kbuild: fix silentoldconfig with make O=
[linux-2.6/verdex.git] / arch / arm / mach-omap1 / time.c
blob191a9b1ee9b7168f1ef3b561b08f732e55b4c2bf
1 /*
2 * linux/arch/arm/mach-omap1/time.c
4 * OMAP Timers
6 * Copyright (C) 2004 Nokia Corporation
7 * Partial timer rewrite and additional dynamic tick timer support by
8 * Tony Lindgen <tony@atomide.com> and
9 * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
11 * MPU timer code based on the older MPU timer code for OMAP
12 * Copyright (C) 2000 RidgeRun, Inc.
13 * Author: Greg Lonnon <glonnon@ridgerun.com>
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
23 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
26 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
36 #include <linux/config.h>
37 #include <linux/kernel.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/interrupt.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
44 #include <asm/system.h>
45 #include <asm/hardware.h>
46 #include <asm/io.h>
47 #include <asm/leds.h>
48 #include <asm/irq.h>
49 #include <asm/mach/irq.h>
50 #include <asm/mach/time.h>
52 struct sys_timer omap_timer;
54 #ifdef CONFIG_OMAP_MPU_TIMER
57 * ---------------------------------------------------------------------------
58 * MPU timer
59 * ---------------------------------------------------------------------------
61 #define OMAP_MPU_TIMER_BASE OMAP_MPU_TIMER1_BASE
62 #define OMAP_MPU_TIMER_OFFSET 0x100
64 /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
65 * converted to use kHz by Kevin Hilman */
66 /* convert from cycles(64bits) => nanoseconds (64bits)
67 * basic equation:
68 * ns = cycles / (freq / ns_per_sec)
69 * ns = cycles * (ns_per_sec / freq)
70 * ns = cycles * (10^9 / (cpu_khz * 10^3))
71 * ns = cycles * (10^6 / cpu_khz)
73 * Then we use scaling math (suggested by george at mvista.com) to get:
74 * ns = cycles * (10^6 * SC / cpu_khz / SC
75 * ns = cycles * cyc2ns_scale / SC
77 * And since SC is a constant power of two, we can convert the div
78 * into a shift.
79 * -johnstul at us.ibm.com "math is hard, lets go shopping!"
81 static unsigned long cyc2ns_scale;
82 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
84 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
86 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
89 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
91 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
95 * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs
96 * will break. On P2, the timer count rate is 6.5 MHz after programming PTV
97 * with 0. This divides the 13MHz input by 2, and is undocumented.
99 #ifdef CONFIG_MACH_OMAP_PERSEUS2
100 /* REVISIT: This ifdef construct should be replaced by a query to clock
101 * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz.
103 #define MPU_TICKS_PER_SEC (13000000 / 2)
104 #else
105 #define MPU_TICKS_PER_SEC (12000000 / 2)
106 #endif
108 #define MPU_TIMER_TICK_PERIOD ((MPU_TICKS_PER_SEC / HZ) - 1)
110 typedef struct {
111 u32 cntl; /* CNTL_TIMER, R/W */
112 u32 load_tim; /* LOAD_TIM, W */
113 u32 read_tim; /* READ_TIM, R */
114 } omap_mpu_timer_regs_t;
116 #define omap_mpu_timer_base(n) \
117 ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE + \
118 (n)*OMAP_MPU_TIMER_OFFSET))
120 static inline unsigned long omap_mpu_timer_read(int nr)
122 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
123 return timer->read_tim;
126 static inline void omap_mpu_timer_start(int nr, unsigned long load_val)
128 volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
130 timer->cntl = MPU_TIMER_CLOCK_ENABLE;
131 udelay(1);
132 timer->load_tim = load_val;
133 udelay(1);
134 timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST);
137 unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks)
139 unsigned long long nsec;
141 nsec = cycles_2_ns((unsigned long long)nr_ticks);
142 return (unsigned long)nsec / 1000;
146 * Last processed system timer interrupt
148 static unsigned long omap_mpu_timer_last = 0;
151 * Returns elapsed usecs since last system timer interrupt
153 static unsigned long omap_mpu_timer_gettimeoffset(void)
155 unsigned long now = 0 - omap_mpu_timer_read(0);
156 unsigned long elapsed = now - omap_mpu_timer_last;
158 return omap_mpu_timer_ticks_to_usecs(elapsed);
162 * Elapsed time between interrupts is calculated using timer0.
163 * Latency during the interrupt is calculated using timer1.
164 * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz).
166 static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id,
167 struct pt_regs *regs)
169 unsigned long now, latency;
171 write_seqlock(&xtime_lock);
172 now = 0 - omap_mpu_timer_read(0);
173 latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1);
174 omap_mpu_timer_last = now - latency;
175 timer_tick(regs);
176 write_sequnlock(&xtime_lock);
178 return IRQ_HANDLED;
181 static struct irqaction omap_mpu_timer_irq = {
182 .name = "mpu timer",
183 .flags = SA_INTERRUPT | SA_TIMER,
184 .handler = omap_mpu_timer_interrupt,
187 static unsigned long omap_mpu_timer1_overflows;
188 static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id,
189 struct pt_regs *regs)
191 omap_mpu_timer1_overflows++;
192 return IRQ_HANDLED;
195 static struct irqaction omap_mpu_timer1_irq = {
196 .name = "mpu timer1 overflow",
197 .flags = SA_INTERRUPT,
198 .handler = omap_mpu_timer1_interrupt,
201 static __init void omap_init_mpu_timer(void)
203 set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000);
204 omap_timer.offset = omap_mpu_timer_gettimeoffset;
205 setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
206 setup_irq(INT_TIMER2, &omap_mpu_timer_irq);
207 omap_mpu_timer_start(0, 0xffffffff);
208 omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD);
212 * Scheduler clock - returns current time in nanosec units.
214 unsigned long long sched_clock(void)
216 unsigned long ticks = 0 - omap_mpu_timer_read(0);
217 unsigned long long ticks64;
219 ticks64 = omap_mpu_timer1_overflows;
220 ticks64 <<= 32;
221 ticks64 |= ticks;
223 return cycles_2_ns(ticks64);
225 #endif /* CONFIG_OMAP_MPU_TIMER */
227 #ifdef CONFIG_OMAP_32K_TIMER
229 #ifdef CONFIG_ARCH_OMAP1510
230 #error OMAP 32KHz timer does not currently work on 1510!
231 #endif
234 * ---------------------------------------------------------------------------
235 * 32KHz OS timer
237 * This currently works only on 16xx, as 1510 does not have the continuous
238 * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track
239 * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer
240 * on 1510 would be possible, but the timer would not be as accurate as
241 * with the 32KHz synchronized timer.
242 * ---------------------------------------------------------------------------
244 #define OMAP_32K_TIMER_BASE 0xfffb9000
245 #define OMAP_32K_TIMER_CR 0x08
246 #define OMAP_32K_TIMER_TVR 0x00
247 #define OMAP_32K_TIMER_TCR 0x04
249 #define OMAP_32K_TICKS_PER_HZ (32768 / HZ)
252 * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1
253 * so with HZ = 100, TVR = 327.68.
255 #define OMAP_32K_TIMER_TICK_PERIOD ((32768 / HZ) - 1)
256 #define TIMER_32K_SYNCHRONIZED 0xfffbc410
258 #define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate) \
259 (((nr_jiffies) * (clock_rate)) / HZ)
261 static inline void omap_32k_timer_write(int val, int reg)
263 omap_writew(val, reg + OMAP_32K_TIMER_BASE);
266 static inline unsigned long omap_32k_timer_read(int reg)
268 return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff;
272 * The 32KHz synchronized timer is an additional timer on 16xx.
273 * It is always running.
275 static inline unsigned long omap_32k_sync_timer_read(void)
277 return omap_readl(TIMER_32K_SYNCHRONIZED);
280 static inline void omap_32k_timer_start(unsigned long load_val)
282 omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR);
283 omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR);
286 static inline void omap_32k_timer_stop(void)
288 omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR);
292 * Rounds down to nearest usec. Note that this will overflow for larger values.
294 static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k)
296 return (ticks_32k * 5*5*5*5*5*5) >> 9;
300 * Rounds down to nearest nsec.
302 static inline unsigned long long
303 omap_32k_ticks_to_nsecs(unsigned long ticks_32k)
305 return (unsigned long long) ticks_32k * 1000 * 5*5*5*5*5*5 >> 9;
308 static unsigned long omap_32k_last_tick = 0;
311 * Returns elapsed usecs since last 32k timer interrupt
313 static unsigned long omap_32k_timer_gettimeoffset(void)
315 unsigned long now = omap_32k_sync_timer_read();
316 return omap_32k_ticks_to_usecs(now - omap_32k_last_tick);
320 * Returns current time from boot in nsecs. It's OK for this to wrap
321 * around for now, as it's just a relative time stamp.
323 unsigned long long sched_clock(void)
325 return omap_32k_ticks_to_nsecs(omap_32k_sync_timer_read());
329 * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this
330 * function is also called from other interrupts to remove latency
331 * issues with dynamic tick. In the dynamic tick case, we need to lock
332 * with irqsave.
334 static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id,
335 struct pt_regs *regs)
337 unsigned long flags;
338 unsigned long now;
340 write_seqlock_irqsave(&xtime_lock, flags);
341 now = omap_32k_sync_timer_read();
343 while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) {
344 omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ;
345 timer_tick(regs);
348 /* Restart timer so we don't drift off due to modulo or dynamic tick.
349 * By default we program the next timer to be continuous to avoid
350 * latencies during high system load. During dynamic tick operation the
351 * continuous timer can be overridden from pm_idle to be longer.
353 omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now);
354 write_sequnlock_irqrestore(&xtime_lock, flags);
356 return IRQ_HANDLED;
359 #ifdef CONFIG_NO_IDLE_HZ
361 * Programs the next timer interrupt needed. Called when dynamic tick is
362 * enabled, and to reprogram the ticks to skip from pm_idle. Note that
363 * we can keep the timer continuous, and don't need to set it to run in
364 * one-shot mode. This is because the timer will get reprogrammed again
365 * after next interrupt.
367 void omap_32k_timer_reprogram(unsigned long next_tick)
369 omap_32k_timer_start(JIFFIES_TO_HW_TICKS(next_tick, 32768) + 1);
372 static struct irqaction omap_32k_timer_irq;
373 extern struct timer_update_handler timer_update;
375 static int omap_32k_timer_enable_dyn_tick(void)
377 /* No need to reprogram timer, just use the next interrupt */
378 return 0;
381 static int omap_32k_timer_disable_dyn_tick(void)
383 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
384 return 0;
387 static struct dyn_tick_timer omap_dyn_tick_timer = {
388 .enable = omap_32k_timer_enable_dyn_tick,
389 .disable = omap_32k_timer_disable_dyn_tick,
390 .reprogram = omap_32k_timer_reprogram,
391 .handler = omap_32k_timer_interrupt,
393 #endif /* CONFIG_NO_IDLE_HZ */
395 static struct irqaction omap_32k_timer_irq = {
396 .name = "32KHz timer",
397 .flags = SA_INTERRUPT | SA_TIMER,
398 .handler = omap_32k_timer_interrupt,
401 static __init void omap_init_32k_timer(void)
404 #ifdef CONFIG_NO_IDLE_HZ
405 omap_timer.dyn_tick = &omap_dyn_tick_timer;
406 #endif
408 setup_irq(INT_OS_TIMER, &omap_32k_timer_irq);
409 omap_timer.offset = omap_32k_timer_gettimeoffset;
410 omap_32k_last_tick = omap_32k_sync_timer_read();
411 omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD);
413 #endif /* CONFIG_OMAP_32K_TIMER */
416 * ---------------------------------------------------------------------------
417 * Timer initialization
418 * ---------------------------------------------------------------------------
420 static void __init omap_timer_init(void)
422 #if defined(CONFIG_OMAP_MPU_TIMER)
423 omap_init_mpu_timer();
424 #elif defined(CONFIG_OMAP_32K_TIMER)
425 omap_init_32k_timer();
426 #else
427 #error No system timer selected in Kconfig!
428 #endif
431 struct sys_timer omap_timer = {
432 .init = omap_timer_init,
433 .offset = NULL, /* Initialized later */