[PATCH] briq_panel: read() and write() get __user pointers, damnit
[linux-2.6/verdex.git] / kernel / sched.c
bloba234fbee1238ccc85b2d68b87f4442236edad1f0
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
78 * Some helpers for converting nanosecond timing to jiffy resolution
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
84 * These are the 'tuning knobs' of the scheduler:
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
95 #define EXIT_WEIGHT 3
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
109 * This part scales the interactivity limit depending on niceness.
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
137 #ifdef CONFIG_SMP
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141 #else
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #endif
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
149 #define DELTA(p) \
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
164 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
165 * to time slice values: [800ms ... 100ms ... 5ms]
167 * The higher a thread's priority, the bigger timeslices
168 * it gets during one round of execution. But even the lowest
169 * priority thread gets MIN_TIMESLICE worth of execution time.
172 #define SCALE_PRIO(x, prio) \
173 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
175 static unsigned int static_prio_timeslice(int static_prio)
177 if (static_prio < NICE_TO_PRIO(0))
178 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
179 else
180 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
183 static inline unsigned int task_timeslice(struct task_struct *p)
185 return static_prio_timeslice(p->static_prio);
189 * These are the runqueue data structures:
192 struct prio_array {
193 unsigned int nr_active;
194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
195 struct list_head queue[MAX_PRIO];
199 * This is the main, per-CPU runqueue data structure.
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
205 struct rq {
206 spinlock_t lock;
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
212 unsigned long nr_running;
213 unsigned long raw_weighted_load;
214 #ifdef CONFIG_SMP
215 unsigned long cpu_load[3];
216 #endif
217 unsigned long long nr_switches;
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
225 unsigned long nr_uninterruptible;
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
229 struct task_struct *curr, *idle;
230 struct mm_struct *prev_mm;
231 struct prio_array *active, *expired, arrays[2];
232 int best_expired_prio;
233 atomic_t nr_iowait;
235 #ifdef CONFIG_SMP
236 struct sched_domain *sd;
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
242 struct task_struct *migration_thread;
243 struct list_head migration_queue;
244 #endif
246 #ifdef CONFIG_SCHEDSTATS
247 /* latency stats */
248 struct sched_info rq_sched_info;
250 /* sys_sched_yield() stats */
251 unsigned long yld_exp_empty;
252 unsigned long yld_act_empty;
253 unsigned long yld_both_empty;
254 unsigned long yld_cnt;
256 /* schedule() stats */
257 unsigned long sched_switch;
258 unsigned long sched_cnt;
259 unsigned long sched_goidle;
261 /* try_to_wake_up() stats */
262 unsigned long ttwu_cnt;
263 unsigned long ttwu_local;
264 #endif
265 struct lock_class_key rq_lock_key;
268 static DEFINE_PER_CPU(struct rq, runqueues);
271 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
272 * See detach_destroy_domains: synchronize_sched for details.
274 * The domain tree of any CPU may only be accessed from within
275 * preempt-disabled sections.
277 #define for_each_domain(cpu, __sd) \
278 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
280 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
281 #define this_rq() (&__get_cpu_var(runqueues))
282 #define task_rq(p) cpu_rq(task_cpu(p))
283 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
285 #ifndef prepare_arch_switch
286 # define prepare_arch_switch(next) do { } while (0)
287 #endif
288 #ifndef finish_arch_switch
289 # define finish_arch_switch(prev) do { } while (0)
290 #endif
292 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
293 static inline int task_running(struct rq *rq, struct task_struct *p)
295 return rq->curr == p;
298 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
302 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
304 #ifdef CONFIG_DEBUG_SPINLOCK
305 /* this is a valid case when another task releases the spinlock */
306 rq->lock.owner = current;
307 #endif
309 * If we are tracking spinlock dependencies then we have to
310 * fix up the runqueue lock - which gets 'carried over' from
311 * prev into current:
313 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
315 spin_unlock_irq(&rq->lock);
318 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
319 static inline int task_running(struct rq *rq, struct task_struct *p)
321 #ifdef CONFIG_SMP
322 return p->oncpu;
323 #else
324 return rq->curr == p;
325 #endif
328 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
330 #ifdef CONFIG_SMP
332 * We can optimise this out completely for !SMP, because the
333 * SMP rebalancing from interrupt is the only thing that cares
334 * here.
336 next->oncpu = 1;
337 #endif
338 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 spin_unlock_irq(&rq->lock);
340 #else
341 spin_unlock(&rq->lock);
342 #endif
345 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
347 #ifdef CONFIG_SMP
349 * After ->oncpu is cleared, the task can be moved to a different CPU.
350 * We must ensure this doesn't happen until the switch is completely
351 * finished.
353 smp_wmb();
354 prev->oncpu = 0;
355 #endif
356 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
357 local_irq_enable();
358 #endif
360 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
363 * __task_rq_lock - lock the runqueue a given task resides on.
364 * Must be called interrupts disabled.
366 static inline struct rq *__task_rq_lock(struct task_struct *p)
367 __acquires(rq->lock)
369 struct rq *rq;
371 repeat_lock_task:
372 rq = task_rq(p);
373 spin_lock(&rq->lock);
374 if (unlikely(rq != task_rq(p))) {
375 spin_unlock(&rq->lock);
376 goto repeat_lock_task;
378 return rq;
382 * task_rq_lock - lock the runqueue a given task resides on and disable
383 * interrupts. Note the ordering: we can safely lookup the task_rq without
384 * explicitly disabling preemption.
386 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
387 __acquires(rq->lock)
389 struct rq *rq;
391 repeat_lock_task:
392 local_irq_save(*flags);
393 rq = task_rq(p);
394 spin_lock(&rq->lock);
395 if (unlikely(rq != task_rq(p))) {
396 spin_unlock_irqrestore(&rq->lock, *flags);
397 goto repeat_lock_task;
399 return rq;
402 static inline void __task_rq_unlock(struct rq *rq)
403 __releases(rq->lock)
405 spin_unlock(&rq->lock);
408 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
409 __releases(rq->lock)
411 spin_unlock_irqrestore(&rq->lock, *flags);
414 #ifdef CONFIG_SCHEDSTATS
416 * bump this up when changing the output format or the meaning of an existing
417 * format, so that tools can adapt (or abort)
419 #define SCHEDSTAT_VERSION 12
421 static int show_schedstat(struct seq_file *seq, void *v)
423 int cpu;
425 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
426 seq_printf(seq, "timestamp %lu\n", jiffies);
427 for_each_online_cpu(cpu) {
428 struct rq *rq = cpu_rq(cpu);
429 #ifdef CONFIG_SMP
430 struct sched_domain *sd;
431 int dcnt = 0;
432 #endif
434 /* runqueue-specific stats */
435 seq_printf(seq,
436 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
437 cpu, rq->yld_both_empty,
438 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
439 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
440 rq->ttwu_cnt, rq->ttwu_local,
441 rq->rq_sched_info.cpu_time,
442 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
444 seq_printf(seq, "\n");
446 #ifdef CONFIG_SMP
447 /* domain-specific stats */
448 preempt_disable();
449 for_each_domain(cpu, sd) {
450 enum idle_type itype;
451 char mask_str[NR_CPUS];
453 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
454 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
455 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
456 itype++) {
457 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
458 sd->lb_cnt[itype],
459 sd->lb_balanced[itype],
460 sd->lb_failed[itype],
461 sd->lb_imbalance[itype],
462 sd->lb_gained[itype],
463 sd->lb_hot_gained[itype],
464 sd->lb_nobusyq[itype],
465 sd->lb_nobusyg[itype]);
467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
468 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
469 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
470 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
471 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
473 preempt_enable();
474 #endif
476 return 0;
479 static int schedstat_open(struct inode *inode, struct file *file)
481 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
482 char *buf = kmalloc(size, GFP_KERNEL);
483 struct seq_file *m;
484 int res;
486 if (!buf)
487 return -ENOMEM;
488 res = single_open(file, show_schedstat, NULL);
489 if (!res) {
490 m = file->private_data;
491 m->buf = buf;
492 m->size = size;
493 } else
494 kfree(buf);
495 return res;
498 struct file_operations proc_schedstat_operations = {
499 .open = schedstat_open,
500 .read = seq_read,
501 .llseek = seq_lseek,
502 .release = single_release,
506 * Expects runqueue lock to be held for atomicity of update
508 static inline void
509 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
511 if (rq) {
512 rq->rq_sched_info.run_delay += delta_jiffies;
513 rq->rq_sched_info.pcnt++;
518 * Expects runqueue lock to be held for atomicity of update
520 static inline void
521 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
523 if (rq)
524 rq->rq_sched_info.cpu_time += delta_jiffies;
526 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
527 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
528 #else /* !CONFIG_SCHEDSTATS */
529 static inline void
530 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
532 static inline void
533 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
535 # define schedstat_inc(rq, field) do { } while (0)
536 # define schedstat_add(rq, field, amt) do { } while (0)
537 #endif
540 * rq_lock - lock a given runqueue and disable interrupts.
542 static inline struct rq *this_rq_lock(void)
543 __acquires(rq->lock)
545 struct rq *rq;
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
551 return rq;
554 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
556 * Called when a process is dequeued from the active array and given
557 * the cpu. We should note that with the exception of interactive
558 * tasks, the expired queue will become the active queue after the active
559 * queue is empty, without explicitly dequeuing and requeuing tasks in the
560 * expired queue. (Interactive tasks may be requeued directly to the
561 * active queue, thus delaying tasks in the expired queue from running;
562 * see scheduler_tick()).
564 * This function is only called from sched_info_arrive(), rather than
565 * dequeue_task(). Even though a task may be queued and dequeued multiple
566 * times as it is shuffled about, we're really interested in knowing how
567 * long it was from the *first* time it was queued to the time that it
568 * finally hit a cpu.
570 static inline void sched_info_dequeued(struct task_struct *t)
572 t->sched_info.last_queued = 0;
576 * Called when a task finally hits the cpu. We can now calculate how
577 * long it was waiting to run. We also note when it began so that we
578 * can keep stats on how long its timeslice is.
580 static void sched_info_arrive(struct task_struct *t)
582 unsigned long now = jiffies, delta_jiffies = 0;
584 if (t->sched_info.last_queued)
585 delta_jiffies = now - t->sched_info.last_queued;
586 sched_info_dequeued(t);
587 t->sched_info.run_delay += delta_jiffies;
588 t->sched_info.last_arrival = now;
589 t->sched_info.pcnt++;
591 rq_sched_info_arrive(task_rq(t), delta_jiffies);
595 * Called when a process is queued into either the active or expired
596 * array. The time is noted and later used to determine how long we
597 * had to wait for us to reach the cpu. Since the expired queue will
598 * become the active queue after active queue is empty, without dequeuing
599 * and requeuing any tasks, we are interested in queuing to either. It
600 * is unusual but not impossible for tasks to be dequeued and immediately
601 * requeued in the same or another array: this can happen in sched_yield(),
602 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
603 * to runqueue.
605 * This function is only called from enqueue_task(), but also only updates
606 * the timestamp if it is already not set. It's assumed that
607 * sched_info_dequeued() will clear that stamp when appropriate.
609 static inline void sched_info_queued(struct task_struct *t)
611 if (unlikely(sched_info_on()))
612 if (!t->sched_info.last_queued)
613 t->sched_info.last_queued = jiffies;
617 * Called when a process ceases being the active-running process, either
618 * voluntarily or involuntarily. Now we can calculate how long we ran.
620 static inline void sched_info_depart(struct task_struct *t)
622 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
624 t->sched_info.cpu_time += delta_jiffies;
625 rq_sched_info_depart(task_rq(t), delta_jiffies);
629 * Called when tasks are switched involuntarily due, typically, to expiring
630 * their time slice. (This may also be called when switching to or from
631 * the idle task.) We are only called when prev != next.
633 static inline void
634 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
636 struct rq *rq = task_rq(prev);
639 * prev now departs the cpu. It's not interesting to record
640 * stats about how efficient we were at scheduling the idle
641 * process, however.
643 if (prev != rq->idle)
644 sched_info_depart(prev);
646 if (next != rq->idle)
647 sched_info_arrive(next);
649 static inline void
650 sched_info_switch(struct task_struct *prev, struct task_struct *next)
652 if (unlikely(sched_info_on()))
653 __sched_info_switch(prev, next);
655 #else
656 #define sched_info_queued(t) do { } while (0)
657 #define sched_info_switch(t, next) do { } while (0)
658 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
661 * Adding/removing a task to/from a priority array:
663 static void dequeue_task(struct task_struct *p, struct prio_array *array)
665 array->nr_active--;
666 list_del(&p->run_list);
667 if (list_empty(array->queue + p->prio))
668 __clear_bit(p->prio, array->bitmap);
671 static void enqueue_task(struct task_struct *p, struct prio_array *array)
673 sched_info_queued(p);
674 list_add_tail(&p->run_list, array->queue + p->prio);
675 __set_bit(p->prio, array->bitmap);
676 array->nr_active++;
677 p->array = array;
681 * Put task to the end of the run list without the overhead of dequeue
682 * followed by enqueue.
684 static void requeue_task(struct task_struct *p, struct prio_array *array)
686 list_move_tail(&p->run_list, array->queue + p->prio);
689 static inline void
690 enqueue_task_head(struct task_struct *p, struct prio_array *array)
692 list_add(&p->run_list, array->queue + p->prio);
693 __set_bit(p->prio, array->bitmap);
694 array->nr_active++;
695 p->array = array;
699 * __normal_prio - return the priority that is based on the static
700 * priority but is modified by bonuses/penalties.
702 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
703 * into the -5 ... 0 ... +5 bonus/penalty range.
705 * We use 25% of the full 0...39 priority range so that:
707 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
708 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
710 * Both properties are important to certain workloads.
713 static inline int __normal_prio(struct task_struct *p)
715 int bonus, prio;
717 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
719 prio = p->static_prio - bonus;
720 if (prio < MAX_RT_PRIO)
721 prio = MAX_RT_PRIO;
722 if (prio > MAX_PRIO-1)
723 prio = MAX_PRIO-1;
724 return prio;
728 * To aid in avoiding the subversion of "niceness" due to uneven distribution
729 * of tasks with abnormal "nice" values across CPUs the contribution that
730 * each task makes to its run queue's load is weighted according to its
731 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
732 * scaled version of the new time slice allocation that they receive on time
733 * slice expiry etc.
737 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
738 * If static_prio_timeslice() is ever changed to break this assumption then
739 * this code will need modification
741 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
742 #define LOAD_WEIGHT(lp) \
743 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
744 #define PRIO_TO_LOAD_WEIGHT(prio) \
745 LOAD_WEIGHT(static_prio_timeslice(prio))
746 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
747 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
749 static void set_load_weight(struct task_struct *p)
751 if (has_rt_policy(p)) {
752 #ifdef CONFIG_SMP
753 if (p == task_rq(p)->migration_thread)
755 * The migration thread does the actual balancing.
756 * Giving its load any weight will skew balancing
757 * adversely.
759 p->load_weight = 0;
760 else
761 #endif
762 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
763 } else
764 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
767 static inline void
768 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
770 rq->raw_weighted_load += p->load_weight;
773 static inline void
774 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
776 rq->raw_weighted_load -= p->load_weight;
779 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
781 rq->nr_running++;
782 inc_raw_weighted_load(rq, p);
785 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
787 rq->nr_running--;
788 dec_raw_weighted_load(rq, p);
792 * Calculate the expected normal priority: i.e. priority
793 * without taking RT-inheritance into account. Might be
794 * boosted by interactivity modifiers. Changes upon fork,
795 * setprio syscalls, and whenever the interactivity
796 * estimator recalculates.
798 static inline int normal_prio(struct task_struct *p)
800 int prio;
802 if (has_rt_policy(p))
803 prio = MAX_RT_PRIO-1 - p->rt_priority;
804 else
805 prio = __normal_prio(p);
806 return prio;
810 * Calculate the current priority, i.e. the priority
811 * taken into account by the scheduler. This value might
812 * be boosted by RT tasks, or might be boosted by
813 * interactivity modifiers. Will be RT if the task got
814 * RT-boosted. If not then it returns p->normal_prio.
816 static int effective_prio(struct task_struct *p)
818 p->normal_prio = normal_prio(p);
820 * If we are RT tasks or we were boosted to RT priority,
821 * keep the priority unchanged. Otherwise, update priority
822 * to the normal priority:
824 if (!rt_prio(p->prio))
825 return p->normal_prio;
826 return p->prio;
830 * __activate_task - move a task to the runqueue.
832 static void __activate_task(struct task_struct *p, struct rq *rq)
834 struct prio_array *target = rq->active;
836 if (batch_task(p))
837 target = rq->expired;
838 enqueue_task(p, target);
839 inc_nr_running(p, rq);
843 * __activate_idle_task - move idle task to the _front_ of runqueue.
845 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
847 enqueue_task_head(p, rq->active);
848 inc_nr_running(p, rq);
852 * Recalculate p->normal_prio and p->prio after having slept,
853 * updating the sleep-average too:
855 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
857 /* Caller must always ensure 'now >= p->timestamp' */
858 unsigned long sleep_time = now - p->timestamp;
860 if (batch_task(p))
861 sleep_time = 0;
863 if (likely(sleep_time > 0)) {
865 * This ceiling is set to the lowest priority that would allow
866 * a task to be reinserted into the active array on timeslice
867 * completion.
869 unsigned long ceiling = INTERACTIVE_SLEEP(p);
871 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
873 * Prevents user tasks from achieving best priority
874 * with one single large enough sleep.
876 p->sleep_avg = ceiling;
878 * Using INTERACTIVE_SLEEP() as a ceiling places a
879 * nice(0) task 1ms sleep away from promotion, and
880 * gives it 700ms to round-robin with no chance of
881 * being demoted. This is more than generous, so
882 * mark this sleep as non-interactive to prevent the
883 * on-runqueue bonus logic from intervening should
884 * this task not receive cpu immediately.
886 p->sleep_type = SLEEP_NONINTERACTIVE;
887 } else {
889 * Tasks waking from uninterruptible sleep are
890 * limited in their sleep_avg rise as they
891 * are likely to be waiting on I/O
893 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
894 if (p->sleep_avg >= ceiling)
895 sleep_time = 0;
896 else if (p->sleep_avg + sleep_time >=
897 ceiling) {
898 p->sleep_avg = ceiling;
899 sleep_time = 0;
904 * This code gives a bonus to interactive tasks.
906 * The boost works by updating the 'average sleep time'
907 * value here, based on ->timestamp. The more time a
908 * task spends sleeping, the higher the average gets -
909 * and the higher the priority boost gets as well.
911 p->sleep_avg += sleep_time;
914 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
915 p->sleep_avg = NS_MAX_SLEEP_AVG;
918 return effective_prio(p);
922 * activate_task - move a task to the runqueue and do priority recalculation
924 * Update all the scheduling statistics stuff. (sleep average
925 * calculation, priority modifiers, etc.)
927 static void activate_task(struct task_struct *p, struct rq *rq, int local)
929 unsigned long long now;
931 now = sched_clock();
932 #ifdef CONFIG_SMP
933 if (!local) {
934 /* Compensate for drifting sched_clock */
935 struct rq *this_rq = this_rq();
936 now = (now - this_rq->timestamp_last_tick)
937 + rq->timestamp_last_tick;
939 #endif
941 if (!rt_task(p))
942 p->prio = recalc_task_prio(p, now);
945 * This checks to make sure it's not an uninterruptible task
946 * that is now waking up.
948 if (p->sleep_type == SLEEP_NORMAL) {
950 * Tasks which were woken up by interrupts (ie. hw events)
951 * are most likely of interactive nature. So we give them
952 * the credit of extending their sleep time to the period
953 * of time they spend on the runqueue, waiting for execution
954 * on a CPU, first time around:
956 if (in_interrupt())
957 p->sleep_type = SLEEP_INTERRUPTED;
958 else {
960 * Normal first-time wakeups get a credit too for
961 * on-runqueue time, but it will be weighted down:
963 p->sleep_type = SLEEP_INTERACTIVE;
966 p->timestamp = now;
968 __activate_task(p, rq);
972 * deactivate_task - remove a task from the runqueue.
974 static void deactivate_task(struct task_struct *p, struct rq *rq)
976 dec_nr_running(p, rq);
977 dequeue_task(p, p->array);
978 p->array = NULL;
982 * resched_task - mark a task 'to be rescheduled now'.
984 * On UP this means the setting of the need_resched flag, on SMP it
985 * might also involve a cross-CPU call to trigger the scheduler on
986 * the target CPU.
988 #ifdef CONFIG_SMP
990 #ifndef tsk_is_polling
991 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
992 #endif
994 static void resched_task(struct task_struct *p)
996 int cpu;
998 assert_spin_locked(&task_rq(p)->lock);
1000 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1001 return;
1003 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1005 cpu = task_cpu(p);
1006 if (cpu == smp_processor_id())
1007 return;
1009 /* NEED_RESCHED must be visible before we test polling */
1010 smp_mb();
1011 if (!tsk_is_polling(p))
1012 smp_send_reschedule(cpu);
1014 #else
1015 static inline void resched_task(struct task_struct *p)
1017 assert_spin_locked(&task_rq(p)->lock);
1018 set_tsk_need_resched(p);
1020 #endif
1023 * task_curr - is this task currently executing on a CPU?
1024 * @p: the task in question.
1026 inline int task_curr(const struct task_struct *p)
1028 return cpu_curr(task_cpu(p)) == p;
1031 /* Used instead of source_load when we know the type == 0 */
1032 unsigned long weighted_cpuload(const int cpu)
1034 return cpu_rq(cpu)->raw_weighted_load;
1037 #ifdef CONFIG_SMP
1038 struct migration_req {
1039 struct list_head list;
1041 struct task_struct *task;
1042 int dest_cpu;
1044 struct completion done;
1048 * The task's runqueue lock must be held.
1049 * Returns true if you have to wait for migration thread.
1051 static int
1052 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1054 struct rq *rq = task_rq(p);
1057 * If the task is not on a runqueue (and not running), then
1058 * it is sufficient to simply update the task's cpu field.
1060 if (!p->array && !task_running(rq, p)) {
1061 set_task_cpu(p, dest_cpu);
1062 return 0;
1065 init_completion(&req->done);
1066 req->task = p;
1067 req->dest_cpu = dest_cpu;
1068 list_add(&req->list, &rq->migration_queue);
1070 return 1;
1074 * wait_task_inactive - wait for a thread to unschedule.
1076 * The caller must ensure that the task *will* unschedule sometime soon,
1077 * else this function might spin for a *long* time. This function can't
1078 * be called with interrupts off, or it may introduce deadlock with
1079 * smp_call_function() if an IPI is sent by the same process we are
1080 * waiting to become inactive.
1082 void wait_task_inactive(struct task_struct *p)
1084 unsigned long flags;
1085 struct rq *rq;
1086 int preempted;
1088 repeat:
1089 rq = task_rq_lock(p, &flags);
1090 /* Must be off runqueue entirely, not preempted. */
1091 if (unlikely(p->array || task_running(rq, p))) {
1092 /* If it's preempted, we yield. It could be a while. */
1093 preempted = !task_running(rq, p);
1094 task_rq_unlock(rq, &flags);
1095 cpu_relax();
1096 if (preempted)
1097 yield();
1098 goto repeat;
1100 task_rq_unlock(rq, &flags);
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1110 * NOTE: this function doesnt have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1116 void kick_process(struct task_struct *p)
1118 int cpu;
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1128 * Return a low guess at the load of a migration-source cpu weighted
1129 * according to the scheduling class and "nice" value.
1131 * We want to under-estimate the load of migration sources, to
1132 * balance conservatively.
1134 static inline unsigned long source_load(int cpu, int type)
1136 struct rq *rq = cpu_rq(cpu);
1138 if (type == 0)
1139 return rq->raw_weighted_load;
1141 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1145 * Return a high guess at the load of a migration-target cpu weighted
1146 * according to the scheduling class and "nice" value.
1148 static inline unsigned long target_load(int cpu, int type)
1150 struct rq *rq = cpu_rq(cpu);
1152 if (type == 0)
1153 return rq->raw_weighted_load;
1155 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1159 * Return the average load per task on the cpu's run queue
1161 static inline unsigned long cpu_avg_load_per_task(int cpu)
1163 struct rq *rq = cpu_rq(cpu);
1164 unsigned long n = rq->nr_running;
1166 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1170 * find_idlest_group finds and returns the least busy CPU group within the
1171 * domain.
1173 static struct sched_group *
1174 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1176 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1177 unsigned long min_load = ULONG_MAX, this_load = 0;
1178 int load_idx = sd->forkexec_idx;
1179 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1181 do {
1182 unsigned long load, avg_load;
1183 int local_group;
1184 int i;
1186 /* Skip over this group if it has no CPUs allowed */
1187 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1188 goto nextgroup;
1190 local_group = cpu_isset(this_cpu, group->cpumask);
1192 /* Tally up the load of all CPUs in the group */
1193 avg_load = 0;
1195 for_each_cpu_mask(i, group->cpumask) {
1196 /* Bias balancing toward cpus of our domain */
1197 if (local_group)
1198 load = source_load(i, load_idx);
1199 else
1200 load = target_load(i, load_idx);
1202 avg_load += load;
1205 /* Adjust by relative CPU power of the group */
1206 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1208 if (local_group) {
1209 this_load = avg_load;
1210 this = group;
1211 } else if (avg_load < min_load) {
1212 min_load = avg_load;
1213 idlest = group;
1215 nextgroup:
1216 group = group->next;
1217 } while (group != sd->groups);
1219 if (!idlest || 100*this_load < imbalance*min_load)
1220 return NULL;
1221 return idlest;
1225 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1227 static int
1228 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1230 cpumask_t tmp;
1231 unsigned long load, min_load = ULONG_MAX;
1232 int idlest = -1;
1233 int i;
1235 /* Traverse only the allowed CPUs */
1236 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1238 for_each_cpu_mask(i, tmp) {
1239 load = weighted_cpuload(i);
1241 if (load < min_load || (load == min_load && i == this_cpu)) {
1242 min_load = load;
1243 idlest = i;
1247 return idlest;
1251 * sched_balance_self: balance the current task (running on cpu) in domains
1252 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1253 * SD_BALANCE_EXEC.
1255 * Balance, ie. select the least loaded group.
1257 * Returns the target CPU number, or the same CPU if no balancing is needed.
1259 * preempt must be disabled.
1261 static int sched_balance_self(int cpu, int flag)
1263 struct task_struct *t = current;
1264 struct sched_domain *tmp, *sd = NULL;
1266 for_each_domain(cpu, tmp) {
1268 * If power savings logic is enabled for a domain, stop there.
1270 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1271 break;
1272 if (tmp->flags & flag)
1273 sd = tmp;
1276 while (sd) {
1277 cpumask_t span;
1278 struct sched_group *group;
1279 int new_cpu;
1280 int weight;
1282 span = sd->span;
1283 group = find_idlest_group(sd, t, cpu);
1284 if (!group)
1285 goto nextlevel;
1287 new_cpu = find_idlest_cpu(group, t, cpu);
1288 if (new_cpu == -1 || new_cpu == cpu)
1289 goto nextlevel;
1291 /* Now try balancing at a lower domain level */
1292 cpu = new_cpu;
1293 nextlevel:
1294 sd = NULL;
1295 weight = cpus_weight(span);
1296 for_each_domain(cpu, tmp) {
1297 if (weight <= cpus_weight(tmp->span))
1298 break;
1299 if (tmp->flags & flag)
1300 sd = tmp;
1302 /* while loop will break here if sd == NULL */
1305 return cpu;
1308 #endif /* CONFIG_SMP */
1311 * wake_idle() will wake a task on an idle cpu if task->cpu is
1312 * not idle and an idle cpu is available. The span of cpus to
1313 * search starts with cpus closest then further out as needed,
1314 * so we always favor a closer, idle cpu.
1316 * Returns the CPU we should wake onto.
1318 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1319 static int wake_idle(int cpu, struct task_struct *p)
1321 cpumask_t tmp;
1322 struct sched_domain *sd;
1323 int i;
1325 if (idle_cpu(cpu))
1326 return cpu;
1328 for_each_domain(cpu, sd) {
1329 if (sd->flags & SD_WAKE_IDLE) {
1330 cpus_and(tmp, sd->span, p->cpus_allowed);
1331 for_each_cpu_mask(i, tmp) {
1332 if (idle_cpu(i))
1333 return i;
1336 else
1337 break;
1339 return cpu;
1341 #else
1342 static inline int wake_idle(int cpu, struct task_struct *p)
1344 return cpu;
1346 #endif
1348 /***
1349 * try_to_wake_up - wake up a thread
1350 * @p: the to-be-woken-up thread
1351 * @state: the mask of task states that can be woken
1352 * @sync: do a synchronous wakeup?
1354 * Put it on the run-queue if it's not already there. The "current"
1355 * thread is always on the run-queue (except when the actual
1356 * re-schedule is in progress), and as such you're allowed to do
1357 * the simpler "current->state = TASK_RUNNING" to mark yourself
1358 * runnable without the overhead of this.
1360 * returns failure only if the task is already active.
1362 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1364 int cpu, this_cpu, success = 0;
1365 unsigned long flags;
1366 long old_state;
1367 struct rq *rq;
1368 #ifdef CONFIG_SMP
1369 struct sched_domain *sd, *this_sd = NULL;
1370 unsigned long load, this_load;
1371 int new_cpu;
1372 #endif
1374 rq = task_rq_lock(p, &flags);
1375 old_state = p->state;
1376 if (!(old_state & state))
1377 goto out;
1379 if (p->array)
1380 goto out_running;
1382 cpu = task_cpu(p);
1383 this_cpu = smp_processor_id();
1385 #ifdef CONFIG_SMP
1386 if (unlikely(task_running(rq, p)))
1387 goto out_activate;
1389 new_cpu = cpu;
1391 schedstat_inc(rq, ttwu_cnt);
1392 if (cpu == this_cpu) {
1393 schedstat_inc(rq, ttwu_local);
1394 goto out_set_cpu;
1397 for_each_domain(this_cpu, sd) {
1398 if (cpu_isset(cpu, sd->span)) {
1399 schedstat_inc(sd, ttwu_wake_remote);
1400 this_sd = sd;
1401 break;
1405 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1406 goto out_set_cpu;
1409 * Check for affine wakeup and passive balancing possibilities.
1411 if (this_sd) {
1412 int idx = this_sd->wake_idx;
1413 unsigned int imbalance;
1415 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1417 load = source_load(cpu, idx);
1418 this_load = target_load(this_cpu, idx);
1420 new_cpu = this_cpu; /* Wake to this CPU if we can */
1422 if (this_sd->flags & SD_WAKE_AFFINE) {
1423 unsigned long tl = this_load;
1424 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1427 * If sync wakeup then subtract the (maximum possible)
1428 * effect of the currently running task from the load
1429 * of the current CPU:
1431 if (sync)
1432 tl -= current->load_weight;
1434 if ((tl <= load &&
1435 tl + target_load(cpu, idx) <= tl_per_task) ||
1436 100*(tl + p->load_weight) <= imbalance*load) {
1438 * This domain has SD_WAKE_AFFINE and
1439 * p is cache cold in this domain, and
1440 * there is no bad imbalance.
1442 schedstat_inc(this_sd, ttwu_move_affine);
1443 goto out_set_cpu;
1448 * Start passive balancing when half the imbalance_pct
1449 * limit is reached.
1451 if (this_sd->flags & SD_WAKE_BALANCE) {
1452 if (imbalance*this_load <= 100*load) {
1453 schedstat_inc(this_sd, ttwu_move_balance);
1454 goto out_set_cpu;
1459 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1460 out_set_cpu:
1461 new_cpu = wake_idle(new_cpu, p);
1462 if (new_cpu != cpu) {
1463 set_task_cpu(p, new_cpu);
1464 task_rq_unlock(rq, &flags);
1465 /* might preempt at this point */
1466 rq = task_rq_lock(p, &flags);
1467 old_state = p->state;
1468 if (!(old_state & state))
1469 goto out;
1470 if (p->array)
1471 goto out_running;
1473 this_cpu = smp_processor_id();
1474 cpu = task_cpu(p);
1477 out_activate:
1478 #endif /* CONFIG_SMP */
1479 if (old_state == TASK_UNINTERRUPTIBLE) {
1480 rq->nr_uninterruptible--;
1482 * Tasks on involuntary sleep don't earn
1483 * sleep_avg beyond just interactive state.
1485 p->sleep_type = SLEEP_NONINTERACTIVE;
1486 } else
1489 * Tasks that have marked their sleep as noninteractive get
1490 * woken up with their sleep average not weighted in an
1491 * interactive way.
1493 if (old_state & TASK_NONINTERACTIVE)
1494 p->sleep_type = SLEEP_NONINTERACTIVE;
1497 activate_task(p, rq, cpu == this_cpu);
1499 * Sync wakeups (i.e. those types of wakeups where the waker
1500 * has indicated that it will leave the CPU in short order)
1501 * don't trigger a preemption, if the woken up task will run on
1502 * this cpu. (in this case the 'I will reschedule' promise of
1503 * the waker guarantees that the freshly woken up task is going
1504 * to be considered on this CPU.)
1506 if (!sync || cpu != this_cpu) {
1507 if (TASK_PREEMPTS_CURR(p, rq))
1508 resched_task(rq->curr);
1510 success = 1;
1512 out_running:
1513 p->state = TASK_RUNNING;
1514 out:
1515 task_rq_unlock(rq, &flags);
1517 return success;
1520 int fastcall wake_up_process(struct task_struct *p)
1522 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1523 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1525 EXPORT_SYMBOL(wake_up_process);
1527 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1529 return try_to_wake_up(p, state, 0);
1533 * Perform scheduler related setup for a newly forked process p.
1534 * p is forked by current.
1536 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1538 int cpu = get_cpu();
1540 #ifdef CONFIG_SMP
1541 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1542 #endif
1543 set_task_cpu(p, cpu);
1546 * We mark the process as running here, but have not actually
1547 * inserted it onto the runqueue yet. This guarantees that
1548 * nobody will actually run it, and a signal or other external
1549 * event cannot wake it up and insert it on the runqueue either.
1551 p->state = TASK_RUNNING;
1554 * Make sure we do not leak PI boosting priority to the child:
1556 p->prio = current->normal_prio;
1558 INIT_LIST_HEAD(&p->run_list);
1559 p->array = NULL;
1560 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1561 if (unlikely(sched_info_on()))
1562 memset(&p->sched_info, 0, sizeof(p->sched_info));
1563 #endif
1564 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1565 p->oncpu = 0;
1566 #endif
1567 #ifdef CONFIG_PREEMPT
1568 /* Want to start with kernel preemption disabled. */
1569 task_thread_info(p)->preempt_count = 1;
1570 #endif
1572 * Share the timeslice between parent and child, thus the
1573 * total amount of pending timeslices in the system doesn't change,
1574 * resulting in more scheduling fairness.
1576 local_irq_disable();
1577 p->time_slice = (current->time_slice + 1) >> 1;
1579 * The remainder of the first timeslice might be recovered by
1580 * the parent if the child exits early enough.
1582 p->first_time_slice = 1;
1583 current->time_slice >>= 1;
1584 p->timestamp = sched_clock();
1585 if (unlikely(!current->time_slice)) {
1587 * This case is rare, it happens when the parent has only
1588 * a single jiffy left from its timeslice. Taking the
1589 * runqueue lock is not a problem.
1591 current->time_slice = 1;
1592 scheduler_tick();
1594 local_irq_enable();
1595 put_cpu();
1599 * wake_up_new_task - wake up a newly created task for the first time.
1601 * This function will do some initial scheduler statistics housekeeping
1602 * that must be done for every newly created context, then puts the task
1603 * on the runqueue and wakes it.
1605 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1607 struct rq *rq, *this_rq;
1608 unsigned long flags;
1609 int this_cpu, cpu;
1611 rq = task_rq_lock(p, &flags);
1612 BUG_ON(p->state != TASK_RUNNING);
1613 this_cpu = smp_processor_id();
1614 cpu = task_cpu(p);
1617 * We decrease the sleep average of forking parents
1618 * and children as well, to keep max-interactive tasks
1619 * from forking tasks that are max-interactive. The parent
1620 * (current) is done further down, under its lock.
1622 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1623 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1625 p->prio = effective_prio(p);
1627 if (likely(cpu == this_cpu)) {
1628 if (!(clone_flags & CLONE_VM)) {
1630 * The VM isn't cloned, so we're in a good position to
1631 * do child-runs-first in anticipation of an exec. This
1632 * usually avoids a lot of COW overhead.
1634 if (unlikely(!current->array))
1635 __activate_task(p, rq);
1636 else {
1637 p->prio = current->prio;
1638 p->normal_prio = current->normal_prio;
1639 list_add_tail(&p->run_list, &current->run_list);
1640 p->array = current->array;
1641 p->array->nr_active++;
1642 inc_nr_running(p, rq);
1644 set_need_resched();
1645 } else
1646 /* Run child last */
1647 __activate_task(p, rq);
1649 * We skip the following code due to cpu == this_cpu
1651 * task_rq_unlock(rq, &flags);
1652 * this_rq = task_rq_lock(current, &flags);
1654 this_rq = rq;
1655 } else {
1656 this_rq = cpu_rq(this_cpu);
1659 * Not the local CPU - must adjust timestamp. This should
1660 * get optimised away in the !CONFIG_SMP case.
1662 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1663 + rq->timestamp_last_tick;
1664 __activate_task(p, rq);
1665 if (TASK_PREEMPTS_CURR(p, rq))
1666 resched_task(rq->curr);
1669 * Parent and child are on different CPUs, now get the
1670 * parent runqueue to update the parent's ->sleep_avg:
1672 task_rq_unlock(rq, &flags);
1673 this_rq = task_rq_lock(current, &flags);
1675 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1676 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1677 task_rq_unlock(this_rq, &flags);
1681 * Potentially available exiting-child timeslices are
1682 * retrieved here - this way the parent does not get
1683 * penalized for creating too many threads.
1685 * (this cannot be used to 'generate' timeslices
1686 * artificially, because any timeslice recovered here
1687 * was given away by the parent in the first place.)
1689 void fastcall sched_exit(struct task_struct *p)
1691 unsigned long flags;
1692 struct rq *rq;
1695 * If the child was a (relative-) CPU hog then decrease
1696 * the sleep_avg of the parent as well.
1698 rq = task_rq_lock(p->parent, &flags);
1699 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1700 p->parent->time_slice += p->time_slice;
1701 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1702 p->parent->time_slice = task_timeslice(p);
1704 if (p->sleep_avg < p->parent->sleep_avg)
1705 p->parent->sleep_avg = p->parent->sleep_avg /
1706 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1707 (EXIT_WEIGHT + 1);
1708 task_rq_unlock(rq, &flags);
1712 * prepare_task_switch - prepare to switch tasks
1713 * @rq: the runqueue preparing to switch
1714 * @next: the task we are going to switch to.
1716 * This is called with the rq lock held and interrupts off. It must
1717 * be paired with a subsequent finish_task_switch after the context
1718 * switch.
1720 * prepare_task_switch sets up locking and calls architecture specific
1721 * hooks.
1723 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1725 prepare_lock_switch(rq, next);
1726 prepare_arch_switch(next);
1730 * finish_task_switch - clean up after a task-switch
1731 * @rq: runqueue associated with task-switch
1732 * @prev: the thread we just switched away from.
1734 * finish_task_switch must be called after the context switch, paired
1735 * with a prepare_task_switch call before the context switch.
1736 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1737 * and do any other architecture-specific cleanup actions.
1739 * Note that we may have delayed dropping an mm in context_switch(). If
1740 * so, we finish that here outside of the runqueue lock. (Doing it
1741 * with the lock held can cause deadlocks; see schedule() for
1742 * details.)
1744 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1745 __releases(rq->lock)
1747 struct mm_struct *mm = rq->prev_mm;
1748 unsigned long prev_task_flags;
1750 rq->prev_mm = NULL;
1753 * A task struct has one reference for the use as "current".
1754 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1755 * calls schedule one last time. The schedule call will never return,
1756 * and the scheduled task must drop that reference.
1757 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1758 * still held, otherwise prev could be scheduled on another cpu, die
1759 * there before we look at prev->state, and then the reference would
1760 * be dropped twice.
1761 * Manfred Spraul <manfred@colorfullife.com>
1763 prev_task_flags = prev->flags;
1764 finish_arch_switch(prev);
1765 finish_lock_switch(rq, prev);
1766 if (mm)
1767 mmdrop(mm);
1768 if (unlikely(prev_task_flags & PF_DEAD)) {
1770 * Remove function-return probe instances associated with this
1771 * task and put them back on the free list.
1773 kprobe_flush_task(prev);
1774 put_task_struct(prev);
1779 * schedule_tail - first thing a freshly forked thread must call.
1780 * @prev: the thread we just switched away from.
1782 asmlinkage void schedule_tail(struct task_struct *prev)
1783 __releases(rq->lock)
1785 struct rq *rq = this_rq();
1787 finish_task_switch(rq, prev);
1788 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1789 /* In this case, finish_task_switch does not reenable preemption */
1790 preempt_enable();
1791 #endif
1792 if (current->set_child_tid)
1793 put_user(current->pid, current->set_child_tid);
1797 * context_switch - switch to the new MM and the new
1798 * thread's register state.
1800 static inline struct task_struct *
1801 context_switch(struct rq *rq, struct task_struct *prev,
1802 struct task_struct *next)
1804 struct mm_struct *mm = next->mm;
1805 struct mm_struct *oldmm = prev->active_mm;
1807 if (unlikely(!mm)) {
1808 next->active_mm = oldmm;
1809 atomic_inc(&oldmm->mm_count);
1810 enter_lazy_tlb(oldmm, next);
1811 } else
1812 switch_mm(oldmm, mm, next);
1814 if (unlikely(!prev->mm)) {
1815 prev->active_mm = NULL;
1816 WARN_ON(rq->prev_mm);
1817 rq->prev_mm = oldmm;
1820 * Since the runqueue lock will be released by the next
1821 * task (which is an invalid locking op but in the case
1822 * of the scheduler it's an obvious special-case), so we
1823 * do an early lockdep release here:
1825 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1826 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1827 #endif
1829 /* Here we just switch the register state and the stack. */
1830 switch_to(prev, next, prev);
1832 return prev;
1836 * nr_running, nr_uninterruptible and nr_context_switches:
1838 * externally visible scheduler statistics: current number of runnable
1839 * threads, current number of uninterruptible-sleeping threads, total
1840 * number of context switches performed since bootup.
1842 unsigned long nr_running(void)
1844 unsigned long i, sum = 0;
1846 for_each_online_cpu(i)
1847 sum += cpu_rq(i)->nr_running;
1849 return sum;
1852 unsigned long nr_uninterruptible(void)
1854 unsigned long i, sum = 0;
1856 for_each_possible_cpu(i)
1857 sum += cpu_rq(i)->nr_uninterruptible;
1860 * Since we read the counters lockless, it might be slightly
1861 * inaccurate. Do not allow it to go below zero though:
1863 if (unlikely((long)sum < 0))
1864 sum = 0;
1866 return sum;
1869 unsigned long long nr_context_switches(void)
1871 int i;
1872 unsigned long long sum = 0;
1874 for_each_possible_cpu(i)
1875 sum += cpu_rq(i)->nr_switches;
1877 return sum;
1880 unsigned long nr_iowait(void)
1882 unsigned long i, sum = 0;
1884 for_each_possible_cpu(i)
1885 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1887 return sum;
1890 unsigned long nr_active(void)
1892 unsigned long i, running = 0, uninterruptible = 0;
1894 for_each_online_cpu(i) {
1895 running += cpu_rq(i)->nr_running;
1896 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1899 if (unlikely((long)uninterruptible < 0))
1900 uninterruptible = 0;
1902 return running + uninterruptible;
1905 #ifdef CONFIG_SMP
1908 * Is this task likely cache-hot:
1910 static inline int
1911 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1913 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1917 * double_rq_lock - safely lock two runqueues
1919 * Note this does not disable interrupts like task_rq_lock,
1920 * you need to do so manually before calling.
1922 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1923 __acquires(rq1->lock)
1924 __acquires(rq2->lock)
1926 if (rq1 == rq2) {
1927 spin_lock(&rq1->lock);
1928 __acquire(rq2->lock); /* Fake it out ;) */
1929 } else {
1930 if (rq1 < rq2) {
1931 spin_lock(&rq1->lock);
1932 spin_lock(&rq2->lock);
1933 } else {
1934 spin_lock(&rq2->lock);
1935 spin_lock(&rq1->lock);
1941 * double_rq_unlock - safely unlock two runqueues
1943 * Note this does not restore interrupts like task_rq_unlock,
1944 * you need to do so manually after calling.
1946 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1947 __releases(rq1->lock)
1948 __releases(rq2->lock)
1950 spin_unlock(&rq1->lock);
1951 if (rq1 != rq2)
1952 spin_unlock(&rq2->lock);
1953 else
1954 __release(rq2->lock);
1958 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1960 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1961 __releases(this_rq->lock)
1962 __acquires(busiest->lock)
1963 __acquires(this_rq->lock)
1965 if (unlikely(!spin_trylock(&busiest->lock))) {
1966 if (busiest < this_rq) {
1967 spin_unlock(&this_rq->lock);
1968 spin_lock(&busiest->lock);
1969 spin_lock(&this_rq->lock);
1970 } else
1971 spin_lock(&busiest->lock);
1976 * If dest_cpu is allowed for this process, migrate the task to it.
1977 * This is accomplished by forcing the cpu_allowed mask to only
1978 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1979 * the cpu_allowed mask is restored.
1981 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1983 struct migration_req req;
1984 unsigned long flags;
1985 struct rq *rq;
1987 rq = task_rq_lock(p, &flags);
1988 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1989 || unlikely(cpu_is_offline(dest_cpu)))
1990 goto out;
1992 /* force the process onto the specified CPU */
1993 if (migrate_task(p, dest_cpu, &req)) {
1994 /* Need to wait for migration thread (might exit: take ref). */
1995 struct task_struct *mt = rq->migration_thread;
1997 get_task_struct(mt);
1998 task_rq_unlock(rq, &flags);
1999 wake_up_process(mt);
2000 put_task_struct(mt);
2001 wait_for_completion(&req.done);
2003 return;
2005 out:
2006 task_rq_unlock(rq, &flags);
2010 * sched_exec - execve() is a valuable balancing opportunity, because at
2011 * this point the task has the smallest effective memory and cache footprint.
2013 void sched_exec(void)
2015 int new_cpu, this_cpu = get_cpu();
2016 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2017 put_cpu();
2018 if (new_cpu != this_cpu)
2019 sched_migrate_task(current, new_cpu);
2023 * pull_task - move a task from a remote runqueue to the local runqueue.
2024 * Both runqueues must be locked.
2026 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2027 struct task_struct *p, struct rq *this_rq,
2028 struct prio_array *this_array, int this_cpu)
2030 dequeue_task(p, src_array);
2031 dec_nr_running(p, src_rq);
2032 set_task_cpu(p, this_cpu);
2033 inc_nr_running(p, this_rq);
2034 enqueue_task(p, this_array);
2035 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2036 + this_rq->timestamp_last_tick;
2038 * Note that idle threads have a prio of MAX_PRIO, for this test
2039 * to be always true for them.
2041 if (TASK_PREEMPTS_CURR(p, this_rq))
2042 resched_task(this_rq->curr);
2046 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2048 static
2049 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2050 struct sched_domain *sd, enum idle_type idle,
2051 int *all_pinned)
2054 * We do not migrate tasks that are:
2055 * 1) running (obviously), or
2056 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2057 * 3) are cache-hot on their current CPU.
2059 if (!cpu_isset(this_cpu, p->cpus_allowed))
2060 return 0;
2061 *all_pinned = 0;
2063 if (task_running(rq, p))
2064 return 0;
2067 * Aggressive migration if:
2068 * 1) task is cache cold, or
2069 * 2) too many balance attempts have failed.
2072 if (sd->nr_balance_failed > sd->cache_nice_tries)
2073 return 1;
2075 if (task_hot(p, rq->timestamp_last_tick, sd))
2076 return 0;
2077 return 1;
2080 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2083 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2084 * load from busiest to this_rq, as part of a balancing operation within
2085 * "domain". Returns the number of tasks moved.
2087 * Called with both runqueues locked.
2089 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2090 unsigned long max_nr_move, unsigned long max_load_move,
2091 struct sched_domain *sd, enum idle_type idle,
2092 int *all_pinned)
2094 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2095 best_prio_seen, skip_for_load;
2096 struct prio_array *array, *dst_array;
2097 struct list_head *head, *curr;
2098 struct task_struct *tmp;
2099 long rem_load_move;
2101 if (max_nr_move == 0 || max_load_move == 0)
2102 goto out;
2104 rem_load_move = max_load_move;
2105 pinned = 1;
2106 this_best_prio = rq_best_prio(this_rq);
2107 best_prio = rq_best_prio(busiest);
2109 * Enable handling of the case where there is more than one task
2110 * with the best priority. If the current running task is one
2111 * of those with prio==best_prio we know it won't be moved
2112 * and therefore it's safe to override the skip (based on load) of
2113 * any task we find with that prio.
2115 best_prio_seen = best_prio == busiest->curr->prio;
2118 * We first consider expired tasks. Those will likely not be
2119 * executed in the near future, and they are most likely to
2120 * be cache-cold, thus switching CPUs has the least effect
2121 * on them.
2123 if (busiest->expired->nr_active) {
2124 array = busiest->expired;
2125 dst_array = this_rq->expired;
2126 } else {
2127 array = busiest->active;
2128 dst_array = this_rq->active;
2131 new_array:
2132 /* Start searching at priority 0: */
2133 idx = 0;
2134 skip_bitmap:
2135 if (!idx)
2136 idx = sched_find_first_bit(array->bitmap);
2137 else
2138 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2139 if (idx >= MAX_PRIO) {
2140 if (array == busiest->expired && busiest->active->nr_active) {
2141 array = busiest->active;
2142 dst_array = this_rq->active;
2143 goto new_array;
2145 goto out;
2148 head = array->queue + idx;
2149 curr = head->prev;
2150 skip_queue:
2151 tmp = list_entry(curr, struct task_struct, run_list);
2153 curr = curr->prev;
2156 * To help distribute high priority tasks accross CPUs we don't
2157 * skip a task if it will be the highest priority task (i.e. smallest
2158 * prio value) on its new queue regardless of its load weight
2160 skip_for_load = tmp->load_weight > rem_load_move;
2161 if (skip_for_load && idx < this_best_prio)
2162 skip_for_load = !best_prio_seen && idx == best_prio;
2163 if (skip_for_load ||
2164 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2166 best_prio_seen |= idx == best_prio;
2167 if (curr != head)
2168 goto skip_queue;
2169 idx++;
2170 goto skip_bitmap;
2173 #ifdef CONFIG_SCHEDSTATS
2174 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2175 schedstat_inc(sd, lb_hot_gained[idle]);
2176 #endif
2178 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2179 pulled++;
2180 rem_load_move -= tmp->load_weight;
2183 * We only want to steal up to the prescribed number of tasks
2184 * and the prescribed amount of weighted load.
2186 if (pulled < max_nr_move && rem_load_move > 0) {
2187 if (idx < this_best_prio)
2188 this_best_prio = idx;
2189 if (curr != head)
2190 goto skip_queue;
2191 idx++;
2192 goto skip_bitmap;
2194 out:
2196 * Right now, this is the only place pull_task() is called,
2197 * so we can safely collect pull_task() stats here rather than
2198 * inside pull_task().
2200 schedstat_add(sd, lb_gained[idle], pulled);
2202 if (all_pinned)
2203 *all_pinned = pinned;
2204 return pulled;
2208 * find_busiest_group finds and returns the busiest CPU group within the
2209 * domain. It calculates and returns the amount of weighted load which
2210 * should be moved to restore balance via the imbalance parameter.
2212 static struct sched_group *
2213 find_busiest_group(struct sched_domain *sd, int this_cpu,
2214 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2216 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2217 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2218 unsigned long max_pull;
2219 unsigned long busiest_load_per_task, busiest_nr_running;
2220 unsigned long this_load_per_task, this_nr_running;
2221 int load_idx;
2222 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2223 int power_savings_balance = 1;
2224 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2225 unsigned long min_nr_running = ULONG_MAX;
2226 struct sched_group *group_min = NULL, *group_leader = NULL;
2227 #endif
2229 max_load = this_load = total_load = total_pwr = 0;
2230 busiest_load_per_task = busiest_nr_running = 0;
2231 this_load_per_task = this_nr_running = 0;
2232 if (idle == NOT_IDLE)
2233 load_idx = sd->busy_idx;
2234 else if (idle == NEWLY_IDLE)
2235 load_idx = sd->newidle_idx;
2236 else
2237 load_idx = sd->idle_idx;
2239 do {
2240 unsigned long load, group_capacity;
2241 int local_group;
2242 int i;
2243 unsigned long sum_nr_running, sum_weighted_load;
2245 local_group = cpu_isset(this_cpu, group->cpumask);
2247 /* Tally up the load of all CPUs in the group */
2248 sum_weighted_load = sum_nr_running = avg_load = 0;
2250 for_each_cpu_mask(i, group->cpumask) {
2251 struct rq *rq = cpu_rq(i);
2253 if (*sd_idle && !idle_cpu(i))
2254 *sd_idle = 0;
2256 /* Bias balancing toward cpus of our domain */
2257 if (local_group)
2258 load = target_load(i, load_idx);
2259 else
2260 load = source_load(i, load_idx);
2262 avg_load += load;
2263 sum_nr_running += rq->nr_running;
2264 sum_weighted_load += rq->raw_weighted_load;
2267 total_load += avg_load;
2268 total_pwr += group->cpu_power;
2270 /* Adjust by relative CPU power of the group */
2271 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2273 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2275 if (local_group) {
2276 this_load = avg_load;
2277 this = group;
2278 this_nr_running = sum_nr_running;
2279 this_load_per_task = sum_weighted_load;
2280 } else if (avg_load > max_load &&
2281 sum_nr_running > group_capacity) {
2282 max_load = avg_load;
2283 busiest = group;
2284 busiest_nr_running = sum_nr_running;
2285 busiest_load_per_task = sum_weighted_load;
2288 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2290 * Busy processors will not participate in power savings
2291 * balance.
2293 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2294 goto group_next;
2297 * If the local group is idle or completely loaded
2298 * no need to do power savings balance at this domain
2300 if (local_group && (this_nr_running >= group_capacity ||
2301 !this_nr_running))
2302 power_savings_balance = 0;
2305 * If a group is already running at full capacity or idle,
2306 * don't include that group in power savings calculations
2308 if (!power_savings_balance || sum_nr_running >= group_capacity
2309 || !sum_nr_running)
2310 goto group_next;
2313 * Calculate the group which has the least non-idle load.
2314 * This is the group from where we need to pick up the load
2315 * for saving power
2317 if ((sum_nr_running < min_nr_running) ||
2318 (sum_nr_running == min_nr_running &&
2319 first_cpu(group->cpumask) <
2320 first_cpu(group_min->cpumask))) {
2321 group_min = group;
2322 min_nr_running = sum_nr_running;
2323 min_load_per_task = sum_weighted_load /
2324 sum_nr_running;
2328 * Calculate the group which is almost near its
2329 * capacity but still has some space to pick up some load
2330 * from other group and save more power
2332 if (sum_nr_running <= group_capacity - 1) {
2333 if (sum_nr_running > leader_nr_running ||
2334 (sum_nr_running == leader_nr_running &&
2335 first_cpu(group->cpumask) >
2336 first_cpu(group_leader->cpumask))) {
2337 group_leader = group;
2338 leader_nr_running = sum_nr_running;
2341 group_next:
2342 #endif
2343 group = group->next;
2344 } while (group != sd->groups);
2346 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2347 goto out_balanced;
2349 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2351 if (this_load >= avg_load ||
2352 100*max_load <= sd->imbalance_pct*this_load)
2353 goto out_balanced;
2355 busiest_load_per_task /= busiest_nr_running;
2357 * We're trying to get all the cpus to the average_load, so we don't
2358 * want to push ourselves above the average load, nor do we wish to
2359 * reduce the max loaded cpu below the average load, as either of these
2360 * actions would just result in more rebalancing later, and ping-pong
2361 * tasks around. Thus we look for the minimum possible imbalance.
2362 * Negative imbalances (*we* are more loaded than anyone else) will
2363 * be counted as no imbalance for these purposes -- we can't fix that
2364 * by pulling tasks to us. Be careful of negative numbers as they'll
2365 * appear as very large values with unsigned longs.
2367 if (max_load <= busiest_load_per_task)
2368 goto out_balanced;
2371 * In the presence of smp nice balancing, certain scenarios can have
2372 * max load less than avg load(as we skip the groups at or below
2373 * its cpu_power, while calculating max_load..)
2375 if (max_load < avg_load) {
2376 *imbalance = 0;
2377 goto small_imbalance;
2380 /* Don't want to pull so many tasks that a group would go idle */
2381 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2383 /* How much load to actually move to equalise the imbalance */
2384 *imbalance = min(max_pull * busiest->cpu_power,
2385 (avg_load - this_load) * this->cpu_power)
2386 / SCHED_LOAD_SCALE;
2389 * if *imbalance is less than the average load per runnable task
2390 * there is no gaurantee that any tasks will be moved so we'll have
2391 * a think about bumping its value to force at least one task to be
2392 * moved
2394 if (*imbalance < busiest_load_per_task) {
2395 unsigned long tmp, pwr_now, pwr_move;
2396 unsigned int imbn;
2398 small_imbalance:
2399 pwr_move = pwr_now = 0;
2400 imbn = 2;
2401 if (this_nr_running) {
2402 this_load_per_task /= this_nr_running;
2403 if (busiest_load_per_task > this_load_per_task)
2404 imbn = 1;
2405 } else
2406 this_load_per_task = SCHED_LOAD_SCALE;
2408 if (max_load - this_load >= busiest_load_per_task * imbn) {
2409 *imbalance = busiest_load_per_task;
2410 return busiest;
2414 * OK, we don't have enough imbalance to justify moving tasks,
2415 * however we may be able to increase total CPU power used by
2416 * moving them.
2419 pwr_now += busiest->cpu_power *
2420 min(busiest_load_per_task, max_load);
2421 pwr_now += this->cpu_power *
2422 min(this_load_per_task, this_load);
2423 pwr_now /= SCHED_LOAD_SCALE;
2425 /* Amount of load we'd subtract */
2426 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2427 if (max_load > tmp)
2428 pwr_move += busiest->cpu_power *
2429 min(busiest_load_per_task, max_load - tmp);
2431 /* Amount of load we'd add */
2432 if (max_load*busiest->cpu_power <
2433 busiest_load_per_task*SCHED_LOAD_SCALE)
2434 tmp = max_load*busiest->cpu_power/this->cpu_power;
2435 else
2436 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2437 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2438 pwr_move /= SCHED_LOAD_SCALE;
2440 /* Move if we gain throughput */
2441 if (pwr_move <= pwr_now)
2442 goto out_balanced;
2444 *imbalance = busiest_load_per_task;
2447 return busiest;
2449 out_balanced:
2450 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2451 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2452 goto ret;
2454 if (this == group_leader && group_leader != group_min) {
2455 *imbalance = min_load_per_task;
2456 return group_min;
2458 ret:
2459 #endif
2460 *imbalance = 0;
2461 return NULL;
2465 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2467 static struct rq *
2468 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2469 unsigned long imbalance)
2471 struct rq *busiest = NULL, *rq;
2472 unsigned long max_load = 0;
2473 int i;
2475 for_each_cpu_mask(i, group->cpumask) {
2476 rq = cpu_rq(i);
2478 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2479 continue;
2481 if (rq->raw_weighted_load > max_load) {
2482 max_load = rq->raw_weighted_load;
2483 busiest = rq;
2487 return busiest;
2491 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2492 * so long as it is large enough.
2494 #define MAX_PINNED_INTERVAL 512
2496 static inline unsigned long minus_1_or_zero(unsigned long n)
2498 return n > 0 ? n - 1 : 0;
2502 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2503 * tasks if there is an imbalance.
2505 * Called with this_rq unlocked.
2507 static int load_balance(int this_cpu, struct rq *this_rq,
2508 struct sched_domain *sd, enum idle_type idle)
2510 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2511 struct sched_group *group;
2512 unsigned long imbalance;
2513 struct rq *busiest;
2515 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2516 !sched_smt_power_savings)
2517 sd_idle = 1;
2519 schedstat_inc(sd, lb_cnt[idle]);
2521 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2522 if (!group) {
2523 schedstat_inc(sd, lb_nobusyg[idle]);
2524 goto out_balanced;
2527 busiest = find_busiest_queue(group, idle, imbalance);
2528 if (!busiest) {
2529 schedstat_inc(sd, lb_nobusyq[idle]);
2530 goto out_balanced;
2533 BUG_ON(busiest == this_rq);
2535 schedstat_add(sd, lb_imbalance[idle], imbalance);
2537 nr_moved = 0;
2538 if (busiest->nr_running > 1) {
2540 * Attempt to move tasks. If find_busiest_group has found
2541 * an imbalance but busiest->nr_running <= 1, the group is
2542 * still unbalanced. nr_moved simply stays zero, so it is
2543 * correctly treated as an imbalance.
2545 double_rq_lock(this_rq, busiest);
2546 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2547 minus_1_or_zero(busiest->nr_running),
2548 imbalance, sd, idle, &all_pinned);
2549 double_rq_unlock(this_rq, busiest);
2551 /* All tasks on this runqueue were pinned by CPU affinity */
2552 if (unlikely(all_pinned))
2553 goto out_balanced;
2556 if (!nr_moved) {
2557 schedstat_inc(sd, lb_failed[idle]);
2558 sd->nr_balance_failed++;
2560 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2562 spin_lock(&busiest->lock);
2564 /* don't kick the migration_thread, if the curr
2565 * task on busiest cpu can't be moved to this_cpu
2567 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2568 spin_unlock(&busiest->lock);
2569 all_pinned = 1;
2570 goto out_one_pinned;
2573 if (!busiest->active_balance) {
2574 busiest->active_balance = 1;
2575 busiest->push_cpu = this_cpu;
2576 active_balance = 1;
2578 spin_unlock(&busiest->lock);
2579 if (active_balance)
2580 wake_up_process(busiest->migration_thread);
2583 * We've kicked active balancing, reset the failure
2584 * counter.
2586 sd->nr_balance_failed = sd->cache_nice_tries+1;
2588 } else
2589 sd->nr_balance_failed = 0;
2591 if (likely(!active_balance)) {
2592 /* We were unbalanced, so reset the balancing interval */
2593 sd->balance_interval = sd->min_interval;
2594 } else {
2596 * If we've begun active balancing, start to back off. This
2597 * case may not be covered by the all_pinned logic if there
2598 * is only 1 task on the busy runqueue (because we don't call
2599 * move_tasks).
2601 if (sd->balance_interval < sd->max_interval)
2602 sd->balance_interval *= 2;
2605 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2606 !sched_smt_power_savings)
2607 return -1;
2608 return nr_moved;
2610 out_balanced:
2611 schedstat_inc(sd, lb_balanced[idle]);
2613 sd->nr_balance_failed = 0;
2615 out_one_pinned:
2616 /* tune up the balancing interval */
2617 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2618 (sd->balance_interval < sd->max_interval))
2619 sd->balance_interval *= 2;
2621 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2622 !sched_smt_power_savings)
2623 return -1;
2624 return 0;
2628 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2629 * tasks if there is an imbalance.
2631 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2632 * this_rq is locked.
2634 static int
2635 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2637 struct sched_group *group;
2638 struct rq *busiest = NULL;
2639 unsigned long imbalance;
2640 int nr_moved = 0;
2641 int sd_idle = 0;
2643 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2644 sd_idle = 1;
2646 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2647 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2648 if (!group) {
2649 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2650 goto out_balanced;
2653 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2654 if (!busiest) {
2655 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2656 goto out_balanced;
2659 BUG_ON(busiest == this_rq);
2661 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2663 nr_moved = 0;
2664 if (busiest->nr_running > 1) {
2665 /* Attempt to move tasks */
2666 double_lock_balance(this_rq, busiest);
2667 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2668 minus_1_or_zero(busiest->nr_running),
2669 imbalance, sd, NEWLY_IDLE, NULL);
2670 spin_unlock(&busiest->lock);
2673 if (!nr_moved) {
2674 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2675 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2676 return -1;
2677 } else
2678 sd->nr_balance_failed = 0;
2680 return nr_moved;
2682 out_balanced:
2683 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2684 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2685 !sched_smt_power_savings)
2686 return -1;
2687 sd->nr_balance_failed = 0;
2689 return 0;
2693 * idle_balance is called by schedule() if this_cpu is about to become
2694 * idle. Attempts to pull tasks from other CPUs.
2696 static void idle_balance(int this_cpu, struct rq *this_rq)
2698 struct sched_domain *sd;
2700 for_each_domain(this_cpu, sd) {
2701 if (sd->flags & SD_BALANCE_NEWIDLE) {
2702 /* If we've pulled tasks over stop searching: */
2703 if (load_balance_newidle(this_cpu, this_rq, sd))
2704 break;
2710 * active_load_balance is run by migration threads. It pushes running tasks
2711 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2712 * running on each physical CPU where possible, and avoids physical /
2713 * logical imbalances.
2715 * Called with busiest_rq locked.
2717 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2719 int target_cpu = busiest_rq->push_cpu;
2720 struct sched_domain *sd;
2721 struct rq *target_rq;
2723 /* Is there any task to move? */
2724 if (busiest_rq->nr_running <= 1)
2725 return;
2727 target_rq = cpu_rq(target_cpu);
2730 * This condition is "impossible", if it occurs
2731 * we need to fix it. Originally reported by
2732 * Bjorn Helgaas on a 128-cpu setup.
2734 BUG_ON(busiest_rq == target_rq);
2736 /* move a task from busiest_rq to target_rq */
2737 double_lock_balance(busiest_rq, target_rq);
2739 /* Search for an sd spanning us and the target CPU. */
2740 for_each_domain(target_cpu, sd) {
2741 if ((sd->flags & SD_LOAD_BALANCE) &&
2742 cpu_isset(busiest_cpu, sd->span))
2743 break;
2746 if (likely(sd)) {
2747 schedstat_inc(sd, alb_cnt);
2749 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2750 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2751 NULL))
2752 schedstat_inc(sd, alb_pushed);
2753 else
2754 schedstat_inc(sd, alb_failed);
2756 spin_unlock(&target_rq->lock);
2760 * rebalance_tick will get called every timer tick, on every CPU.
2762 * It checks each scheduling domain to see if it is due to be balanced,
2763 * and initiates a balancing operation if so.
2765 * Balancing parameters are set up in arch_init_sched_domains.
2768 /* Don't have all balancing operations going off at once: */
2769 static inline unsigned long cpu_offset(int cpu)
2771 return jiffies + cpu * HZ / NR_CPUS;
2774 static void
2775 rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
2777 unsigned long this_load, interval, j = cpu_offset(this_cpu);
2778 struct sched_domain *sd;
2779 int i, scale;
2781 this_load = this_rq->raw_weighted_load;
2783 /* Update our load: */
2784 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2785 unsigned long old_load, new_load;
2787 old_load = this_rq->cpu_load[i];
2788 new_load = this_load;
2790 * Round up the averaging division if load is increasing. This
2791 * prevents us from getting stuck on 9 if the load is 10, for
2792 * example.
2794 if (new_load > old_load)
2795 new_load += scale-1;
2796 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2799 for_each_domain(this_cpu, sd) {
2800 if (!(sd->flags & SD_LOAD_BALANCE))
2801 continue;
2803 interval = sd->balance_interval;
2804 if (idle != SCHED_IDLE)
2805 interval *= sd->busy_factor;
2807 /* scale ms to jiffies */
2808 interval = msecs_to_jiffies(interval);
2809 if (unlikely(!interval))
2810 interval = 1;
2812 if (j - sd->last_balance >= interval) {
2813 if (load_balance(this_cpu, this_rq, sd, idle)) {
2815 * We've pulled tasks over so either we're no
2816 * longer idle, or one of our SMT siblings is
2817 * not idle.
2819 idle = NOT_IDLE;
2821 sd->last_balance += interval;
2825 #else
2827 * on UP we do not need to balance between CPUs:
2829 static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
2832 static inline void idle_balance(int cpu, struct rq *rq)
2835 #endif
2837 static inline int wake_priority_sleeper(struct rq *rq)
2839 int ret = 0;
2841 #ifdef CONFIG_SCHED_SMT
2842 spin_lock(&rq->lock);
2844 * If an SMT sibling task has been put to sleep for priority
2845 * reasons reschedule the idle task to see if it can now run.
2847 if (rq->nr_running) {
2848 resched_task(rq->idle);
2849 ret = 1;
2851 spin_unlock(&rq->lock);
2852 #endif
2853 return ret;
2856 DEFINE_PER_CPU(struct kernel_stat, kstat);
2858 EXPORT_PER_CPU_SYMBOL(kstat);
2861 * This is called on clock ticks and on context switches.
2862 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2864 static inline void
2865 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
2867 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
2871 * Return current->sched_time plus any more ns on the sched_clock
2872 * that have not yet been banked.
2874 unsigned long long current_sched_time(const struct task_struct *p)
2876 unsigned long long ns;
2877 unsigned long flags;
2879 local_irq_save(flags);
2880 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2881 ns = p->sched_time + sched_clock() - ns;
2882 local_irq_restore(flags);
2884 return ns;
2888 * We place interactive tasks back into the active array, if possible.
2890 * To guarantee that this does not starve expired tasks we ignore the
2891 * interactivity of a task if the first expired task had to wait more
2892 * than a 'reasonable' amount of time. This deadline timeout is
2893 * load-dependent, as the frequency of array switched decreases with
2894 * increasing number of running tasks. We also ignore the interactivity
2895 * if a better static_prio task has expired:
2897 static inline int expired_starving(struct rq *rq)
2899 if (rq->curr->static_prio > rq->best_expired_prio)
2900 return 1;
2901 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2902 return 0;
2903 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2904 return 1;
2905 return 0;
2909 * Account user cpu time to a process.
2910 * @p: the process that the cpu time gets accounted to
2911 * @hardirq_offset: the offset to subtract from hardirq_count()
2912 * @cputime: the cpu time spent in user space since the last update
2914 void account_user_time(struct task_struct *p, cputime_t cputime)
2916 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2917 cputime64_t tmp;
2919 p->utime = cputime_add(p->utime, cputime);
2921 /* Add user time to cpustat. */
2922 tmp = cputime_to_cputime64(cputime);
2923 if (TASK_NICE(p) > 0)
2924 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2925 else
2926 cpustat->user = cputime64_add(cpustat->user, tmp);
2930 * Account system cpu time to a process.
2931 * @p: the process that the cpu time gets accounted to
2932 * @hardirq_offset: the offset to subtract from hardirq_count()
2933 * @cputime: the cpu time spent in kernel space since the last update
2935 void account_system_time(struct task_struct *p, int hardirq_offset,
2936 cputime_t cputime)
2938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2939 struct rq *rq = this_rq();
2940 cputime64_t tmp;
2942 p->stime = cputime_add(p->stime, cputime);
2944 /* Add system time to cpustat. */
2945 tmp = cputime_to_cputime64(cputime);
2946 if (hardirq_count() - hardirq_offset)
2947 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2948 else if (softirq_count())
2949 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2950 else if (p != rq->idle)
2951 cpustat->system = cputime64_add(cpustat->system, tmp);
2952 else if (atomic_read(&rq->nr_iowait) > 0)
2953 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2954 else
2955 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2956 /* Account for system time used */
2957 acct_update_integrals(p);
2961 * Account for involuntary wait time.
2962 * @p: the process from which the cpu time has been stolen
2963 * @steal: the cpu time spent in involuntary wait
2965 void account_steal_time(struct task_struct *p, cputime_t steal)
2967 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2968 cputime64_t tmp = cputime_to_cputime64(steal);
2969 struct rq *rq = this_rq();
2971 if (p == rq->idle) {
2972 p->stime = cputime_add(p->stime, steal);
2973 if (atomic_read(&rq->nr_iowait) > 0)
2974 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2975 else
2976 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2977 } else
2978 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2982 * This function gets called by the timer code, with HZ frequency.
2983 * We call it with interrupts disabled.
2985 * It also gets called by the fork code, when changing the parent's
2986 * timeslices.
2988 void scheduler_tick(void)
2990 unsigned long long now = sched_clock();
2991 struct task_struct *p = current;
2992 int cpu = smp_processor_id();
2993 struct rq *rq = cpu_rq(cpu);
2995 update_cpu_clock(p, rq, now);
2997 rq->timestamp_last_tick = now;
2999 if (p == rq->idle) {
3000 if (wake_priority_sleeper(rq))
3001 goto out;
3002 rebalance_tick(cpu, rq, SCHED_IDLE);
3003 return;
3006 /* Task might have expired already, but not scheduled off yet */
3007 if (p->array != rq->active) {
3008 set_tsk_need_resched(p);
3009 goto out;
3011 spin_lock(&rq->lock);
3013 * The task was running during this tick - update the
3014 * time slice counter. Note: we do not update a thread's
3015 * priority until it either goes to sleep or uses up its
3016 * timeslice. This makes it possible for interactive tasks
3017 * to use up their timeslices at their highest priority levels.
3019 if (rt_task(p)) {
3021 * RR tasks need a special form of timeslice management.
3022 * FIFO tasks have no timeslices.
3024 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3025 p->time_slice = task_timeslice(p);
3026 p->first_time_slice = 0;
3027 set_tsk_need_resched(p);
3029 /* put it at the end of the queue: */
3030 requeue_task(p, rq->active);
3032 goto out_unlock;
3034 if (!--p->time_slice) {
3035 dequeue_task(p, rq->active);
3036 set_tsk_need_resched(p);
3037 p->prio = effective_prio(p);
3038 p->time_slice = task_timeslice(p);
3039 p->first_time_slice = 0;
3041 if (!rq->expired_timestamp)
3042 rq->expired_timestamp = jiffies;
3043 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3044 enqueue_task(p, rq->expired);
3045 if (p->static_prio < rq->best_expired_prio)
3046 rq->best_expired_prio = p->static_prio;
3047 } else
3048 enqueue_task(p, rq->active);
3049 } else {
3051 * Prevent a too long timeslice allowing a task to monopolize
3052 * the CPU. We do this by splitting up the timeslice into
3053 * smaller pieces.
3055 * Note: this does not mean the task's timeslices expire or
3056 * get lost in any way, they just might be preempted by
3057 * another task of equal priority. (one with higher
3058 * priority would have preempted this task already.) We
3059 * requeue this task to the end of the list on this priority
3060 * level, which is in essence a round-robin of tasks with
3061 * equal priority.
3063 * This only applies to tasks in the interactive
3064 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3066 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3067 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3068 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3069 (p->array == rq->active)) {
3071 requeue_task(p, rq->active);
3072 set_tsk_need_resched(p);
3075 out_unlock:
3076 spin_unlock(&rq->lock);
3077 out:
3078 rebalance_tick(cpu, rq, NOT_IDLE);
3081 #ifdef CONFIG_SCHED_SMT
3082 static inline void wakeup_busy_runqueue(struct rq *rq)
3084 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3085 if (rq->curr == rq->idle && rq->nr_running)
3086 resched_task(rq->idle);
3090 * Called with interrupt disabled and this_rq's runqueue locked.
3092 static void wake_sleeping_dependent(int this_cpu)
3094 struct sched_domain *tmp, *sd = NULL;
3095 int i;
3097 for_each_domain(this_cpu, tmp) {
3098 if (tmp->flags & SD_SHARE_CPUPOWER) {
3099 sd = tmp;
3100 break;
3104 if (!sd)
3105 return;
3107 for_each_cpu_mask(i, sd->span) {
3108 struct rq *smt_rq = cpu_rq(i);
3110 if (i == this_cpu)
3111 continue;
3112 if (unlikely(!spin_trylock(&smt_rq->lock)))
3113 continue;
3115 wakeup_busy_runqueue(smt_rq);
3116 spin_unlock(&smt_rq->lock);
3121 * number of 'lost' timeslices this task wont be able to fully
3122 * utilize, if another task runs on a sibling. This models the
3123 * slowdown effect of other tasks running on siblings:
3125 static inline unsigned long
3126 smt_slice(struct task_struct *p, struct sched_domain *sd)
3128 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3132 * To minimise lock contention and not have to drop this_rq's runlock we only
3133 * trylock the sibling runqueues and bypass those runqueues if we fail to
3134 * acquire their lock. As we only trylock the normal locking order does not
3135 * need to be obeyed.
3137 static int
3138 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3140 struct sched_domain *tmp, *sd = NULL;
3141 int ret = 0, i;
3143 /* kernel/rt threads do not participate in dependent sleeping */
3144 if (!p->mm || rt_task(p))
3145 return 0;
3147 for_each_domain(this_cpu, tmp) {
3148 if (tmp->flags & SD_SHARE_CPUPOWER) {
3149 sd = tmp;
3150 break;
3154 if (!sd)
3155 return 0;
3157 for_each_cpu_mask(i, sd->span) {
3158 struct task_struct *smt_curr;
3159 struct rq *smt_rq;
3161 if (i == this_cpu)
3162 continue;
3164 smt_rq = cpu_rq(i);
3165 if (unlikely(!spin_trylock(&smt_rq->lock)))
3166 continue;
3168 smt_curr = smt_rq->curr;
3170 if (!smt_curr->mm)
3171 goto unlock;
3174 * If a user task with lower static priority than the
3175 * running task on the SMT sibling is trying to schedule,
3176 * delay it till there is proportionately less timeslice
3177 * left of the sibling task to prevent a lower priority
3178 * task from using an unfair proportion of the
3179 * physical cpu's resources. -ck
3181 if (rt_task(smt_curr)) {
3183 * With real time tasks we run non-rt tasks only
3184 * per_cpu_gain% of the time.
3186 if ((jiffies % DEF_TIMESLICE) >
3187 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3188 ret = 1;
3189 } else {
3190 if (smt_curr->static_prio < p->static_prio &&
3191 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3192 smt_slice(smt_curr, sd) > task_timeslice(p))
3193 ret = 1;
3195 unlock:
3196 spin_unlock(&smt_rq->lock);
3198 return ret;
3200 #else
3201 static inline void wake_sleeping_dependent(int this_cpu)
3204 static inline int
3205 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3207 return 0;
3209 #endif
3211 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3213 void fastcall add_preempt_count(int val)
3216 * Underflow?
3218 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3219 return;
3220 preempt_count() += val;
3222 * Spinlock count overflowing soon?
3224 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3226 EXPORT_SYMBOL(add_preempt_count);
3228 void fastcall sub_preempt_count(int val)
3231 * Underflow?
3233 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3234 return;
3236 * Is the spinlock portion underflowing?
3238 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3239 !(preempt_count() & PREEMPT_MASK)))
3240 return;
3242 preempt_count() -= val;
3244 EXPORT_SYMBOL(sub_preempt_count);
3246 #endif
3248 static inline int interactive_sleep(enum sleep_type sleep_type)
3250 return (sleep_type == SLEEP_INTERACTIVE ||
3251 sleep_type == SLEEP_INTERRUPTED);
3255 * schedule() is the main scheduler function.
3257 asmlinkage void __sched schedule(void)
3259 struct task_struct *prev, *next;
3260 struct prio_array *array;
3261 struct list_head *queue;
3262 unsigned long long now;
3263 unsigned long run_time;
3264 int cpu, idx, new_prio;
3265 long *switch_count;
3266 struct rq *rq;
3269 * Test if we are atomic. Since do_exit() needs to call into
3270 * schedule() atomically, we ignore that path for now.
3271 * Otherwise, whine if we are scheduling when we should not be.
3273 if (unlikely(in_atomic() && !current->exit_state)) {
3274 printk(KERN_ERR "BUG: scheduling while atomic: "
3275 "%s/0x%08x/%d\n",
3276 current->comm, preempt_count(), current->pid);
3277 dump_stack();
3279 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3281 need_resched:
3282 preempt_disable();
3283 prev = current;
3284 release_kernel_lock(prev);
3285 need_resched_nonpreemptible:
3286 rq = this_rq();
3289 * The idle thread is not allowed to schedule!
3290 * Remove this check after it has been exercised a bit.
3292 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3293 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3294 dump_stack();
3297 schedstat_inc(rq, sched_cnt);
3298 now = sched_clock();
3299 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3300 run_time = now - prev->timestamp;
3301 if (unlikely((long long)(now - prev->timestamp) < 0))
3302 run_time = 0;
3303 } else
3304 run_time = NS_MAX_SLEEP_AVG;
3307 * Tasks charged proportionately less run_time at high sleep_avg to
3308 * delay them losing their interactive status
3310 run_time /= (CURRENT_BONUS(prev) ? : 1);
3312 spin_lock_irq(&rq->lock);
3314 if (unlikely(prev->flags & PF_DEAD))
3315 prev->state = EXIT_DEAD;
3317 switch_count = &prev->nivcsw;
3318 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3319 switch_count = &prev->nvcsw;
3320 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3321 unlikely(signal_pending(prev))))
3322 prev->state = TASK_RUNNING;
3323 else {
3324 if (prev->state == TASK_UNINTERRUPTIBLE)
3325 rq->nr_uninterruptible++;
3326 deactivate_task(prev, rq);
3330 cpu = smp_processor_id();
3331 if (unlikely(!rq->nr_running)) {
3332 idle_balance(cpu, rq);
3333 if (!rq->nr_running) {
3334 next = rq->idle;
3335 rq->expired_timestamp = 0;
3336 wake_sleeping_dependent(cpu);
3337 goto switch_tasks;
3341 array = rq->active;
3342 if (unlikely(!array->nr_active)) {
3344 * Switch the active and expired arrays.
3346 schedstat_inc(rq, sched_switch);
3347 rq->active = rq->expired;
3348 rq->expired = array;
3349 array = rq->active;
3350 rq->expired_timestamp = 0;
3351 rq->best_expired_prio = MAX_PRIO;
3354 idx = sched_find_first_bit(array->bitmap);
3355 queue = array->queue + idx;
3356 next = list_entry(queue->next, struct task_struct, run_list);
3358 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3359 unsigned long long delta = now - next->timestamp;
3360 if (unlikely((long long)(now - next->timestamp) < 0))
3361 delta = 0;
3363 if (next->sleep_type == SLEEP_INTERACTIVE)
3364 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3366 array = next->array;
3367 new_prio = recalc_task_prio(next, next->timestamp + delta);
3369 if (unlikely(next->prio != new_prio)) {
3370 dequeue_task(next, array);
3371 next->prio = new_prio;
3372 enqueue_task(next, array);
3375 next->sleep_type = SLEEP_NORMAL;
3376 if (dependent_sleeper(cpu, rq, next))
3377 next = rq->idle;
3378 switch_tasks:
3379 if (next == rq->idle)
3380 schedstat_inc(rq, sched_goidle);
3381 prefetch(next);
3382 prefetch_stack(next);
3383 clear_tsk_need_resched(prev);
3384 rcu_qsctr_inc(task_cpu(prev));
3386 update_cpu_clock(prev, rq, now);
3388 prev->sleep_avg -= run_time;
3389 if ((long)prev->sleep_avg <= 0)
3390 prev->sleep_avg = 0;
3391 prev->timestamp = prev->last_ran = now;
3393 sched_info_switch(prev, next);
3394 if (likely(prev != next)) {
3395 next->timestamp = now;
3396 rq->nr_switches++;
3397 rq->curr = next;
3398 ++*switch_count;
3400 prepare_task_switch(rq, next);
3401 prev = context_switch(rq, prev, next);
3402 barrier();
3404 * this_rq must be evaluated again because prev may have moved
3405 * CPUs since it called schedule(), thus the 'rq' on its stack
3406 * frame will be invalid.
3408 finish_task_switch(this_rq(), prev);
3409 } else
3410 spin_unlock_irq(&rq->lock);
3412 prev = current;
3413 if (unlikely(reacquire_kernel_lock(prev) < 0))
3414 goto need_resched_nonpreemptible;
3415 preempt_enable_no_resched();
3416 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3417 goto need_resched;
3419 EXPORT_SYMBOL(schedule);
3421 #ifdef CONFIG_PREEMPT
3423 * this is the entry point to schedule() from in-kernel preemption
3424 * off of preempt_enable. Kernel preemptions off return from interrupt
3425 * occur there and call schedule directly.
3427 asmlinkage void __sched preempt_schedule(void)
3429 struct thread_info *ti = current_thread_info();
3430 #ifdef CONFIG_PREEMPT_BKL
3431 struct task_struct *task = current;
3432 int saved_lock_depth;
3433 #endif
3435 * If there is a non-zero preempt_count or interrupts are disabled,
3436 * we do not want to preempt the current task. Just return..
3438 if (unlikely(ti->preempt_count || irqs_disabled()))
3439 return;
3441 need_resched:
3442 add_preempt_count(PREEMPT_ACTIVE);
3444 * We keep the big kernel semaphore locked, but we
3445 * clear ->lock_depth so that schedule() doesnt
3446 * auto-release the semaphore:
3448 #ifdef CONFIG_PREEMPT_BKL
3449 saved_lock_depth = task->lock_depth;
3450 task->lock_depth = -1;
3451 #endif
3452 schedule();
3453 #ifdef CONFIG_PREEMPT_BKL
3454 task->lock_depth = saved_lock_depth;
3455 #endif
3456 sub_preempt_count(PREEMPT_ACTIVE);
3458 /* we could miss a preemption opportunity between schedule and now */
3459 barrier();
3460 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3461 goto need_resched;
3463 EXPORT_SYMBOL(preempt_schedule);
3466 * this is the entry point to schedule() from kernel preemption
3467 * off of irq context.
3468 * Note, that this is called and return with irqs disabled. This will
3469 * protect us against recursive calling from irq.
3471 asmlinkage void __sched preempt_schedule_irq(void)
3473 struct thread_info *ti = current_thread_info();
3474 #ifdef CONFIG_PREEMPT_BKL
3475 struct task_struct *task = current;
3476 int saved_lock_depth;
3477 #endif
3478 /* Catch callers which need to be fixed */
3479 BUG_ON(ti->preempt_count || !irqs_disabled());
3481 need_resched:
3482 add_preempt_count(PREEMPT_ACTIVE);
3484 * We keep the big kernel semaphore locked, but we
3485 * clear ->lock_depth so that schedule() doesnt
3486 * auto-release the semaphore:
3488 #ifdef CONFIG_PREEMPT_BKL
3489 saved_lock_depth = task->lock_depth;
3490 task->lock_depth = -1;
3491 #endif
3492 local_irq_enable();
3493 schedule();
3494 local_irq_disable();
3495 #ifdef CONFIG_PREEMPT_BKL
3496 task->lock_depth = saved_lock_depth;
3497 #endif
3498 sub_preempt_count(PREEMPT_ACTIVE);
3500 /* we could miss a preemption opportunity between schedule and now */
3501 barrier();
3502 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3503 goto need_resched;
3506 #endif /* CONFIG_PREEMPT */
3508 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3509 void *key)
3511 return try_to_wake_up(curr->private, mode, sync);
3513 EXPORT_SYMBOL(default_wake_function);
3516 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3517 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3518 * number) then we wake all the non-exclusive tasks and one exclusive task.
3520 * There are circumstances in which we can try to wake a task which has already
3521 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3522 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3524 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3525 int nr_exclusive, int sync, void *key)
3527 struct list_head *tmp, *next;
3529 list_for_each_safe(tmp, next, &q->task_list) {
3530 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3531 unsigned flags = curr->flags;
3533 if (curr->func(curr, mode, sync, key) &&
3534 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3535 break;
3540 * __wake_up - wake up threads blocked on a waitqueue.
3541 * @q: the waitqueue
3542 * @mode: which threads
3543 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3544 * @key: is directly passed to the wakeup function
3546 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3547 int nr_exclusive, void *key)
3549 unsigned long flags;
3551 spin_lock_irqsave(&q->lock, flags);
3552 __wake_up_common(q, mode, nr_exclusive, 0, key);
3553 spin_unlock_irqrestore(&q->lock, flags);
3555 EXPORT_SYMBOL(__wake_up);
3558 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3560 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3562 __wake_up_common(q, mode, 1, 0, NULL);
3566 * __wake_up_sync - wake up threads blocked on a waitqueue.
3567 * @q: the waitqueue
3568 * @mode: which threads
3569 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3571 * The sync wakeup differs that the waker knows that it will schedule
3572 * away soon, so while the target thread will be woken up, it will not
3573 * be migrated to another CPU - ie. the two threads are 'synchronized'
3574 * with each other. This can prevent needless bouncing between CPUs.
3576 * On UP it can prevent extra preemption.
3578 void fastcall
3579 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3581 unsigned long flags;
3582 int sync = 1;
3584 if (unlikely(!q))
3585 return;
3587 if (unlikely(!nr_exclusive))
3588 sync = 0;
3590 spin_lock_irqsave(&q->lock, flags);
3591 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3592 spin_unlock_irqrestore(&q->lock, flags);
3594 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3596 void fastcall complete(struct completion *x)
3598 unsigned long flags;
3600 spin_lock_irqsave(&x->wait.lock, flags);
3601 x->done++;
3602 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3603 1, 0, NULL);
3604 spin_unlock_irqrestore(&x->wait.lock, flags);
3606 EXPORT_SYMBOL(complete);
3608 void fastcall complete_all(struct completion *x)
3610 unsigned long flags;
3612 spin_lock_irqsave(&x->wait.lock, flags);
3613 x->done += UINT_MAX/2;
3614 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3615 0, 0, NULL);
3616 spin_unlock_irqrestore(&x->wait.lock, flags);
3618 EXPORT_SYMBOL(complete_all);
3620 void fastcall __sched wait_for_completion(struct completion *x)
3622 might_sleep();
3624 spin_lock_irq(&x->wait.lock);
3625 if (!x->done) {
3626 DECLARE_WAITQUEUE(wait, current);
3628 wait.flags |= WQ_FLAG_EXCLUSIVE;
3629 __add_wait_queue_tail(&x->wait, &wait);
3630 do {
3631 __set_current_state(TASK_UNINTERRUPTIBLE);
3632 spin_unlock_irq(&x->wait.lock);
3633 schedule();
3634 spin_lock_irq(&x->wait.lock);
3635 } while (!x->done);
3636 __remove_wait_queue(&x->wait, &wait);
3638 x->done--;
3639 spin_unlock_irq(&x->wait.lock);
3641 EXPORT_SYMBOL(wait_for_completion);
3643 unsigned long fastcall __sched
3644 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3646 might_sleep();
3648 spin_lock_irq(&x->wait.lock);
3649 if (!x->done) {
3650 DECLARE_WAITQUEUE(wait, current);
3652 wait.flags |= WQ_FLAG_EXCLUSIVE;
3653 __add_wait_queue_tail(&x->wait, &wait);
3654 do {
3655 __set_current_state(TASK_UNINTERRUPTIBLE);
3656 spin_unlock_irq(&x->wait.lock);
3657 timeout = schedule_timeout(timeout);
3658 spin_lock_irq(&x->wait.lock);
3659 if (!timeout) {
3660 __remove_wait_queue(&x->wait, &wait);
3661 goto out;
3663 } while (!x->done);
3664 __remove_wait_queue(&x->wait, &wait);
3666 x->done--;
3667 out:
3668 spin_unlock_irq(&x->wait.lock);
3669 return timeout;
3671 EXPORT_SYMBOL(wait_for_completion_timeout);
3673 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3675 int ret = 0;
3677 might_sleep();
3679 spin_lock_irq(&x->wait.lock);
3680 if (!x->done) {
3681 DECLARE_WAITQUEUE(wait, current);
3683 wait.flags |= WQ_FLAG_EXCLUSIVE;
3684 __add_wait_queue_tail(&x->wait, &wait);
3685 do {
3686 if (signal_pending(current)) {
3687 ret = -ERESTARTSYS;
3688 __remove_wait_queue(&x->wait, &wait);
3689 goto out;
3691 __set_current_state(TASK_INTERRUPTIBLE);
3692 spin_unlock_irq(&x->wait.lock);
3693 schedule();
3694 spin_lock_irq(&x->wait.lock);
3695 } while (!x->done);
3696 __remove_wait_queue(&x->wait, &wait);
3698 x->done--;
3699 out:
3700 spin_unlock_irq(&x->wait.lock);
3702 return ret;
3704 EXPORT_SYMBOL(wait_for_completion_interruptible);
3706 unsigned long fastcall __sched
3707 wait_for_completion_interruptible_timeout(struct completion *x,
3708 unsigned long timeout)
3710 might_sleep();
3712 spin_lock_irq(&x->wait.lock);
3713 if (!x->done) {
3714 DECLARE_WAITQUEUE(wait, current);
3716 wait.flags |= WQ_FLAG_EXCLUSIVE;
3717 __add_wait_queue_tail(&x->wait, &wait);
3718 do {
3719 if (signal_pending(current)) {
3720 timeout = -ERESTARTSYS;
3721 __remove_wait_queue(&x->wait, &wait);
3722 goto out;
3724 __set_current_state(TASK_INTERRUPTIBLE);
3725 spin_unlock_irq(&x->wait.lock);
3726 timeout = schedule_timeout(timeout);
3727 spin_lock_irq(&x->wait.lock);
3728 if (!timeout) {
3729 __remove_wait_queue(&x->wait, &wait);
3730 goto out;
3732 } while (!x->done);
3733 __remove_wait_queue(&x->wait, &wait);
3735 x->done--;
3736 out:
3737 spin_unlock_irq(&x->wait.lock);
3738 return timeout;
3740 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3743 #define SLEEP_ON_VAR \
3744 unsigned long flags; \
3745 wait_queue_t wait; \
3746 init_waitqueue_entry(&wait, current);
3748 #define SLEEP_ON_HEAD \
3749 spin_lock_irqsave(&q->lock,flags); \
3750 __add_wait_queue(q, &wait); \
3751 spin_unlock(&q->lock);
3753 #define SLEEP_ON_TAIL \
3754 spin_lock_irq(&q->lock); \
3755 __remove_wait_queue(q, &wait); \
3756 spin_unlock_irqrestore(&q->lock, flags);
3758 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3760 SLEEP_ON_VAR
3762 current->state = TASK_INTERRUPTIBLE;
3764 SLEEP_ON_HEAD
3765 schedule();
3766 SLEEP_ON_TAIL
3768 EXPORT_SYMBOL(interruptible_sleep_on);
3770 long fastcall __sched
3771 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3773 SLEEP_ON_VAR
3775 current->state = TASK_INTERRUPTIBLE;
3777 SLEEP_ON_HEAD
3778 timeout = schedule_timeout(timeout);
3779 SLEEP_ON_TAIL
3781 return timeout;
3783 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3785 void fastcall __sched sleep_on(wait_queue_head_t *q)
3787 SLEEP_ON_VAR
3789 current->state = TASK_UNINTERRUPTIBLE;
3791 SLEEP_ON_HEAD
3792 schedule();
3793 SLEEP_ON_TAIL
3795 EXPORT_SYMBOL(sleep_on);
3797 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3799 SLEEP_ON_VAR
3801 current->state = TASK_UNINTERRUPTIBLE;
3803 SLEEP_ON_HEAD
3804 timeout = schedule_timeout(timeout);
3805 SLEEP_ON_TAIL
3807 return timeout;
3810 EXPORT_SYMBOL(sleep_on_timeout);
3812 #ifdef CONFIG_RT_MUTEXES
3815 * rt_mutex_setprio - set the current priority of a task
3816 * @p: task
3817 * @prio: prio value (kernel-internal form)
3819 * This function changes the 'effective' priority of a task. It does
3820 * not touch ->normal_prio like __setscheduler().
3822 * Used by the rt_mutex code to implement priority inheritance logic.
3824 void rt_mutex_setprio(struct task_struct *p, int prio)
3826 struct prio_array *array;
3827 unsigned long flags;
3828 struct rq *rq;
3829 int oldprio;
3831 BUG_ON(prio < 0 || prio > MAX_PRIO);
3833 rq = task_rq_lock(p, &flags);
3835 oldprio = p->prio;
3836 array = p->array;
3837 if (array)
3838 dequeue_task(p, array);
3839 p->prio = prio;
3841 if (array) {
3843 * If changing to an RT priority then queue it
3844 * in the active array!
3846 if (rt_task(p))
3847 array = rq->active;
3848 enqueue_task(p, array);
3850 * Reschedule if we are currently running on this runqueue and
3851 * our priority decreased, or if we are not currently running on
3852 * this runqueue and our priority is higher than the current's
3854 if (task_running(rq, p)) {
3855 if (p->prio > oldprio)
3856 resched_task(rq->curr);
3857 } else if (TASK_PREEMPTS_CURR(p, rq))
3858 resched_task(rq->curr);
3860 task_rq_unlock(rq, &flags);
3863 #endif
3865 void set_user_nice(struct task_struct *p, long nice)
3867 struct prio_array *array;
3868 int old_prio, delta;
3869 unsigned long flags;
3870 struct rq *rq;
3872 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3873 return;
3875 * We have to be careful, if called from sys_setpriority(),
3876 * the task might be in the middle of scheduling on another CPU.
3878 rq = task_rq_lock(p, &flags);
3880 * The RT priorities are set via sched_setscheduler(), but we still
3881 * allow the 'normal' nice value to be set - but as expected
3882 * it wont have any effect on scheduling until the task is
3883 * not SCHED_NORMAL/SCHED_BATCH:
3885 if (has_rt_policy(p)) {
3886 p->static_prio = NICE_TO_PRIO(nice);
3887 goto out_unlock;
3889 array = p->array;
3890 if (array) {
3891 dequeue_task(p, array);
3892 dec_raw_weighted_load(rq, p);
3895 p->static_prio = NICE_TO_PRIO(nice);
3896 set_load_weight(p);
3897 old_prio = p->prio;
3898 p->prio = effective_prio(p);
3899 delta = p->prio - old_prio;
3901 if (array) {
3902 enqueue_task(p, array);
3903 inc_raw_weighted_load(rq, p);
3905 * If the task increased its priority or is running and
3906 * lowered its priority, then reschedule its CPU:
3908 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3909 resched_task(rq->curr);
3911 out_unlock:
3912 task_rq_unlock(rq, &flags);
3914 EXPORT_SYMBOL(set_user_nice);
3917 * can_nice - check if a task can reduce its nice value
3918 * @p: task
3919 * @nice: nice value
3921 int can_nice(const struct task_struct *p, const int nice)
3923 /* convert nice value [19,-20] to rlimit style value [1,40] */
3924 int nice_rlim = 20 - nice;
3926 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3927 capable(CAP_SYS_NICE));
3930 #ifdef __ARCH_WANT_SYS_NICE
3933 * sys_nice - change the priority of the current process.
3934 * @increment: priority increment
3936 * sys_setpriority is a more generic, but much slower function that
3937 * does similar things.
3939 asmlinkage long sys_nice(int increment)
3941 long nice, retval;
3944 * Setpriority might change our priority at the same moment.
3945 * We don't have to worry. Conceptually one call occurs first
3946 * and we have a single winner.
3948 if (increment < -40)
3949 increment = -40;
3950 if (increment > 40)
3951 increment = 40;
3953 nice = PRIO_TO_NICE(current->static_prio) + increment;
3954 if (nice < -20)
3955 nice = -20;
3956 if (nice > 19)
3957 nice = 19;
3959 if (increment < 0 && !can_nice(current, nice))
3960 return -EPERM;
3962 retval = security_task_setnice(current, nice);
3963 if (retval)
3964 return retval;
3966 set_user_nice(current, nice);
3967 return 0;
3970 #endif
3973 * task_prio - return the priority value of a given task.
3974 * @p: the task in question.
3976 * This is the priority value as seen by users in /proc.
3977 * RT tasks are offset by -200. Normal tasks are centered
3978 * around 0, value goes from -16 to +15.
3980 int task_prio(const struct task_struct *p)
3982 return p->prio - MAX_RT_PRIO;
3986 * task_nice - return the nice value of a given task.
3987 * @p: the task in question.
3989 int task_nice(const struct task_struct *p)
3991 return TASK_NICE(p);
3993 EXPORT_SYMBOL_GPL(task_nice);
3996 * idle_cpu - is a given cpu idle currently?
3997 * @cpu: the processor in question.
3999 int idle_cpu(int cpu)
4001 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4005 * idle_task - return the idle task for a given cpu.
4006 * @cpu: the processor in question.
4008 struct task_struct *idle_task(int cpu)
4010 return cpu_rq(cpu)->idle;
4014 * find_process_by_pid - find a process with a matching PID value.
4015 * @pid: the pid in question.
4017 static inline struct task_struct *find_process_by_pid(pid_t pid)
4019 return pid ? find_task_by_pid(pid) : current;
4022 /* Actually do priority change: must hold rq lock. */
4023 static void __setscheduler(struct task_struct *p, int policy, int prio)
4025 BUG_ON(p->array);
4027 p->policy = policy;
4028 p->rt_priority = prio;
4029 p->normal_prio = normal_prio(p);
4030 /* we are holding p->pi_lock already */
4031 p->prio = rt_mutex_getprio(p);
4033 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4035 if (policy == SCHED_BATCH)
4036 p->sleep_avg = 0;
4037 set_load_weight(p);
4041 * sched_setscheduler - change the scheduling policy and/or RT priority of
4042 * a thread.
4043 * @p: the task in question.
4044 * @policy: new policy.
4045 * @param: structure containing the new RT priority.
4047 int sched_setscheduler(struct task_struct *p, int policy,
4048 struct sched_param *param)
4050 int retval, oldprio, oldpolicy = -1;
4051 struct prio_array *array;
4052 unsigned long flags;
4053 struct rq *rq;
4055 /* may grab non-irq protected spin_locks */
4056 BUG_ON(in_interrupt());
4057 recheck:
4058 /* double check policy once rq lock held */
4059 if (policy < 0)
4060 policy = oldpolicy = p->policy;
4061 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4062 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4063 return -EINVAL;
4065 * Valid priorities for SCHED_FIFO and SCHED_RR are
4066 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4067 * SCHED_BATCH is 0.
4069 if (param->sched_priority < 0 ||
4070 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4071 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4072 return -EINVAL;
4073 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4074 != (param->sched_priority == 0))
4075 return -EINVAL;
4078 * Allow unprivileged RT tasks to decrease priority:
4080 if (!capable(CAP_SYS_NICE)) {
4082 * can't change policy, except between SCHED_NORMAL
4083 * and SCHED_BATCH:
4085 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4086 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4087 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4088 return -EPERM;
4089 /* can't increase priority */
4090 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
4091 param->sched_priority > p->rt_priority &&
4092 param->sched_priority >
4093 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4094 return -EPERM;
4095 /* can't change other user's priorities */
4096 if ((current->euid != p->euid) &&
4097 (current->euid != p->uid))
4098 return -EPERM;
4101 retval = security_task_setscheduler(p, policy, param);
4102 if (retval)
4103 return retval;
4105 * make sure no PI-waiters arrive (or leave) while we are
4106 * changing the priority of the task:
4108 spin_lock_irqsave(&p->pi_lock, flags);
4110 * To be able to change p->policy safely, the apropriate
4111 * runqueue lock must be held.
4113 rq = __task_rq_lock(p);
4114 /* recheck policy now with rq lock held */
4115 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4116 policy = oldpolicy = -1;
4117 __task_rq_unlock(rq);
4118 spin_unlock_irqrestore(&p->pi_lock, flags);
4119 goto recheck;
4121 array = p->array;
4122 if (array)
4123 deactivate_task(p, rq);
4124 oldprio = p->prio;
4125 __setscheduler(p, policy, param->sched_priority);
4126 if (array) {
4127 __activate_task(p, rq);
4129 * Reschedule if we are currently running on this runqueue and
4130 * our priority decreased, or if we are not currently running on
4131 * this runqueue and our priority is higher than the current's
4133 if (task_running(rq, p)) {
4134 if (p->prio > oldprio)
4135 resched_task(rq->curr);
4136 } else if (TASK_PREEMPTS_CURR(p, rq))
4137 resched_task(rq->curr);
4139 __task_rq_unlock(rq);
4140 spin_unlock_irqrestore(&p->pi_lock, flags);
4142 rt_mutex_adjust_pi(p);
4144 return 0;
4146 EXPORT_SYMBOL_GPL(sched_setscheduler);
4148 static int
4149 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4151 struct sched_param lparam;
4152 struct task_struct *p;
4153 int retval;
4155 if (!param || pid < 0)
4156 return -EINVAL;
4157 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4158 return -EFAULT;
4159 read_lock_irq(&tasklist_lock);
4160 p = find_process_by_pid(pid);
4161 if (!p) {
4162 read_unlock_irq(&tasklist_lock);
4163 return -ESRCH;
4165 retval = sched_setscheduler(p, policy, &lparam);
4166 read_unlock_irq(&tasklist_lock);
4168 return retval;
4172 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4173 * @pid: the pid in question.
4174 * @policy: new policy.
4175 * @param: structure containing the new RT priority.
4177 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4178 struct sched_param __user *param)
4180 /* negative values for policy are not valid */
4181 if (policy < 0)
4182 return -EINVAL;
4184 return do_sched_setscheduler(pid, policy, param);
4188 * sys_sched_setparam - set/change the RT priority of a thread
4189 * @pid: the pid in question.
4190 * @param: structure containing the new RT priority.
4192 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4194 return do_sched_setscheduler(pid, -1, param);
4198 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4199 * @pid: the pid in question.
4201 asmlinkage long sys_sched_getscheduler(pid_t pid)
4203 struct task_struct *p;
4204 int retval = -EINVAL;
4206 if (pid < 0)
4207 goto out_nounlock;
4209 retval = -ESRCH;
4210 read_lock(&tasklist_lock);
4211 p = find_process_by_pid(pid);
4212 if (p) {
4213 retval = security_task_getscheduler(p);
4214 if (!retval)
4215 retval = p->policy;
4217 read_unlock(&tasklist_lock);
4219 out_nounlock:
4220 return retval;
4224 * sys_sched_getscheduler - get the RT priority of a thread
4225 * @pid: the pid in question.
4226 * @param: structure containing the RT priority.
4228 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4230 struct sched_param lp;
4231 struct task_struct *p;
4232 int retval = -EINVAL;
4234 if (!param || pid < 0)
4235 goto out_nounlock;
4237 read_lock(&tasklist_lock);
4238 p = find_process_by_pid(pid);
4239 retval = -ESRCH;
4240 if (!p)
4241 goto out_unlock;
4243 retval = security_task_getscheduler(p);
4244 if (retval)
4245 goto out_unlock;
4247 lp.sched_priority = p->rt_priority;
4248 read_unlock(&tasklist_lock);
4251 * This one might sleep, we cannot do it with a spinlock held ...
4253 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4255 out_nounlock:
4256 return retval;
4258 out_unlock:
4259 read_unlock(&tasklist_lock);
4260 return retval;
4263 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4265 cpumask_t cpus_allowed;
4266 struct task_struct *p;
4267 int retval;
4269 lock_cpu_hotplug();
4270 read_lock(&tasklist_lock);
4272 p = find_process_by_pid(pid);
4273 if (!p) {
4274 read_unlock(&tasklist_lock);
4275 unlock_cpu_hotplug();
4276 return -ESRCH;
4280 * It is not safe to call set_cpus_allowed with the
4281 * tasklist_lock held. We will bump the task_struct's
4282 * usage count and then drop tasklist_lock.
4284 get_task_struct(p);
4285 read_unlock(&tasklist_lock);
4287 retval = -EPERM;
4288 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4289 !capable(CAP_SYS_NICE))
4290 goto out_unlock;
4292 retval = security_task_setscheduler(p, 0, NULL);
4293 if (retval)
4294 goto out_unlock;
4296 cpus_allowed = cpuset_cpus_allowed(p);
4297 cpus_and(new_mask, new_mask, cpus_allowed);
4298 retval = set_cpus_allowed(p, new_mask);
4300 out_unlock:
4301 put_task_struct(p);
4302 unlock_cpu_hotplug();
4303 return retval;
4306 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4307 cpumask_t *new_mask)
4309 if (len < sizeof(cpumask_t)) {
4310 memset(new_mask, 0, sizeof(cpumask_t));
4311 } else if (len > sizeof(cpumask_t)) {
4312 len = sizeof(cpumask_t);
4314 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4318 * sys_sched_setaffinity - set the cpu affinity of a process
4319 * @pid: pid of the process
4320 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4321 * @user_mask_ptr: user-space pointer to the new cpu mask
4323 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4324 unsigned long __user *user_mask_ptr)
4326 cpumask_t new_mask;
4327 int retval;
4329 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4330 if (retval)
4331 return retval;
4333 return sched_setaffinity(pid, new_mask);
4337 * Represents all cpu's present in the system
4338 * In systems capable of hotplug, this map could dynamically grow
4339 * as new cpu's are detected in the system via any platform specific
4340 * method, such as ACPI for e.g.
4343 cpumask_t cpu_present_map __read_mostly;
4344 EXPORT_SYMBOL(cpu_present_map);
4346 #ifndef CONFIG_SMP
4347 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4348 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4349 #endif
4351 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4353 struct task_struct *p;
4354 int retval;
4356 lock_cpu_hotplug();
4357 read_lock(&tasklist_lock);
4359 retval = -ESRCH;
4360 p = find_process_by_pid(pid);
4361 if (!p)
4362 goto out_unlock;
4364 retval = security_task_getscheduler(p);
4365 if (retval)
4366 goto out_unlock;
4368 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4370 out_unlock:
4371 read_unlock(&tasklist_lock);
4372 unlock_cpu_hotplug();
4373 if (retval)
4374 return retval;
4376 return 0;
4380 * sys_sched_getaffinity - get the cpu affinity of a process
4381 * @pid: pid of the process
4382 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4383 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4385 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4386 unsigned long __user *user_mask_ptr)
4388 int ret;
4389 cpumask_t mask;
4391 if (len < sizeof(cpumask_t))
4392 return -EINVAL;
4394 ret = sched_getaffinity(pid, &mask);
4395 if (ret < 0)
4396 return ret;
4398 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4399 return -EFAULT;
4401 return sizeof(cpumask_t);
4405 * sys_sched_yield - yield the current processor to other threads.
4407 * this function yields the current CPU by moving the calling thread
4408 * to the expired array. If there are no other threads running on this
4409 * CPU then this function will return.
4411 asmlinkage long sys_sched_yield(void)
4413 struct rq *rq = this_rq_lock();
4414 struct prio_array *array = current->array, *target = rq->expired;
4416 schedstat_inc(rq, yld_cnt);
4418 * We implement yielding by moving the task into the expired
4419 * queue.
4421 * (special rule: RT tasks will just roundrobin in the active
4422 * array.)
4424 if (rt_task(current))
4425 target = rq->active;
4427 if (array->nr_active == 1) {
4428 schedstat_inc(rq, yld_act_empty);
4429 if (!rq->expired->nr_active)
4430 schedstat_inc(rq, yld_both_empty);
4431 } else if (!rq->expired->nr_active)
4432 schedstat_inc(rq, yld_exp_empty);
4434 if (array != target) {
4435 dequeue_task(current, array);
4436 enqueue_task(current, target);
4437 } else
4439 * requeue_task is cheaper so perform that if possible.
4441 requeue_task(current, array);
4444 * Since we are going to call schedule() anyway, there's
4445 * no need to preempt or enable interrupts:
4447 __release(rq->lock);
4448 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4449 _raw_spin_unlock(&rq->lock);
4450 preempt_enable_no_resched();
4452 schedule();
4454 return 0;
4457 static inline int __resched_legal(int expected_preempt_count)
4459 if (unlikely(preempt_count() != expected_preempt_count))
4460 return 0;
4461 if (unlikely(system_state != SYSTEM_RUNNING))
4462 return 0;
4463 return 1;
4466 static void __cond_resched(void)
4468 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4469 __might_sleep(__FILE__, __LINE__);
4470 #endif
4472 * The BKS might be reacquired before we have dropped
4473 * PREEMPT_ACTIVE, which could trigger a second
4474 * cond_resched() call.
4476 do {
4477 add_preempt_count(PREEMPT_ACTIVE);
4478 schedule();
4479 sub_preempt_count(PREEMPT_ACTIVE);
4480 } while (need_resched());
4483 int __sched cond_resched(void)
4485 if (need_resched() && __resched_legal(0)) {
4486 __cond_resched();
4487 return 1;
4489 return 0;
4491 EXPORT_SYMBOL(cond_resched);
4494 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4495 * call schedule, and on return reacquire the lock.
4497 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4498 * operations here to prevent schedule() from being called twice (once via
4499 * spin_unlock(), once by hand).
4501 int cond_resched_lock(spinlock_t *lock)
4503 int ret = 0;
4505 if (need_lockbreak(lock)) {
4506 spin_unlock(lock);
4507 cpu_relax();
4508 ret = 1;
4509 spin_lock(lock);
4511 if (need_resched() && __resched_legal(1)) {
4512 spin_release(&lock->dep_map, 1, _THIS_IP_);
4513 _raw_spin_unlock(lock);
4514 preempt_enable_no_resched();
4515 __cond_resched();
4516 ret = 1;
4517 spin_lock(lock);
4519 return ret;
4521 EXPORT_SYMBOL(cond_resched_lock);
4523 int __sched cond_resched_softirq(void)
4525 BUG_ON(!in_softirq());
4527 if (need_resched() && __resched_legal(0)) {
4528 raw_local_irq_disable();
4529 _local_bh_enable();
4530 raw_local_irq_enable();
4531 __cond_resched();
4532 local_bh_disable();
4533 return 1;
4535 return 0;
4537 EXPORT_SYMBOL(cond_resched_softirq);
4540 * yield - yield the current processor to other threads.
4542 * this is a shortcut for kernel-space yielding - it marks the
4543 * thread runnable and calls sys_sched_yield().
4545 void __sched yield(void)
4547 set_current_state(TASK_RUNNING);
4548 sys_sched_yield();
4550 EXPORT_SYMBOL(yield);
4553 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4554 * that process accounting knows that this is a task in IO wait state.
4556 * But don't do that if it is a deliberate, throttling IO wait (this task
4557 * has set its backing_dev_info: the queue against which it should throttle)
4559 void __sched io_schedule(void)
4561 struct rq *rq = &__raw_get_cpu_var(runqueues);
4563 delayacct_blkio_start();
4564 atomic_inc(&rq->nr_iowait);
4565 schedule();
4566 atomic_dec(&rq->nr_iowait);
4567 delayacct_blkio_end();
4569 EXPORT_SYMBOL(io_schedule);
4571 long __sched io_schedule_timeout(long timeout)
4573 struct rq *rq = &__raw_get_cpu_var(runqueues);
4574 long ret;
4576 delayacct_blkio_start();
4577 atomic_inc(&rq->nr_iowait);
4578 ret = schedule_timeout(timeout);
4579 atomic_dec(&rq->nr_iowait);
4580 delayacct_blkio_end();
4581 return ret;
4585 * sys_sched_get_priority_max - return maximum RT priority.
4586 * @policy: scheduling class.
4588 * this syscall returns the maximum rt_priority that can be used
4589 * by a given scheduling class.
4591 asmlinkage long sys_sched_get_priority_max(int policy)
4593 int ret = -EINVAL;
4595 switch (policy) {
4596 case SCHED_FIFO:
4597 case SCHED_RR:
4598 ret = MAX_USER_RT_PRIO-1;
4599 break;
4600 case SCHED_NORMAL:
4601 case SCHED_BATCH:
4602 ret = 0;
4603 break;
4605 return ret;
4609 * sys_sched_get_priority_min - return minimum RT priority.
4610 * @policy: scheduling class.
4612 * this syscall returns the minimum rt_priority that can be used
4613 * by a given scheduling class.
4615 asmlinkage long sys_sched_get_priority_min(int policy)
4617 int ret = -EINVAL;
4619 switch (policy) {
4620 case SCHED_FIFO:
4621 case SCHED_RR:
4622 ret = 1;
4623 break;
4624 case SCHED_NORMAL:
4625 case SCHED_BATCH:
4626 ret = 0;
4628 return ret;
4632 * sys_sched_rr_get_interval - return the default timeslice of a process.
4633 * @pid: pid of the process.
4634 * @interval: userspace pointer to the timeslice value.
4636 * this syscall writes the default timeslice value of a given process
4637 * into the user-space timespec buffer. A value of '0' means infinity.
4639 asmlinkage
4640 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4642 struct task_struct *p;
4643 int retval = -EINVAL;
4644 struct timespec t;
4646 if (pid < 0)
4647 goto out_nounlock;
4649 retval = -ESRCH;
4650 read_lock(&tasklist_lock);
4651 p = find_process_by_pid(pid);
4652 if (!p)
4653 goto out_unlock;
4655 retval = security_task_getscheduler(p);
4656 if (retval)
4657 goto out_unlock;
4659 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4660 0 : task_timeslice(p), &t);
4661 read_unlock(&tasklist_lock);
4662 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4663 out_nounlock:
4664 return retval;
4665 out_unlock:
4666 read_unlock(&tasklist_lock);
4667 return retval;
4670 static inline struct task_struct *eldest_child(struct task_struct *p)
4672 if (list_empty(&p->children))
4673 return NULL;
4674 return list_entry(p->children.next,struct task_struct,sibling);
4677 static inline struct task_struct *older_sibling(struct task_struct *p)
4679 if (p->sibling.prev==&p->parent->children)
4680 return NULL;
4681 return list_entry(p->sibling.prev,struct task_struct,sibling);
4684 static inline struct task_struct *younger_sibling(struct task_struct *p)
4686 if (p->sibling.next==&p->parent->children)
4687 return NULL;
4688 return list_entry(p->sibling.next,struct task_struct,sibling);
4691 static const char stat_nam[] = "RSDTtZX";
4693 static void show_task(struct task_struct *p)
4695 struct task_struct *relative;
4696 unsigned long free = 0;
4697 unsigned state;
4699 state = p->state ? __ffs(p->state) + 1 : 0;
4700 printk("%-13.13s %c", p->comm,
4701 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4702 #if (BITS_PER_LONG == 32)
4703 if (state == TASK_RUNNING)
4704 printk(" running ");
4705 else
4706 printk(" %08lX ", thread_saved_pc(p));
4707 #else
4708 if (state == TASK_RUNNING)
4709 printk(" running task ");
4710 else
4711 printk(" %016lx ", thread_saved_pc(p));
4712 #endif
4713 #ifdef CONFIG_DEBUG_STACK_USAGE
4715 unsigned long *n = end_of_stack(p);
4716 while (!*n)
4717 n++;
4718 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4720 #endif
4721 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4722 if ((relative = eldest_child(p)))
4723 printk("%5d ", relative->pid);
4724 else
4725 printk(" ");
4726 if ((relative = younger_sibling(p)))
4727 printk("%7d", relative->pid);
4728 else
4729 printk(" ");
4730 if ((relative = older_sibling(p)))
4731 printk(" %5d", relative->pid);
4732 else
4733 printk(" ");
4734 if (!p->mm)
4735 printk(" (L-TLB)\n");
4736 else
4737 printk(" (NOTLB)\n");
4739 if (state != TASK_RUNNING)
4740 show_stack(p, NULL);
4743 void show_state(void)
4745 struct task_struct *g, *p;
4747 #if (BITS_PER_LONG == 32)
4748 printk("\n"
4749 " sibling\n");
4750 printk(" task PC pid father child younger older\n");
4751 #else
4752 printk("\n"
4753 " sibling\n");
4754 printk(" task PC pid father child younger older\n");
4755 #endif
4756 read_lock(&tasklist_lock);
4757 do_each_thread(g, p) {
4759 * reset the NMI-timeout, listing all files on a slow
4760 * console might take alot of time:
4762 touch_nmi_watchdog();
4763 show_task(p);
4764 } while_each_thread(g, p);
4766 read_unlock(&tasklist_lock);
4767 debug_show_all_locks();
4771 * init_idle - set up an idle thread for a given CPU
4772 * @idle: task in question
4773 * @cpu: cpu the idle task belongs to
4775 * NOTE: this function does not set the idle thread's NEED_RESCHED
4776 * flag, to make booting more robust.
4778 void __devinit init_idle(struct task_struct *idle, int cpu)
4780 struct rq *rq = cpu_rq(cpu);
4781 unsigned long flags;
4783 idle->timestamp = sched_clock();
4784 idle->sleep_avg = 0;
4785 idle->array = NULL;
4786 idle->prio = idle->normal_prio = MAX_PRIO;
4787 idle->state = TASK_RUNNING;
4788 idle->cpus_allowed = cpumask_of_cpu(cpu);
4789 set_task_cpu(idle, cpu);
4791 spin_lock_irqsave(&rq->lock, flags);
4792 rq->curr = rq->idle = idle;
4793 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4794 idle->oncpu = 1;
4795 #endif
4796 spin_unlock_irqrestore(&rq->lock, flags);
4798 /* Set the preempt count _outside_ the spinlocks! */
4799 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4800 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4801 #else
4802 task_thread_info(idle)->preempt_count = 0;
4803 #endif
4807 * In a system that switches off the HZ timer nohz_cpu_mask
4808 * indicates which cpus entered this state. This is used
4809 * in the rcu update to wait only for active cpus. For system
4810 * which do not switch off the HZ timer nohz_cpu_mask should
4811 * always be CPU_MASK_NONE.
4813 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4815 #ifdef CONFIG_SMP
4817 * This is how migration works:
4819 * 1) we queue a struct migration_req structure in the source CPU's
4820 * runqueue and wake up that CPU's migration thread.
4821 * 2) we down() the locked semaphore => thread blocks.
4822 * 3) migration thread wakes up (implicitly it forces the migrated
4823 * thread off the CPU)
4824 * 4) it gets the migration request and checks whether the migrated
4825 * task is still in the wrong runqueue.
4826 * 5) if it's in the wrong runqueue then the migration thread removes
4827 * it and puts it into the right queue.
4828 * 6) migration thread up()s the semaphore.
4829 * 7) we wake up and the migration is done.
4833 * Change a given task's CPU affinity. Migrate the thread to a
4834 * proper CPU and schedule it away if the CPU it's executing on
4835 * is removed from the allowed bitmask.
4837 * NOTE: the caller must have a valid reference to the task, the
4838 * task must not exit() & deallocate itself prematurely. The
4839 * call is not atomic; no spinlocks may be held.
4841 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4843 struct migration_req req;
4844 unsigned long flags;
4845 struct rq *rq;
4846 int ret = 0;
4848 rq = task_rq_lock(p, &flags);
4849 if (!cpus_intersects(new_mask, cpu_online_map)) {
4850 ret = -EINVAL;
4851 goto out;
4854 p->cpus_allowed = new_mask;
4855 /* Can the task run on the task's current CPU? If so, we're done */
4856 if (cpu_isset(task_cpu(p), new_mask))
4857 goto out;
4859 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4860 /* Need help from migration thread: drop lock and wait. */
4861 task_rq_unlock(rq, &flags);
4862 wake_up_process(rq->migration_thread);
4863 wait_for_completion(&req.done);
4864 tlb_migrate_finish(p->mm);
4865 return 0;
4867 out:
4868 task_rq_unlock(rq, &flags);
4870 return ret;
4872 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4875 * Move (not current) task off this cpu, onto dest cpu. We're doing
4876 * this because either it can't run here any more (set_cpus_allowed()
4877 * away from this CPU, or CPU going down), or because we're
4878 * attempting to rebalance this task on exec (sched_exec).
4880 * So we race with normal scheduler movements, but that's OK, as long
4881 * as the task is no longer on this CPU.
4883 * Returns non-zero if task was successfully migrated.
4885 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4887 struct rq *rq_dest, *rq_src;
4888 int ret = 0;
4890 if (unlikely(cpu_is_offline(dest_cpu)))
4891 return ret;
4893 rq_src = cpu_rq(src_cpu);
4894 rq_dest = cpu_rq(dest_cpu);
4896 double_rq_lock(rq_src, rq_dest);
4897 /* Already moved. */
4898 if (task_cpu(p) != src_cpu)
4899 goto out;
4900 /* Affinity changed (again). */
4901 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4902 goto out;
4904 set_task_cpu(p, dest_cpu);
4905 if (p->array) {
4907 * Sync timestamp with rq_dest's before activating.
4908 * The same thing could be achieved by doing this step
4909 * afterwards, and pretending it was a local activate.
4910 * This way is cleaner and logically correct.
4912 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4913 + rq_dest->timestamp_last_tick;
4914 deactivate_task(p, rq_src);
4915 __activate_task(p, rq_dest);
4916 if (TASK_PREEMPTS_CURR(p, rq_dest))
4917 resched_task(rq_dest->curr);
4919 ret = 1;
4920 out:
4921 double_rq_unlock(rq_src, rq_dest);
4922 return ret;
4926 * migration_thread - this is a highprio system thread that performs
4927 * thread migration by bumping thread off CPU then 'pushing' onto
4928 * another runqueue.
4930 static int migration_thread(void *data)
4932 int cpu = (long)data;
4933 struct rq *rq;
4935 rq = cpu_rq(cpu);
4936 BUG_ON(rq->migration_thread != current);
4938 set_current_state(TASK_INTERRUPTIBLE);
4939 while (!kthread_should_stop()) {
4940 struct migration_req *req;
4941 struct list_head *head;
4943 try_to_freeze();
4945 spin_lock_irq(&rq->lock);
4947 if (cpu_is_offline(cpu)) {
4948 spin_unlock_irq(&rq->lock);
4949 goto wait_to_die;
4952 if (rq->active_balance) {
4953 active_load_balance(rq, cpu);
4954 rq->active_balance = 0;
4957 head = &rq->migration_queue;
4959 if (list_empty(head)) {
4960 spin_unlock_irq(&rq->lock);
4961 schedule();
4962 set_current_state(TASK_INTERRUPTIBLE);
4963 continue;
4965 req = list_entry(head->next, struct migration_req, list);
4966 list_del_init(head->next);
4968 spin_unlock(&rq->lock);
4969 __migrate_task(req->task, cpu, req->dest_cpu);
4970 local_irq_enable();
4972 complete(&req->done);
4974 __set_current_state(TASK_RUNNING);
4975 return 0;
4977 wait_to_die:
4978 /* Wait for kthread_stop */
4979 set_current_state(TASK_INTERRUPTIBLE);
4980 while (!kthread_should_stop()) {
4981 schedule();
4982 set_current_state(TASK_INTERRUPTIBLE);
4984 __set_current_state(TASK_RUNNING);
4985 return 0;
4988 #ifdef CONFIG_HOTPLUG_CPU
4989 /* Figure out where task on dead CPU should go, use force if neccessary. */
4990 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
4992 unsigned long flags;
4993 cpumask_t mask;
4994 struct rq *rq;
4995 int dest_cpu;
4997 restart:
4998 /* On same node? */
4999 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5000 cpus_and(mask, mask, p->cpus_allowed);
5001 dest_cpu = any_online_cpu(mask);
5003 /* On any allowed CPU? */
5004 if (dest_cpu == NR_CPUS)
5005 dest_cpu = any_online_cpu(p->cpus_allowed);
5007 /* No more Mr. Nice Guy. */
5008 if (dest_cpu == NR_CPUS) {
5009 rq = task_rq_lock(p, &flags);
5010 cpus_setall(p->cpus_allowed);
5011 dest_cpu = any_online_cpu(p->cpus_allowed);
5012 task_rq_unlock(rq, &flags);
5015 * Don't tell them about moving exiting tasks or
5016 * kernel threads (both mm NULL), since they never
5017 * leave kernel.
5019 if (p->mm && printk_ratelimit())
5020 printk(KERN_INFO "process %d (%s) no "
5021 "longer affine to cpu%d\n",
5022 p->pid, p->comm, dead_cpu);
5024 if (!__migrate_task(p, dead_cpu, dest_cpu))
5025 goto restart;
5029 * While a dead CPU has no uninterruptible tasks queued at this point,
5030 * it might still have a nonzero ->nr_uninterruptible counter, because
5031 * for performance reasons the counter is not stricly tracking tasks to
5032 * their home CPUs. So we just add the counter to another CPU's counter,
5033 * to keep the global sum constant after CPU-down:
5035 static void migrate_nr_uninterruptible(struct rq *rq_src)
5037 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5038 unsigned long flags;
5040 local_irq_save(flags);
5041 double_rq_lock(rq_src, rq_dest);
5042 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5043 rq_src->nr_uninterruptible = 0;
5044 double_rq_unlock(rq_src, rq_dest);
5045 local_irq_restore(flags);
5048 /* Run through task list and migrate tasks from the dead cpu. */
5049 static void migrate_live_tasks(int src_cpu)
5051 struct task_struct *p, *t;
5053 write_lock_irq(&tasklist_lock);
5055 do_each_thread(t, p) {
5056 if (p == current)
5057 continue;
5059 if (task_cpu(p) == src_cpu)
5060 move_task_off_dead_cpu(src_cpu, p);
5061 } while_each_thread(t, p);
5063 write_unlock_irq(&tasklist_lock);
5066 /* Schedules idle task to be the next runnable task on current CPU.
5067 * It does so by boosting its priority to highest possible and adding it to
5068 * the _front_ of the runqueue. Used by CPU offline code.
5070 void sched_idle_next(void)
5072 int this_cpu = smp_processor_id();
5073 struct rq *rq = cpu_rq(this_cpu);
5074 struct task_struct *p = rq->idle;
5075 unsigned long flags;
5077 /* cpu has to be offline */
5078 BUG_ON(cpu_online(this_cpu));
5081 * Strictly not necessary since rest of the CPUs are stopped by now
5082 * and interrupts disabled on the current cpu.
5084 spin_lock_irqsave(&rq->lock, flags);
5086 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5088 /* Add idle task to the _front_ of its priority queue: */
5089 __activate_idle_task(p, rq);
5091 spin_unlock_irqrestore(&rq->lock, flags);
5095 * Ensures that the idle task is using init_mm right before its cpu goes
5096 * offline.
5098 void idle_task_exit(void)
5100 struct mm_struct *mm = current->active_mm;
5102 BUG_ON(cpu_online(smp_processor_id()));
5104 if (mm != &init_mm)
5105 switch_mm(mm, &init_mm, current);
5106 mmdrop(mm);
5109 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5111 struct rq *rq = cpu_rq(dead_cpu);
5113 /* Must be exiting, otherwise would be on tasklist. */
5114 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5116 /* Cannot have done final schedule yet: would have vanished. */
5117 BUG_ON(p->flags & PF_DEAD);
5119 get_task_struct(p);
5122 * Drop lock around migration; if someone else moves it,
5123 * that's OK. No task can be added to this CPU, so iteration is
5124 * fine.
5126 spin_unlock_irq(&rq->lock);
5127 move_task_off_dead_cpu(dead_cpu, p);
5128 spin_lock_irq(&rq->lock);
5130 put_task_struct(p);
5133 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5134 static void migrate_dead_tasks(unsigned int dead_cpu)
5136 struct rq *rq = cpu_rq(dead_cpu);
5137 unsigned int arr, i;
5139 for (arr = 0; arr < 2; arr++) {
5140 for (i = 0; i < MAX_PRIO; i++) {
5141 struct list_head *list = &rq->arrays[arr].queue[i];
5143 while (!list_empty(list))
5144 migrate_dead(dead_cpu, list_entry(list->next,
5145 struct task_struct, run_list));
5149 #endif /* CONFIG_HOTPLUG_CPU */
5152 * migration_call - callback that gets triggered when a CPU is added.
5153 * Here we can start up the necessary migration thread for the new CPU.
5155 static int __cpuinit
5156 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5158 struct task_struct *p;
5159 int cpu = (long)hcpu;
5160 unsigned long flags;
5161 struct rq *rq;
5163 switch (action) {
5164 case CPU_UP_PREPARE:
5165 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5166 if (IS_ERR(p))
5167 return NOTIFY_BAD;
5168 p->flags |= PF_NOFREEZE;
5169 kthread_bind(p, cpu);
5170 /* Must be high prio: stop_machine expects to yield to it. */
5171 rq = task_rq_lock(p, &flags);
5172 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5173 task_rq_unlock(rq, &flags);
5174 cpu_rq(cpu)->migration_thread = p;
5175 break;
5177 case CPU_ONLINE:
5178 /* Strictly unneccessary, as first user will wake it. */
5179 wake_up_process(cpu_rq(cpu)->migration_thread);
5180 break;
5182 #ifdef CONFIG_HOTPLUG_CPU
5183 case CPU_UP_CANCELED:
5184 if (!cpu_rq(cpu)->migration_thread)
5185 break;
5186 /* Unbind it from offline cpu so it can run. Fall thru. */
5187 kthread_bind(cpu_rq(cpu)->migration_thread,
5188 any_online_cpu(cpu_online_map));
5189 kthread_stop(cpu_rq(cpu)->migration_thread);
5190 cpu_rq(cpu)->migration_thread = NULL;
5191 break;
5193 case CPU_DEAD:
5194 migrate_live_tasks(cpu);
5195 rq = cpu_rq(cpu);
5196 kthread_stop(rq->migration_thread);
5197 rq->migration_thread = NULL;
5198 /* Idle task back to normal (off runqueue, low prio) */
5199 rq = task_rq_lock(rq->idle, &flags);
5200 deactivate_task(rq->idle, rq);
5201 rq->idle->static_prio = MAX_PRIO;
5202 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5203 migrate_dead_tasks(cpu);
5204 task_rq_unlock(rq, &flags);
5205 migrate_nr_uninterruptible(rq);
5206 BUG_ON(rq->nr_running != 0);
5208 /* No need to migrate the tasks: it was best-effort if
5209 * they didn't do lock_cpu_hotplug(). Just wake up
5210 * the requestors. */
5211 spin_lock_irq(&rq->lock);
5212 while (!list_empty(&rq->migration_queue)) {
5213 struct migration_req *req;
5215 req = list_entry(rq->migration_queue.next,
5216 struct migration_req, list);
5217 list_del_init(&req->list);
5218 complete(&req->done);
5220 spin_unlock_irq(&rq->lock);
5221 break;
5222 #endif
5224 return NOTIFY_OK;
5227 /* Register at highest priority so that task migration (migrate_all_tasks)
5228 * happens before everything else.
5230 static struct notifier_block __cpuinitdata migration_notifier = {
5231 .notifier_call = migration_call,
5232 .priority = 10
5235 int __init migration_init(void)
5237 void *cpu = (void *)(long)smp_processor_id();
5239 /* Start one for the boot CPU: */
5240 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5241 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5242 register_cpu_notifier(&migration_notifier);
5244 return 0;
5246 #endif
5248 #ifdef CONFIG_SMP
5249 #undef SCHED_DOMAIN_DEBUG
5250 #ifdef SCHED_DOMAIN_DEBUG
5251 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5253 int level = 0;
5255 if (!sd) {
5256 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5257 return;
5260 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5262 do {
5263 int i;
5264 char str[NR_CPUS];
5265 struct sched_group *group = sd->groups;
5266 cpumask_t groupmask;
5268 cpumask_scnprintf(str, NR_CPUS, sd->span);
5269 cpus_clear(groupmask);
5271 printk(KERN_DEBUG);
5272 for (i = 0; i < level + 1; i++)
5273 printk(" ");
5274 printk("domain %d: ", level);
5276 if (!(sd->flags & SD_LOAD_BALANCE)) {
5277 printk("does not load-balance\n");
5278 if (sd->parent)
5279 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5280 break;
5283 printk("span %s\n", str);
5285 if (!cpu_isset(cpu, sd->span))
5286 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5287 if (!cpu_isset(cpu, group->cpumask))
5288 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5290 printk(KERN_DEBUG);
5291 for (i = 0; i < level + 2; i++)
5292 printk(" ");
5293 printk("groups:");
5294 do {
5295 if (!group) {
5296 printk("\n");
5297 printk(KERN_ERR "ERROR: group is NULL\n");
5298 break;
5301 if (!group->cpu_power) {
5302 printk("\n");
5303 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5306 if (!cpus_weight(group->cpumask)) {
5307 printk("\n");
5308 printk(KERN_ERR "ERROR: empty group\n");
5311 if (cpus_intersects(groupmask, group->cpumask)) {
5312 printk("\n");
5313 printk(KERN_ERR "ERROR: repeated CPUs\n");
5316 cpus_or(groupmask, groupmask, group->cpumask);
5318 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5319 printk(" %s", str);
5321 group = group->next;
5322 } while (group != sd->groups);
5323 printk("\n");
5325 if (!cpus_equal(sd->span, groupmask))
5326 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5328 level++;
5329 sd = sd->parent;
5331 if (sd) {
5332 if (!cpus_subset(groupmask, sd->span))
5333 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5336 } while (sd);
5338 #else
5339 # define sched_domain_debug(sd, cpu) do { } while (0)
5340 #endif
5342 static int sd_degenerate(struct sched_domain *sd)
5344 if (cpus_weight(sd->span) == 1)
5345 return 1;
5347 /* Following flags need at least 2 groups */
5348 if (sd->flags & (SD_LOAD_BALANCE |
5349 SD_BALANCE_NEWIDLE |
5350 SD_BALANCE_FORK |
5351 SD_BALANCE_EXEC)) {
5352 if (sd->groups != sd->groups->next)
5353 return 0;
5356 /* Following flags don't use groups */
5357 if (sd->flags & (SD_WAKE_IDLE |
5358 SD_WAKE_AFFINE |
5359 SD_WAKE_BALANCE))
5360 return 0;
5362 return 1;
5365 static int
5366 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5368 unsigned long cflags = sd->flags, pflags = parent->flags;
5370 if (sd_degenerate(parent))
5371 return 1;
5373 if (!cpus_equal(sd->span, parent->span))
5374 return 0;
5376 /* Does parent contain flags not in child? */
5377 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5378 if (cflags & SD_WAKE_AFFINE)
5379 pflags &= ~SD_WAKE_BALANCE;
5380 /* Flags needing groups don't count if only 1 group in parent */
5381 if (parent->groups == parent->groups->next) {
5382 pflags &= ~(SD_LOAD_BALANCE |
5383 SD_BALANCE_NEWIDLE |
5384 SD_BALANCE_FORK |
5385 SD_BALANCE_EXEC);
5387 if (~cflags & pflags)
5388 return 0;
5390 return 1;
5394 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5395 * hold the hotplug lock.
5397 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5399 struct rq *rq = cpu_rq(cpu);
5400 struct sched_domain *tmp;
5402 /* Remove the sched domains which do not contribute to scheduling. */
5403 for (tmp = sd; tmp; tmp = tmp->parent) {
5404 struct sched_domain *parent = tmp->parent;
5405 if (!parent)
5406 break;
5407 if (sd_parent_degenerate(tmp, parent))
5408 tmp->parent = parent->parent;
5411 if (sd && sd_degenerate(sd))
5412 sd = sd->parent;
5414 sched_domain_debug(sd, cpu);
5416 rcu_assign_pointer(rq->sd, sd);
5419 /* cpus with isolated domains */
5420 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5422 /* Setup the mask of cpus configured for isolated domains */
5423 static int __init isolated_cpu_setup(char *str)
5425 int ints[NR_CPUS], i;
5427 str = get_options(str, ARRAY_SIZE(ints), ints);
5428 cpus_clear(cpu_isolated_map);
5429 for (i = 1; i <= ints[0]; i++)
5430 if (ints[i] < NR_CPUS)
5431 cpu_set(ints[i], cpu_isolated_map);
5432 return 1;
5435 __setup ("isolcpus=", isolated_cpu_setup);
5438 * init_sched_build_groups takes an array of groups, the cpumask we wish
5439 * to span, and a pointer to a function which identifies what group a CPU
5440 * belongs to. The return value of group_fn must be a valid index into the
5441 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5442 * keep track of groups covered with a cpumask_t).
5444 * init_sched_build_groups will build a circular linked list of the groups
5445 * covered by the given span, and will set each group's ->cpumask correctly,
5446 * and ->cpu_power to 0.
5448 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5449 int (*group_fn)(int cpu))
5451 struct sched_group *first = NULL, *last = NULL;
5452 cpumask_t covered = CPU_MASK_NONE;
5453 int i;
5455 for_each_cpu_mask(i, span) {
5456 int group = group_fn(i);
5457 struct sched_group *sg = &groups[group];
5458 int j;
5460 if (cpu_isset(i, covered))
5461 continue;
5463 sg->cpumask = CPU_MASK_NONE;
5464 sg->cpu_power = 0;
5466 for_each_cpu_mask(j, span) {
5467 if (group_fn(j) != group)
5468 continue;
5470 cpu_set(j, covered);
5471 cpu_set(j, sg->cpumask);
5473 if (!first)
5474 first = sg;
5475 if (last)
5476 last->next = sg;
5477 last = sg;
5479 last->next = first;
5482 #define SD_NODES_PER_DOMAIN 16
5485 * Self-tuning task migration cost measurement between source and target CPUs.
5487 * This is done by measuring the cost of manipulating buffers of varying
5488 * sizes. For a given buffer-size here are the steps that are taken:
5490 * 1) the source CPU reads+dirties a shared buffer
5491 * 2) the target CPU reads+dirties the same shared buffer
5493 * We measure how long they take, in the following 4 scenarios:
5495 * - source: CPU1, target: CPU2 | cost1
5496 * - source: CPU2, target: CPU1 | cost2
5497 * - source: CPU1, target: CPU1 | cost3
5498 * - source: CPU2, target: CPU2 | cost4
5500 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5501 * the cost of migration.
5503 * We then start off from a small buffer-size and iterate up to larger
5504 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5505 * doing a maximum search for the cost. (The maximum cost for a migration
5506 * normally occurs when the working set size is around the effective cache
5507 * size.)
5509 #define SEARCH_SCOPE 2
5510 #define MIN_CACHE_SIZE (64*1024U)
5511 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5512 #define ITERATIONS 1
5513 #define SIZE_THRESH 130
5514 #define COST_THRESH 130
5517 * The migration cost is a function of 'domain distance'. Domain
5518 * distance is the number of steps a CPU has to iterate down its
5519 * domain tree to share a domain with the other CPU. The farther
5520 * two CPUs are from each other, the larger the distance gets.
5522 * Note that we use the distance only to cache measurement results,
5523 * the distance value is not used numerically otherwise. When two
5524 * CPUs have the same distance it is assumed that the migration
5525 * cost is the same. (this is a simplification but quite practical)
5527 #define MAX_DOMAIN_DISTANCE 32
5529 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5530 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5532 * Architectures may override the migration cost and thus avoid
5533 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5534 * virtualized hardware:
5536 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5537 CONFIG_DEFAULT_MIGRATION_COST
5538 #else
5539 -1LL
5540 #endif
5544 * Allow override of migration cost - in units of microseconds.
5545 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5546 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5548 static int __init migration_cost_setup(char *str)
5550 int ints[MAX_DOMAIN_DISTANCE+1], i;
5552 str = get_options(str, ARRAY_SIZE(ints), ints);
5554 printk("#ints: %d\n", ints[0]);
5555 for (i = 1; i <= ints[0]; i++) {
5556 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5557 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5559 return 1;
5562 __setup ("migration_cost=", migration_cost_setup);
5565 * Global multiplier (divisor) for migration-cutoff values,
5566 * in percentiles. E.g. use a value of 150 to get 1.5 times
5567 * longer cache-hot cutoff times.
5569 * (We scale it from 100 to 128 to long long handling easier.)
5572 #define MIGRATION_FACTOR_SCALE 128
5574 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5576 static int __init setup_migration_factor(char *str)
5578 get_option(&str, &migration_factor);
5579 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5580 return 1;
5583 __setup("migration_factor=", setup_migration_factor);
5586 * Estimated distance of two CPUs, measured via the number of domains
5587 * we have to pass for the two CPUs to be in the same span:
5589 static unsigned long domain_distance(int cpu1, int cpu2)
5591 unsigned long distance = 0;
5592 struct sched_domain *sd;
5594 for_each_domain(cpu1, sd) {
5595 WARN_ON(!cpu_isset(cpu1, sd->span));
5596 if (cpu_isset(cpu2, sd->span))
5597 return distance;
5598 distance++;
5600 if (distance >= MAX_DOMAIN_DISTANCE) {
5601 WARN_ON(1);
5602 distance = MAX_DOMAIN_DISTANCE-1;
5605 return distance;
5608 static unsigned int migration_debug;
5610 static int __init setup_migration_debug(char *str)
5612 get_option(&str, &migration_debug);
5613 return 1;
5616 __setup("migration_debug=", setup_migration_debug);
5619 * Maximum cache-size that the scheduler should try to measure.
5620 * Architectures with larger caches should tune this up during
5621 * bootup. Gets used in the domain-setup code (i.e. during SMP
5622 * bootup).
5624 unsigned int max_cache_size;
5626 static int __init setup_max_cache_size(char *str)
5628 get_option(&str, &max_cache_size);
5629 return 1;
5632 __setup("max_cache_size=", setup_max_cache_size);
5635 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5636 * is the operation that is timed, so we try to generate unpredictable
5637 * cachemisses that still end up filling the L2 cache:
5639 static void touch_cache(void *__cache, unsigned long __size)
5641 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5642 chunk2 = 2*size/3;
5643 unsigned long *cache = __cache;
5644 int i;
5646 for (i = 0; i < size/6; i += 8) {
5647 switch (i % 6) {
5648 case 0: cache[i]++;
5649 case 1: cache[size-1-i]++;
5650 case 2: cache[chunk1-i]++;
5651 case 3: cache[chunk1+i]++;
5652 case 4: cache[chunk2-i]++;
5653 case 5: cache[chunk2+i]++;
5659 * Measure the cache-cost of one task migration. Returns in units of nsec.
5661 static unsigned long long
5662 measure_one(void *cache, unsigned long size, int source, int target)
5664 cpumask_t mask, saved_mask;
5665 unsigned long long t0, t1, t2, t3, cost;
5667 saved_mask = current->cpus_allowed;
5670 * Flush source caches to RAM and invalidate them:
5672 sched_cacheflush();
5675 * Migrate to the source CPU:
5677 mask = cpumask_of_cpu(source);
5678 set_cpus_allowed(current, mask);
5679 WARN_ON(smp_processor_id() != source);
5682 * Dirty the working set:
5684 t0 = sched_clock();
5685 touch_cache(cache, size);
5686 t1 = sched_clock();
5689 * Migrate to the target CPU, dirty the L2 cache and access
5690 * the shared buffer. (which represents the working set
5691 * of a migrated task.)
5693 mask = cpumask_of_cpu(target);
5694 set_cpus_allowed(current, mask);
5695 WARN_ON(smp_processor_id() != target);
5697 t2 = sched_clock();
5698 touch_cache(cache, size);
5699 t3 = sched_clock();
5701 cost = t1-t0 + t3-t2;
5703 if (migration_debug >= 2)
5704 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5705 source, target, t1-t0, t1-t0, t3-t2, cost);
5707 * Flush target caches to RAM and invalidate them:
5709 sched_cacheflush();
5711 set_cpus_allowed(current, saved_mask);
5713 return cost;
5717 * Measure a series of task migrations and return the average
5718 * result. Since this code runs early during bootup the system
5719 * is 'undisturbed' and the average latency makes sense.
5721 * The algorithm in essence auto-detects the relevant cache-size,
5722 * so it will properly detect different cachesizes for different
5723 * cache-hierarchies, depending on how the CPUs are connected.
5725 * Architectures can prime the upper limit of the search range via
5726 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5728 static unsigned long long
5729 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5731 unsigned long long cost1, cost2;
5732 int i;
5735 * Measure the migration cost of 'size' bytes, over an
5736 * average of 10 runs:
5738 * (We perturb the cache size by a small (0..4k)
5739 * value to compensate size/alignment related artifacts.
5740 * We also subtract the cost of the operation done on
5741 * the same CPU.)
5743 cost1 = 0;
5746 * dry run, to make sure we start off cache-cold on cpu1,
5747 * and to get any vmalloc pagefaults in advance:
5749 measure_one(cache, size, cpu1, cpu2);
5750 for (i = 0; i < ITERATIONS; i++)
5751 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5753 measure_one(cache, size, cpu2, cpu1);
5754 for (i = 0; i < ITERATIONS; i++)
5755 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5758 * (We measure the non-migrating [cached] cost on both
5759 * cpu1 and cpu2, to handle CPUs with different speeds)
5761 cost2 = 0;
5763 measure_one(cache, size, cpu1, cpu1);
5764 for (i = 0; i < ITERATIONS; i++)
5765 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5767 measure_one(cache, size, cpu2, cpu2);
5768 for (i = 0; i < ITERATIONS; i++)
5769 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5772 * Get the per-iteration migration cost:
5774 do_div(cost1, 2*ITERATIONS);
5775 do_div(cost2, 2*ITERATIONS);
5777 return cost1 - cost2;
5780 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5782 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5783 unsigned int max_size, size, size_found = 0;
5784 long long cost = 0, prev_cost;
5785 void *cache;
5788 * Search from max_cache_size*5 down to 64K - the real relevant
5789 * cachesize has to lie somewhere inbetween.
5791 if (max_cache_size) {
5792 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5793 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5794 } else {
5796 * Since we have no estimation about the relevant
5797 * search range
5799 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5800 size = MIN_CACHE_SIZE;
5803 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5804 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5805 return 0;
5809 * Allocate the working set:
5811 cache = vmalloc(max_size);
5812 if (!cache) {
5813 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5814 return 1000000; /* return 1 msec on very small boxen */
5817 while (size <= max_size) {
5818 prev_cost = cost;
5819 cost = measure_cost(cpu1, cpu2, cache, size);
5822 * Update the max:
5824 if (cost > 0) {
5825 if (max_cost < cost) {
5826 max_cost = cost;
5827 size_found = size;
5831 * Calculate average fluctuation, we use this to prevent
5832 * noise from triggering an early break out of the loop:
5834 fluct = abs(cost - prev_cost);
5835 avg_fluct = (avg_fluct + fluct)/2;
5837 if (migration_debug)
5838 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5839 cpu1, cpu2, size,
5840 (long)cost / 1000000,
5841 ((long)cost / 100000) % 10,
5842 (long)max_cost / 1000000,
5843 ((long)max_cost / 100000) % 10,
5844 domain_distance(cpu1, cpu2),
5845 cost, avg_fluct);
5848 * If we iterated at least 20% past the previous maximum,
5849 * and the cost has dropped by more than 20% already,
5850 * (taking fluctuations into account) then we assume to
5851 * have found the maximum and break out of the loop early:
5853 if (size_found && (size*100 > size_found*SIZE_THRESH))
5854 if (cost+avg_fluct <= 0 ||
5855 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5857 if (migration_debug)
5858 printk("-> found max.\n");
5859 break;
5862 * Increase the cachesize in 10% steps:
5864 size = size * 10 / 9;
5867 if (migration_debug)
5868 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5869 cpu1, cpu2, size_found, max_cost);
5871 vfree(cache);
5874 * A task is considered 'cache cold' if at least 2 times
5875 * the worst-case cost of migration has passed.
5877 * (this limit is only listened to if the load-balancing
5878 * situation is 'nice' - if there is a large imbalance we
5879 * ignore it for the sake of CPU utilization and
5880 * processing fairness.)
5882 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5885 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5887 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5888 unsigned long j0, j1, distance, max_distance = 0;
5889 struct sched_domain *sd;
5891 j0 = jiffies;
5894 * First pass - calculate the cacheflush times:
5896 for_each_cpu_mask(cpu1, *cpu_map) {
5897 for_each_cpu_mask(cpu2, *cpu_map) {
5898 if (cpu1 == cpu2)
5899 continue;
5900 distance = domain_distance(cpu1, cpu2);
5901 max_distance = max(max_distance, distance);
5903 * No result cached yet?
5905 if (migration_cost[distance] == -1LL)
5906 migration_cost[distance] =
5907 measure_migration_cost(cpu1, cpu2);
5911 * Second pass - update the sched domain hierarchy with
5912 * the new cache-hot-time estimations:
5914 for_each_cpu_mask(cpu, *cpu_map) {
5915 distance = 0;
5916 for_each_domain(cpu, sd) {
5917 sd->cache_hot_time = migration_cost[distance];
5918 distance++;
5922 * Print the matrix:
5924 if (migration_debug)
5925 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5926 max_cache_size,
5927 #ifdef CONFIG_X86
5928 cpu_khz/1000
5929 #else
5931 #endif
5933 if (system_state == SYSTEM_BOOTING) {
5934 printk("migration_cost=");
5935 for (distance = 0; distance <= max_distance; distance++) {
5936 if (distance)
5937 printk(",");
5938 printk("%ld", (long)migration_cost[distance] / 1000);
5940 printk("\n");
5942 j1 = jiffies;
5943 if (migration_debug)
5944 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5947 * Move back to the original CPU. NUMA-Q gets confused
5948 * if we migrate to another quad during bootup.
5950 if (raw_smp_processor_id() != orig_cpu) {
5951 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5952 saved_mask = current->cpus_allowed;
5954 set_cpus_allowed(current, mask);
5955 set_cpus_allowed(current, saved_mask);
5959 #ifdef CONFIG_NUMA
5962 * find_next_best_node - find the next node to include in a sched_domain
5963 * @node: node whose sched_domain we're building
5964 * @used_nodes: nodes already in the sched_domain
5966 * Find the next node to include in a given scheduling domain. Simply
5967 * finds the closest node not already in the @used_nodes map.
5969 * Should use nodemask_t.
5971 static int find_next_best_node(int node, unsigned long *used_nodes)
5973 int i, n, val, min_val, best_node = 0;
5975 min_val = INT_MAX;
5977 for (i = 0; i < MAX_NUMNODES; i++) {
5978 /* Start at @node */
5979 n = (node + i) % MAX_NUMNODES;
5981 if (!nr_cpus_node(n))
5982 continue;
5984 /* Skip already used nodes */
5985 if (test_bit(n, used_nodes))
5986 continue;
5988 /* Simple min distance search */
5989 val = node_distance(node, n);
5991 if (val < min_val) {
5992 min_val = val;
5993 best_node = n;
5997 set_bit(best_node, used_nodes);
5998 return best_node;
6002 * sched_domain_node_span - get a cpumask for a node's sched_domain
6003 * @node: node whose cpumask we're constructing
6004 * @size: number of nodes to include in this span
6006 * Given a node, construct a good cpumask for its sched_domain to span. It
6007 * should be one that prevents unnecessary balancing, but also spreads tasks
6008 * out optimally.
6010 static cpumask_t sched_domain_node_span(int node)
6012 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6013 cpumask_t span, nodemask;
6014 int i;
6016 cpus_clear(span);
6017 bitmap_zero(used_nodes, MAX_NUMNODES);
6019 nodemask = node_to_cpumask(node);
6020 cpus_or(span, span, nodemask);
6021 set_bit(node, used_nodes);
6023 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6024 int next_node = find_next_best_node(node, used_nodes);
6026 nodemask = node_to_cpumask(next_node);
6027 cpus_or(span, span, nodemask);
6030 return span;
6032 #endif
6034 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6037 * SMT sched-domains:
6039 #ifdef CONFIG_SCHED_SMT
6040 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6041 static struct sched_group sched_group_cpus[NR_CPUS];
6043 static int cpu_to_cpu_group(int cpu)
6045 return cpu;
6047 #endif
6050 * multi-core sched-domains:
6052 #ifdef CONFIG_SCHED_MC
6053 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6054 static struct sched_group *sched_group_core_bycpu[NR_CPUS];
6055 #endif
6057 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6058 static int cpu_to_core_group(int cpu)
6060 return first_cpu(cpu_sibling_map[cpu]);
6062 #elif defined(CONFIG_SCHED_MC)
6063 static int cpu_to_core_group(int cpu)
6065 return cpu;
6067 #endif
6069 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6070 static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
6072 static int cpu_to_phys_group(int cpu)
6074 #ifdef CONFIG_SCHED_MC
6075 cpumask_t mask = cpu_coregroup_map(cpu);
6076 return first_cpu(mask);
6077 #elif defined(CONFIG_SCHED_SMT)
6078 return first_cpu(cpu_sibling_map[cpu]);
6079 #else
6080 return cpu;
6081 #endif
6084 #ifdef CONFIG_NUMA
6086 * The init_sched_build_groups can't handle what we want to do with node
6087 * groups, so roll our own. Now each node has its own list of groups which
6088 * gets dynamically allocated.
6090 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6091 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6093 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6094 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6096 static int cpu_to_allnodes_group(int cpu)
6098 return cpu_to_node(cpu);
6100 static void init_numa_sched_groups_power(struct sched_group *group_head)
6102 struct sched_group *sg = group_head;
6103 int j;
6105 if (!sg)
6106 return;
6107 next_sg:
6108 for_each_cpu_mask(j, sg->cpumask) {
6109 struct sched_domain *sd;
6111 sd = &per_cpu(phys_domains, j);
6112 if (j != first_cpu(sd->groups->cpumask)) {
6114 * Only add "power" once for each
6115 * physical package.
6117 continue;
6120 sg->cpu_power += sd->groups->cpu_power;
6122 sg = sg->next;
6123 if (sg != group_head)
6124 goto next_sg;
6126 #endif
6128 /* Free memory allocated for various sched_group structures */
6129 static void free_sched_groups(const cpumask_t *cpu_map)
6131 int cpu;
6132 #ifdef CONFIG_NUMA
6133 int i;
6135 for_each_cpu_mask(cpu, *cpu_map) {
6136 struct sched_group *sched_group_allnodes
6137 = sched_group_allnodes_bycpu[cpu];
6138 struct sched_group **sched_group_nodes
6139 = sched_group_nodes_bycpu[cpu];
6141 if (sched_group_allnodes) {
6142 kfree(sched_group_allnodes);
6143 sched_group_allnodes_bycpu[cpu] = NULL;
6146 if (!sched_group_nodes)
6147 continue;
6149 for (i = 0; i < MAX_NUMNODES; i++) {
6150 cpumask_t nodemask = node_to_cpumask(i);
6151 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6153 cpus_and(nodemask, nodemask, *cpu_map);
6154 if (cpus_empty(nodemask))
6155 continue;
6157 if (sg == NULL)
6158 continue;
6159 sg = sg->next;
6160 next_sg:
6161 oldsg = sg;
6162 sg = sg->next;
6163 kfree(oldsg);
6164 if (oldsg != sched_group_nodes[i])
6165 goto next_sg;
6167 kfree(sched_group_nodes);
6168 sched_group_nodes_bycpu[cpu] = NULL;
6170 #endif
6171 for_each_cpu_mask(cpu, *cpu_map) {
6172 if (sched_group_phys_bycpu[cpu]) {
6173 kfree(sched_group_phys_bycpu[cpu]);
6174 sched_group_phys_bycpu[cpu] = NULL;
6176 #ifdef CONFIG_SCHED_MC
6177 if (sched_group_core_bycpu[cpu]) {
6178 kfree(sched_group_core_bycpu[cpu]);
6179 sched_group_core_bycpu[cpu] = NULL;
6181 #endif
6186 * Build sched domains for a given set of cpus and attach the sched domains
6187 * to the individual cpus
6189 static int build_sched_domains(const cpumask_t *cpu_map)
6191 int i;
6192 struct sched_group *sched_group_phys = NULL;
6193 #ifdef CONFIG_SCHED_MC
6194 struct sched_group *sched_group_core = NULL;
6195 #endif
6196 #ifdef CONFIG_NUMA
6197 struct sched_group **sched_group_nodes = NULL;
6198 struct sched_group *sched_group_allnodes = NULL;
6201 * Allocate the per-node list of sched groups
6203 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6204 GFP_KERNEL);
6205 if (!sched_group_nodes) {
6206 printk(KERN_WARNING "Can not alloc sched group node list\n");
6207 return -ENOMEM;
6209 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6210 #endif
6213 * Set up domains for cpus specified by the cpu_map.
6215 for_each_cpu_mask(i, *cpu_map) {
6216 int group;
6217 struct sched_domain *sd = NULL, *p;
6218 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6220 cpus_and(nodemask, nodemask, *cpu_map);
6222 #ifdef CONFIG_NUMA
6223 if (cpus_weight(*cpu_map)
6224 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6225 if (!sched_group_allnodes) {
6226 sched_group_allnodes
6227 = kmalloc(sizeof(struct sched_group)
6228 * MAX_NUMNODES,
6229 GFP_KERNEL);
6230 if (!sched_group_allnodes) {
6231 printk(KERN_WARNING
6232 "Can not alloc allnodes sched group\n");
6233 goto error;
6235 sched_group_allnodes_bycpu[i]
6236 = sched_group_allnodes;
6238 sd = &per_cpu(allnodes_domains, i);
6239 *sd = SD_ALLNODES_INIT;
6240 sd->span = *cpu_map;
6241 group = cpu_to_allnodes_group(i);
6242 sd->groups = &sched_group_allnodes[group];
6243 p = sd;
6244 } else
6245 p = NULL;
6247 sd = &per_cpu(node_domains, i);
6248 *sd = SD_NODE_INIT;
6249 sd->span = sched_domain_node_span(cpu_to_node(i));
6250 sd->parent = p;
6251 cpus_and(sd->span, sd->span, *cpu_map);
6252 #endif
6254 if (!sched_group_phys) {
6255 sched_group_phys
6256 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6257 GFP_KERNEL);
6258 if (!sched_group_phys) {
6259 printk (KERN_WARNING "Can not alloc phys sched"
6260 "group\n");
6261 goto error;
6263 sched_group_phys_bycpu[i] = sched_group_phys;
6266 p = sd;
6267 sd = &per_cpu(phys_domains, i);
6268 group = cpu_to_phys_group(i);
6269 *sd = SD_CPU_INIT;
6270 sd->span = nodemask;
6271 sd->parent = p;
6272 sd->groups = &sched_group_phys[group];
6274 #ifdef CONFIG_SCHED_MC
6275 if (!sched_group_core) {
6276 sched_group_core
6277 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6278 GFP_KERNEL);
6279 if (!sched_group_core) {
6280 printk (KERN_WARNING "Can not alloc core sched"
6281 "group\n");
6282 goto error;
6284 sched_group_core_bycpu[i] = sched_group_core;
6287 p = sd;
6288 sd = &per_cpu(core_domains, i);
6289 group = cpu_to_core_group(i);
6290 *sd = SD_MC_INIT;
6291 sd->span = cpu_coregroup_map(i);
6292 cpus_and(sd->span, sd->span, *cpu_map);
6293 sd->parent = p;
6294 sd->groups = &sched_group_core[group];
6295 #endif
6297 #ifdef CONFIG_SCHED_SMT
6298 p = sd;
6299 sd = &per_cpu(cpu_domains, i);
6300 group = cpu_to_cpu_group(i);
6301 *sd = SD_SIBLING_INIT;
6302 sd->span = cpu_sibling_map[i];
6303 cpus_and(sd->span, sd->span, *cpu_map);
6304 sd->parent = p;
6305 sd->groups = &sched_group_cpus[group];
6306 #endif
6309 #ifdef CONFIG_SCHED_SMT
6310 /* Set up CPU (sibling) groups */
6311 for_each_cpu_mask(i, *cpu_map) {
6312 cpumask_t this_sibling_map = cpu_sibling_map[i];
6313 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6314 if (i != first_cpu(this_sibling_map))
6315 continue;
6317 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6318 &cpu_to_cpu_group);
6320 #endif
6322 #ifdef CONFIG_SCHED_MC
6323 /* Set up multi-core groups */
6324 for_each_cpu_mask(i, *cpu_map) {
6325 cpumask_t this_core_map = cpu_coregroup_map(i);
6326 cpus_and(this_core_map, this_core_map, *cpu_map);
6327 if (i != first_cpu(this_core_map))
6328 continue;
6329 init_sched_build_groups(sched_group_core, this_core_map,
6330 &cpu_to_core_group);
6332 #endif
6335 /* Set up physical groups */
6336 for (i = 0; i < MAX_NUMNODES; i++) {
6337 cpumask_t nodemask = node_to_cpumask(i);
6339 cpus_and(nodemask, nodemask, *cpu_map);
6340 if (cpus_empty(nodemask))
6341 continue;
6343 init_sched_build_groups(sched_group_phys, nodemask,
6344 &cpu_to_phys_group);
6347 #ifdef CONFIG_NUMA
6348 /* Set up node groups */
6349 if (sched_group_allnodes)
6350 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6351 &cpu_to_allnodes_group);
6353 for (i = 0; i < MAX_NUMNODES; i++) {
6354 /* Set up node groups */
6355 struct sched_group *sg, *prev;
6356 cpumask_t nodemask = node_to_cpumask(i);
6357 cpumask_t domainspan;
6358 cpumask_t covered = CPU_MASK_NONE;
6359 int j;
6361 cpus_and(nodemask, nodemask, *cpu_map);
6362 if (cpus_empty(nodemask)) {
6363 sched_group_nodes[i] = NULL;
6364 continue;
6367 domainspan = sched_domain_node_span(i);
6368 cpus_and(domainspan, domainspan, *cpu_map);
6370 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6371 if (!sg) {
6372 printk(KERN_WARNING "Can not alloc domain group for "
6373 "node %d\n", i);
6374 goto error;
6376 sched_group_nodes[i] = sg;
6377 for_each_cpu_mask(j, nodemask) {
6378 struct sched_domain *sd;
6379 sd = &per_cpu(node_domains, j);
6380 sd->groups = sg;
6382 sg->cpu_power = 0;
6383 sg->cpumask = nodemask;
6384 sg->next = sg;
6385 cpus_or(covered, covered, nodemask);
6386 prev = sg;
6388 for (j = 0; j < MAX_NUMNODES; j++) {
6389 cpumask_t tmp, notcovered;
6390 int n = (i + j) % MAX_NUMNODES;
6392 cpus_complement(notcovered, covered);
6393 cpus_and(tmp, notcovered, *cpu_map);
6394 cpus_and(tmp, tmp, domainspan);
6395 if (cpus_empty(tmp))
6396 break;
6398 nodemask = node_to_cpumask(n);
6399 cpus_and(tmp, tmp, nodemask);
6400 if (cpus_empty(tmp))
6401 continue;
6403 sg = kmalloc_node(sizeof(struct sched_group),
6404 GFP_KERNEL, i);
6405 if (!sg) {
6406 printk(KERN_WARNING
6407 "Can not alloc domain group for node %d\n", j);
6408 goto error;
6410 sg->cpu_power = 0;
6411 sg->cpumask = tmp;
6412 sg->next = prev->next;
6413 cpus_or(covered, covered, tmp);
6414 prev->next = sg;
6415 prev = sg;
6418 #endif
6420 /* Calculate CPU power for physical packages and nodes */
6421 #ifdef CONFIG_SCHED_SMT
6422 for_each_cpu_mask(i, *cpu_map) {
6423 struct sched_domain *sd;
6424 sd = &per_cpu(cpu_domains, i);
6425 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6427 #endif
6428 #ifdef CONFIG_SCHED_MC
6429 for_each_cpu_mask(i, *cpu_map) {
6430 int power;
6431 struct sched_domain *sd;
6432 sd = &per_cpu(core_domains, i);
6433 if (sched_smt_power_savings)
6434 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6435 else
6436 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6437 * SCHED_LOAD_SCALE / 10;
6438 sd->groups->cpu_power = power;
6440 #endif
6442 for_each_cpu_mask(i, *cpu_map) {
6443 struct sched_domain *sd;
6444 #ifdef CONFIG_SCHED_MC
6445 sd = &per_cpu(phys_domains, i);
6446 if (i != first_cpu(sd->groups->cpumask))
6447 continue;
6449 sd->groups->cpu_power = 0;
6450 if (sched_mc_power_savings || sched_smt_power_savings) {
6451 int j;
6453 for_each_cpu_mask(j, sd->groups->cpumask) {
6454 struct sched_domain *sd1;
6455 sd1 = &per_cpu(core_domains, j);
6457 * for each core we will add once
6458 * to the group in physical domain
6460 if (j != first_cpu(sd1->groups->cpumask))
6461 continue;
6463 if (sched_smt_power_savings)
6464 sd->groups->cpu_power += sd1->groups->cpu_power;
6465 else
6466 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6468 } else
6470 * This has to be < 2 * SCHED_LOAD_SCALE
6471 * Lets keep it SCHED_LOAD_SCALE, so that
6472 * while calculating NUMA group's cpu_power
6473 * we can simply do
6474 * numa_group->cpu_power += phys_group->cpu_power;
6476 * See "only add power once for each physical pkg"
6477 * comment below
6479 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6480 #else
6481 int power;
6482 sd = &per_cpu(phys_domains, i);
6483 if (sched_smt_power_savings)
6484 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6485 else
6486 power = SCHED_LOAD_SCALE;
6487 sd->groups->cpu_power = power;
6488 #endif
6491 #ifdef CONFIG_NUMA
6492 for (i = 0; i < MAX_NUMNODES; i++)
6493 init_numa_sched_groups_power(sched_group_nodes[i]);
6495 if (sched_group_allnodes) {
6496 int group = cpu_to_allnodes_group(first_cpu(*cpu_map));
6497 struct sched_group *sg = &sched_group_allnodes[group];
6499 init_numa_sched_groups_power(sg);
6501 #endif
6503 /* Attach the domains */
6504 for_each_cpu_mask(i, *cpu_map) {
6505 struct sched_domain *sd;
6506 #ifdef CONFIG_SCHED_SMT
6507 sd = &per_cpu(cpu_domains, i);
6508 #elif defined(CONFIG_SCHED_MC)
6509 sd = &per_cpu(core_domains, i);
6510 #else
6511 sd = &per_cpu(phys_domains, i);
6512 #endif
6513 cpu_attach_domain(sd, i);
6516 * Tune cache-hot values:
6518 calibrate_migration_costs(cpu_map);
6520 return 0;
6522 error:
6523 free_sched_groups(cpu_map);
6524 return -ENOMEM;
6527 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6529 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6531 cpumask_t cpu_default_map;
6532 int err;
6535 * Setup mask for cpus without special case scheduling requirements.
6536 * For now this just excludes isolated cpus, but could be used to
6537 * exclude other special cases in the future.
6539 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6541 err = build_sched_domains(&cpu_default_map);
6543 return err;
6546 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6548 free_sched_groups(cpu_map);
6552 * Detach sched domains from a group of cpus specified in cpu_map
6553 * These cpus will now be attached to the NULL domain
6555 static void detach_destroy_domains(const cpumask_t *cpu_map)
6557 int i;
6559 for_each_cpu_mask(i, *cpu_map)
6560 cpu_attach_domain(NULL, i);
6561 synchronize_sched();
6562 arch_destroy_sched_domains(cpu_map);
6566 * Partition sched domains as specified by the cpumasks below.
6567 * This attaches all cpus from the cpumasks to the NULL domain,
6568 * waits for a RCU quiescent period, recalculates sched
6569 * domain information and then attaches them back to the
6570 * correct sched domains
6571 * Call with hotplug lock held
6573 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6575 cpumask_t change_map;
6576 int err = 0;
6578 cpus_and(*partition1, *partition1, cpu_online_map);
6579 cpus_and(*partition2, *partition2, cpu_online_map);
6580 cpus_or(change_map, *partition1, *partition2);
6582 /* Detach sched domains from all of the affected cpus */
6583 detach_destroy_domains(&change_map);
6584 if (!cpus_empty(*partition1))
6585 err = build_sched_domains(partition1);
6586 if (!err && !cpus_empty(*partition2))
6587 err = build_sched_domains(partition2);
6589 return err;
6592 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6593 int arch_reinit_sched_domains(void)
6595 int err;
6597 lock_cpu_hotplug();
6598 detach_destroy_domains(&cpu_online_map);
6599 err = arch_init_sched_domains(&cpu_online_map);
6600 unlock_cpu_hotplug();
6602 return err;
6605 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6607 int ret;
6609 if (buf[0] != '0' && buf[0] != '1')
6610 return -EINVAL;
6612 if (smt)
6613 sched_smt_power_savings = (buf[0] == '1');
6614 else
6615 sched_mc_power_savings = (buf[0] == '1');
6617 ret = arch_reinit_sched_domains();
6619 return ret ? ret : count;
6622 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6624 int err = 0;
6626 #ifdef CONFIG_SCHED_SMT
6627 if (smt_capable())
6628 err = sysfs_create_file(&cls->kset.kobj,
6629 &attr_sched_smt_power_savings.attr);
6630 #endif
6631 #ifdef CONFIG_SCHED_MC
6632 if (!err && mc_capable())
6633 err = sysfs_create_file(&cls->kset.kobj,
6634 &attr_sched_mc_power_savings.attr);
6635 #endif
6636 return err;
6638 #endif
6640 #ifdef CONFIG_SCHED_MC
6641 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6643 return sprintf(page, "%u\n", sched_mc_power_savings);
6645 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6646 const char *buf, size_t count)
6648 return sched_power_savings_store(buf, count, 0);
6650 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6651 sched_mc_power_savings_store);
6652 #endif
6654 #ifdef CONFIG_SCHED_SMT
6655 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6657 return sprintf(page, "%u\n", sched_smt_power_savings);
6659 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6660 const char *buf, size_t count)
6662 return sched_power_savings_store(buf, count, 1);
6664 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6665 sched_smt_power_savings_store);
6666 #endif
6669 #ifdef CONFIG_HOTPLUG_CPU
6671 * Force a reinitialization of the sched domains hierarchy. The domains
6672 * and groups cannot be updated in place without racing with the balancing
6673 * code, so we temporarily attach all running cpus to the NULL domain
6674 * which will prevent rebalancing while the sched domains are recalculated.
6676 static int update_sched_domains(struct notifier_block *nfb,
6677 unsigned long action, void *hcpu)
6679 switch (action) {
6680 case CPU_UP_PREPARE:
6681 case CPU_DOWN_PREPARE:
6682 detach_destroy_domains(&cpu_online_map);
6683 return NOTIFY_OK;
6685 case CPU_UP_CANCELED:
6686 case CPU_DOWN_FAILED:
6687 case CPU_ONLINE:
6688 case CPU_DEAD:
6690 * Fall through and re-initialise the domains.
6692 break;
6693 default:
6694 return NOTIFY_DONE;
6697 /* The hotplug lock is already held by cpu_up/cpu_down */
6698 arch_init_sched_domains(&cpu_online_map);
6700 return NOTIFY_OK;
6702 #endif
6704 void __init sched_init_smp(void)
6706 lock_cpu_hotplug();
6707 arch_init_sched_domains(&cpu_online_map);
6708 unlock_cpu_hotplug();
6709 /* XXX: Theoretical race here - CPU may be hotplugged now */
6710 hotcpu_notifier(update_sched_domains, 0);
6712 #else
6713 void __init sched_init_smp(void)
6716 #endif /* CONFIG_SMP */
6718 int in_sched_functions(unsigned long addr)
6720 /* Linker adds these: start and end of __sched functions */
6721 extern char __sched_text_start[], __sched_text_end[];
6723 return in_lock_functions(addr) ||
6724 (addr >= (unsigned long)__sched_text_start
6725 && addr < (unsigned long)__sched_text_end);
6728 void __init sched_init(void)
6730 int i, j, k;
6732 for_each_possible_cpu(i) {
6733 struct prio_array *array;
6734 struct rq *rq;
6736 rq = cpu_rq(i);
6737 spin_lock_init(&rq->lock);
6738 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6739 rq->nr_running = 0;
6740 rq->active = rq->arrays;
6741 rq->expired = rq->arrays + 1;
6742 rq->best_expired_prio = MAX_PRIO;
6744 #ifdef CONFIG_SMP
6745 rq->sd = NULL;
6746 for (j = 1; j < 3; j++)
6747 rq->cpu_load[j] = 0;
6748 rq->active_balance = 0;
6749 rq->push_cpu = 0;
6750 rq->migration_thread = NULL;
6751 INIT_LIST_HEAD(&rq->migration_queue);
6752 #endif
6753 atomic_set(&rq->nr_iowait, 0);
6755 for (j = 0; j < 2; j++) {
6756 array = rq->arrays + j;
6757 for (k = 0; k < MAX_PRIO; k++) {
6758 INIT_LIST_HEAD(array->queue + k);
6759 __clear_bit(k, array->bitmap);
6761 // delimiter for bitsearch
6762 __set_bit(MAX_PRIO, array->bitmap);
6766 set_load_weight(&init_task);
6768 #ifdef CONFIG_RT_MUTEXES
6769 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6770 #endif
6773 * The boot idle thread does lazy MMU switching as well:
6775 atomic_inc(&init_mm.mm_count);
6776 enter_lazy_tlb(&init_mm, current);
6779 * Make us the idle thread. Technically, schedule() should not be
6780 * called from this thread, however somewhere below it might be,
6781 * but because we are the idle thread, we just pick up running again
6782 * when this runqueue becomes "idle".
6784 init_idle(current, smp_processor_id());
6787 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6788 void __might_sleep(char *file, int line)
6790 #ifdef in_atomic
6791 static unsigned long prev_jiffy; /* ratelimiting */
6793 if ((in_atomic() || irqs_disabled()) &&
6794 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6795 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6796 return;
6797 prev_jiffy = jiffies;
6798 printk(KERN_ERR "BUG: sleeping function called from invalid"
6799 " context at %s:%d\n", file, line);
6800 printk("in_atomic():%d, irqs_disabled():%d\n",
6801 in_atomic(), irqs_disabled());
6802 dump_stack();
6804 #endif
6806 EXPORT_SYMBOL(__might_sleep);
6807 #endif
6809 #ifdef CONFIG_MAGIC_SYSRQ
6810 void normalize_rt_tasks(void)
6812 struct prio_array *array;
6813 struct task_struct *p;
6814 unsigned long flags;
6815 struct rq *rq;
6817 read_lock_irq(&tasklist_lock);
6818 for_each_process(p) {
6819 if (!rt_task(p))
6820 continue;
6822 spin_lock_irqsave(&p->pi_lock, flags);
6823 rq = __task_rq_lock(p);
6825 array = p->array;
6826 if (array)
6827 deactivate_task(p, task_rq(p));
6828 __setscheduler(p, SCHED_NORMAL, 0);
6829 if (array) {
6830 __activate_task(p, task_rq(p));
6831 resched_task(rq->curr);
6834 __task_rq_unlock(rq);
6835 spin_unlock_irqrestore(&p->pi_lock, flags);
6837 read_unlock_irq(&tasklist_lock);
6840 #endif /* CONFIG_MAGIC_SYSRQ */
6842 #ifdef CONFIG_IA64
6844 * These functions are only useful for the IA64 MCA handling.
6846 * They can only be called when the whole system has been
6847 * stopped - every CPU needs to be quiescent, and no scheduling
6848 * activity can take place. Using them for anything else would
6849 * be a serious bug, and as a result, they aren't even visible
6850 * under any other configuration.
6854 * curr_task - return the current task for a given cpu.
6855 * @cpu: the processor in question.
6857 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6859 struct task_struct *curr_task(int cpu)
6861 return cpu_curr(cpu);
6865 * set_curr_task - set the current task for a given cpu.
6866 * @cpu: the processor in question.
6867 * @p: the task pointer to set.
6869 * Description: This function must only be used when non-maskable interrupts
6870 * are serviced on a separate stack. It allows the architecture to switch the
6871 * notion of the current task on a cpu in a non-blocking manner. This function
6872 * must be called with all CPU's synchronized, and interrupts disabled, the
6873 * and caller must save the original value of the current task (see
6874 * curr_task() above) and restore that value before reenabling interrupts and
6875 * re-starting the system.
6877 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6879 void set_curr_task(int cpu, struct task_struct *p)
6881 cpu_curr(cpu) = p;
6884 #endif