kbuild: fix silentoldconfig with make O=
[linux-2.6/verdex.git] / arch / cris / kernel / setup.c
blobd11206e467ab3e9d8ec1cf7f82b62cb7423ec6bf
1 /*
3 * linux/arch/cris/kernel/setup.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (c) 2001 Axis Communications AB
7 */
9 /*
10 * This file handles the architecture-dependent parts of initialization
13 #include <linux/config.h>
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <asm/pgtable.h>
18 #include <linux/seq_file.h>
19 #include <linux/tty.h>
20 #include <linux/utsname.h>
22 #include <asm/setup.h>
25 * Setup options
27 struct drive_info_struct { char dummy[32]; } drive_info;
28 struct screen_info screen_info;
30 extern int root_mountflags;
31 extern char _etext, _edata, _end;
33 char cris_command_line[COMMAND_LINE_SIZE] = { 0, };
35 extern const unsigned long text_start, edata; /* set by the linker script */
36 extern unsigned long dram_start, dram_end;
38 extern unsigned long romfs_start, romfs_length, romfs_in_flash; /* from head.S */
40 extern void show_etrax_copyright(void); /* arch-vX/kernel/setup.c */
42 /* This mainly sets up the memory area, and can be really confusing.
44 * The physical DRAM is virtually mapped into dram_start to dram_end
45 * (usually c0000000 to c0000000 + DRAM size). The physical address is
46 * given by the macro __pa().
48 * In this DRAM, the kernel code and data is loaded, in the beginning.
49 * It really starts at c0004000 to make room for some special pages -
50 * the start address is text_start. The kernel data ends at _end. After
51 * this the ROM filesystem is appended (if there is any).
53 * Between this address and dram_end, we have RAM pages usable to the
54 * boot code and the system.
58 void __init
59 setup_arch(char **cmdline_p)
61 extern void init_etrax_debug(void);
62 unsigned long bootmap_size;
63 unsigned long start_pfn, max_pfn;
64 unsigned long memory_start;
66 /* register an initial console printing routine for printk's */
68 init_etrax_debug();
70 /* we should really poll for DRAM size! */
72 high_memory = &dram_end;
74 if(romfs_in_flash || !romfs_length) {
75 /* if we have the romfs in flash, or if there is no rom filesystem,
76 * our free area starts directly after the BSS
78 memory_start = (unsigned long) &_end;
79 } else {
80 /* otherwise the free area starts after the ROM filesystem */
81 printk("ROM fs in RAM, size %lu bytes\n", romfs_length);
82 memory_start = romfs_start + romfs_length;
85 /* process 1's initial memory region is the kernel code/data */
87 init_mm.start_code = (unsigned long) &text_start;
88 init_mm.end_code = (unsigned long) &_etext;
89 init_mm.end_data = (unsigned long) &_edata;
90 init_mm.brk = (unsigned long) &_end;
92 #define PFN_UP(x) (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)
93 #define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
94 #define PFN_PHYS(x) ((x) << PAGE_SHIFT)
96 /* min_low_pfn points to the start of DRAM, start_pfn points
97 * to the first DRAM pages after the kernel, and max_low_pfn
98 * to the end of DRAM.
102 * partially used pages are not usable - thus
103 * we are rounding upwards:
106 start_pfn = PFN_UP(memory_start); /* usually c0000000 + kernel + romfs */
107 max_pfn = PFN_DOWN((unsigned long)high_memory); /* usually c0000000 + dram size */
110 * Initialize the boot-time allocator (start, end)
112 * We give it access to all our DRAM, but we could as well just have
113 * given it a small slice. No point in doing that though, unless we
114 * have non-contiguous memory and want the boot-stuff to be in, say,
115 * the smallest area.
117 * It will put a bitmap of the allocated pages in the beginning
118 * of the range we give it, but it won't mark the bitmaps pages
119 * as reserved. We have to do that ourselves below.
121 * We need to use init_bootmem_node instead of init_bootmem
122 * because our map starts at a quite high address (min_low_pfn).
125 max_low_pfn = max_pfn;
126 min_low_pfn = PAGE_OFFSET >> PAGE_SHIFT;
128 bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
129 min_low_pfn,
130 max_low_pfn);
132 /* And free all memory not belonging to the kernel (addr, size) */
134 free_bootmem(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn - start_pfn));
137 * Reserve the bootmem bitmap itself as well. We do this in two
138 * steps (first step was init_bootmem()) because this catches
139 * the (very unlikely) case of us accidentally initializing the
140 * bootmem allocator with an invalid RAM area.
142 * Arguments are start, size
145 reserve_bootmem(PFN_PHYS(start_pfn), bootmap_size);
147 /* paging_init() sets up the MMU and marks all pages as reserved */
149 paging_init();
151 *cmdline_p = cris_command_line;
153 #ifdef CONFIG_ETRAX_CMDLINE
154 if (!strcmp(cris_command_line, "")) {
155 strlcpy(cris_command_line, CONFIG_ETRAX_CMDLINE, COMMAND_LINE_SIZE);
156 cris_command_line[COMMAND_LINE_SIZE - 1] = '\0';
158 #endif
160 /* Save command line for future references. */
161 memcpy(saved_command_line, cris_command_line, COMMAND_LINE_SIZE);
162 saved_command_line[COMMAND_LINE_SIZE - 1] = '\0';
164 /* give credit for the CRIS port */
165 show_etrax_copyright();
167 /* Setup utsname */
168 strcpy(system_utsname.machine, cris_machine_name);
171 static void *c_start(struct seq_file *m, loff_t *pos)
173 return *pos < NR_CPUS ? (void *)(int)(*pos + 1): NULL;
176 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
178 ++*pos;
179 return c_start(m, pos);
182 static void c_stop(struct seq_file *m, void *v)
186 extern int show_cpuinfo(struct seq_file *m, void *v);
188 struct seq_operations cpuinfo_op = {
189 .start = c_start,
190 .next = c_next,
191 .stop = c_stop,
192 .show = show_cpuinfo,