;
1621 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1622 goto bad_unshare_cleanup_fd;
1624 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1626 task_lock(current);
1628 if (new_fs) {
1629 fs = current->fs;
1630 current->fs = new_fs;
1631 new_fs = fs;
1634 if (new_ns) {
1635 ns = current->namespace;
1636 current->namespace = new_ns;
1637 new_ns = ns;
1640 if (new_sigh) {
1641 sigh = current->sighand;
1642 rcu_assign_pointer(current->sighand, new_sigh);
1643 new_sigh = sigh;
1646 if (new_mm) {
1647 mm = current->mm;
1648 active_mm = current->active_mm;
1649 current->mm = new_mm;
1650 current->active_mm = new_mm;
1651 activate_mm(active_mm, new_mm);
1652 new_mm = mm;
1655 if (new_fd) {
1656 fd = current->files;
1657 current->files = new_fd;
1658 new_fd = fd;
1661 task_unlock(current);
1664 bad_unshare_cleanup_fd:
1665 if (new_fd)
1666 put_files_struct(new_fd);
1668 bad_unshare_cleanup_vm:
1669 if (new_mm)
1670 mmput(new_mm);
1672 bad_unshare_cleanup_sigh:
1673 if (new_sigh)
1674 if (atomic_dec_and_test(&new_sigh->count))
1675 kmem_cache_free(sighand_cachep, new_sigh);
1677 bad_unshare_cleanup_ns:
1678 if (new_ns)
1679 put_namespace(new_ns);
1681 bad_unshare_cleanup_fs:
1682 if (new_fs)
1683 put_fs_struct(new_fs);
1685 bad_unshare_cleanup_thread:
1686 bad_unshare_out:
1687 return err;