kbuild: fix silentoldconfig with make O=
[linux-2.6/verdex.git] / arch / ia64 / mm / init.c
blob65f9958db9f03347a2a49c3b69a564c536459529
1 /*
2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7 #include <linux/config.h>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
11 #include <linux/bootmem.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
45 extern void ia64_tlb_init (void);
47 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
49 #ifdef CONFIG_VIRTUAL_MEM_MAP
50 unsigned long vmalloc_end = VMALLOC_END_INIT;
51 EXPORT_SYMBOL(vmalloc_end);
52 struct page *vmem_map;
53 EXPORT_SYMBOL(vmem_map);
54 #endif
56 struct page *zero_page_memmap_ptr; /* map entry for zero page */
57 EXPORT_SYMBOL(zero_page_memmap_ptr);
59 #define MIN_PGT_PAGES 25UL
60 #define MAX_PGT_FREES_PER_PASS 16L
61 #define PGT_FRACTION_OF_NODE_MEM 16
63 static inline long
64 max_pgt_pages(void)
66 u64 node_free_pages, max_pgt_pages;
68 #ifndef CONFIG_NUMA
69 node_free_pages = nr_free_pages();
70 #else
71 node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72 #endif
73 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75 return max_pgt_pages;
78 static inline long
79 min_pages_to_free(void)
81 long pages_to_free;
83 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85 return pages_to_free;
88 void
89 check_pgt_cache(void)
91 long pages_to_free;
93 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94 return;
96 preempt_disable();
97 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98 while (pages_to_free--) {
99 free_page((unsigned long)pgtable_quicklist_alloc());
101 preempt_enable();
102 preempt_disable();
104 preempt_enable();
107 void
108 lazy_mmu_prot_update (pte_t pte)
110 unsigned long addr;
111 struct page *page;
113 if (!pte_exec(pte))
114 return; /* not an executable page... */
116 page = pte_page(pte);
117 addr = (unsigned long) page_address(page);
119 if (test_bit(PG_arch_1, &page->flags))
120 return; /* i-cache is already coherent with d-cache */
122 flush_icache_range(addr, addr + PAGE_SIZE);
123 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
126 inline void
127 ia64_set_rbs_bot (void)
129 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
131 if (stack_size > MAX_USER_STACK_SIZE)
132 stack_size = MAX_USER_STACK_SIZE;
133 current->thread.rbs_bot = STACK_TOP - stack_size;
137 * This performs some platform-dependent address space initialization.
138 * On IA-64, we want to setup the VM area for the register backing
139 * store (which grows upwards) and install the gateway page which is
140 * used for signal trampolines, etc.
142 void
143 ia64_init_addr_space (void)
145 struct vm_area_struct *vma;
147 ia64_set_rbs_bot();
150 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
151 * the problem. When the process attempts to write to the register backing store
152 * for the first time, it will get a SEGFAULT in this case.
154 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
155 if (vma) {
156 memset(vma, 0, sizeof(*vma));
157 vma->vm_mm = current->mm;
158 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
159 vma->vm_end = vma->vm_start + PAGE_SIZE;
160 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
161 vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP;
162 down_write(&current->mm->mmap_sem);
163 if (insert_vm_struct(current->mm, vma)) {
164 up_write(&current->mm->mmap_sem);
165 kmem_cache_free(vm_area_cachep, vma);
166 return;
168 up_write(&current->mm->mmap_sem);
171 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
172 if (!(current->personality & MMAP_PAGE_ZERO)) {
173 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
174 if (vma) {
175 memset(vma, 0, sizeof(*vma));
176 vma->vm_mm = current->mm;
177 vma->vm_end = PAGE_SIZE;
178 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
179 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
180 down_write(&current->mm->mmap_sem);
181 if (insert_vm_struct(current->mm, vma)) {
182 up_write(&current->mm->mmap_sem);
183 kmem_cache_free(vm_area_cachep, vma);
184 return;
186 up_write(&current->mm->mmap_sem);
191 void
192 free_initmem (void)
194 unsigned long addr, eaddr;
196 addr = (unsigned long) ia64_imva(__init_begin);
197 eaddr = (unsigned long) ia64_imva(__init_end);
198 while (addr < eaddr) {
199 ClearPageReserved(virt_to_page(addr));
200 set_page_count(virt_to_page(addr), 1);
201 free_page(addr);
202 ++totalram_pages;
203 addr += PAGE_SIZE;
205 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
206 (__init_end - __init_begin) >> 10);
209 void
210 free_initrd_mem (unsigned long start, unsigned long end)
212 struct page *page;
214 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
215 * Thus EFI and the kernel may have different page sizes. It is
216 * therefore possible to have the initrd share the same page as
217 * the end of the kernel (given current setup).
219 * To avoid freeing/using the wrong page (kernel sized) we:
220 * - align up the beginning of initrd
221 * - align down the end of initrd
223 * | |
224 * |=============| a000
225 * | |
226 * | |
227 * | | 9000
228 * |/////////////|
229 * |/////////////|
230 * |=============| 8000
231 * |///INITRD////|
232 * |/////////////|
233 * |/////////////| 7000
234 * | |
235 * |KKKKKKKKKKKKK|
236 * |=============| 6000
237 * |KKKKKKKKKKKKK|
238 * |KKKKKKKKKKKKK|
239 * K=kernel using 8KB pages
241 * In this example, we must free page 8000 ONLY. So we must align up
242 * initrd_start and keep initrd_end as is.
244 start = PAGE_ALIGN(start);
245 end = end & PAGE_MASK;
247 if (start < end)
248 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
250 for (; start < end; start += PAGE_SIZE) {
251 if (!virt_addr_valid(start))
252 continue;
253 page = virt_to_page(start);
254 ClearPageReserved(page);
255 set_page_count(page, 1);
256 free_page(start);
257 ++totalram_pages;
262 * This installs a clean page in the kernel's page table.
264 struct page *
265 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
267 pgd_t *pgd;
268 pud_t *pud;
269 pmd_t *pmd;
270 pte_t *pte;
272 if (!PageReserved(page))
273 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
274 page_address(page));
276 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
278 spin_lock(&init_mm.page_table_lock);
280 pud = pud_alloc(&init_mm, pgd, address);
281 if (!pud)
282 goto out;
284 pmd = pmd_alloc(&init_mm, pud, address);
285 if (!pmd)
286 goto out;
287 pte = pte_alloc_map(&init_mm, pmd, address);
288 if (!pte)
289 goto out;
290 if (!pte_none(*pte)) {
291 pte_unmap(pte);
292 goto out;
294 set_pte(pte, mk_pte(page, pgprot));
295 pte_unmap(pte);
297 out: spin_unlock(&init_mm.page_table_lock);
298 /* no need for flush_tlb */
299 return page;
302 static void
303 setup_gate (void)
305 struct page *page;
308 * Map the gate page twice: once read-only to export the ELF
309 * headers etc. and once execute-only page to enable
310 * privilege-promotion via "epc":
312 page = virt_to_page(ia64_imva(__start_gate_section));
313 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
314 #ifdef HAVE_BUGGY_SEGREL
315 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
316 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
317 #else
318 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
319 /* Fill in the holes (if any) with read-only zero pages: */
321 unsigned long addr;
323 for (addr = GATE_ADDR + PAGE_SIZE;
324 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
325 addr += PAGE_SIZE)
327 put_kernel_page(ZERO_PAGE(0), addr,
328 PAGE_READONLY);
329 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
330 PAGE_READONLY);
333 #endif
334 ia64_patch_gate();
337 void __devinit
338 ia64_mmu_init (void *my_cpu_data)
340 unsigned long psr, pta, impl_va_bits;
341 extern void __devinit tlb_init (void);
343 #ifdef CONFIG_DISABLE_VHPT
344 # define VHPT_ENABLE_BIT 0
345 #else
346 # define VHPT_ENABLE_BIT 1
347 #endif
349 /* Pin mapping for percpu area into TLB */
350 psr = ia64_clear_ic();
351 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
352 pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
353 PERCPU_PAGE_SHIFT);
355 ia64_set_psr(psr);
356 ia64_srlz_i();
359 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
360 * address space. The IA-64 architecture guarantees that at least 50 bits of
361 * virtual address space are implemented but if we pick a large enough page size
362 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
363 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
364 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
365 * problem in practice. Alternatively, we could truncate the top of the mapped
366 * address space to not permit mappings that would overlap with the VMLPT.
367 * --davidm 00/12/06
369 # define pte_bits 3
370 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
372 * The virtual page table has to cover the entire implemented address space within
373 * a region even though not all of this space may be mappable. The reason for
374 * this is that the Access bit and Dirty bit fault handlers perform
375 * non-speculative accesses to the virtual page table, so the address range of the
376 * virtual page table itself needs to be covered by virtual page table.
378 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
379 # define POW2(n) (1ULL << (n))
381 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
383 if (impl_va_bits < 51 || impl_va_bits > 61)
384 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
386 /* place the VMLPT at the end of each page-table mapped region: */
387 pta = POW2(61) - POW2(vmlpt_bits);
389 if (POW2(mapped_space_bits) >= pta)
390 panic("mm/init: overlap between virtually mapped linear page table and "
391 "mapped kernel space!");
393 * Set the (virtually mapped linear) page table address. Bit
394 * 8 selects between the short and long format, bits 2-7 the
395 * size of the table, and bit 0 whether the VHPT walker is
396 * enabled.
398 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
400 ia64_tlb_init();
402 #ifdef CONFIG_HUGETLB_PAGE
403 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
404 ia64_srlz_d();
405 #endif
408 #ifdef CONFIG_VIRTUAL_MEM_MAP
411 create_mem_map_page_table (u64 start, u64 end, void *arg)
413 unsigned long address, start_page, end_page;
414 struct page *map_start, *map_end;
415 int node;
416 pgd_t *pgd;
417 pud_t *pud;
418 pmd_t *pmd;
419 pte_t *pte;
421 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
422 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
424 start_page = (unsigned long) map_start & PAGE_MASK;
425 end_page = PAGE_ALIGN((unsigned long) map_end);
426 node = paddr_to_nid(__pa(start));
428 for (address = start_page; address < end_page; address += PAGE_SIZE) {
429 pgd = pgd_offset_k(address);
430 if (pgd_none(*pgd))
431 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
432 pud = pud_offset(pgd, address);
434 if (pud_none(*pud))
435 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
436 pmd = pmd_offset(pud, address);
438 if (pmd_none(*pmd))
439 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
440 pte = pte_offset_kernel(pmd, address);
442 if (pte_none(*pte))
443 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
444 PAGE_KERNEL));
446 return 0;
449 struct memmap_init_callback_data {
450 struct page *start;
451 struct page *end;
452 int nid;
453 unsigned long zone;
456 static int
457 virtual_memmap_init (u64 start, u64 end, void *arg)
459 struct memmap_init_callback_data *args;
460 struct page *map_start, *map_end;
462 args = (struct memmap_init_callback_data *) arg;
463 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
464 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
466 if (map_start < args->start)
467 map_start = args->start;
468 if (map_end > args->end)
469 map_end = args->end;
472 * We have to initialize "out of bounds" struct page elements that fit completely
473 * on the same pages that were allocated for the "in bounds" elements because they
474 * may be referenced later (and found to be "reserved").
476 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
477 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
478 / sizeof(struct page));
480 if (map_start < map_end)
481 memmap_init_zone((unsigned long)(map_end - map_start),
482 args->nid, args->zone, page_to_pfn(map_start));
483 return 0;
486 void
487 memmap_init (unsigned long size, int nid, unsigned long zone,
488 unsigned long start_pfn)
490 if (!vmem_map)
491 memmap_init_zone(size, nid, zone, start_pfn);
492 else {
493 struct page *start;
494 struct memmap_init_callback_data args;
496 start = pfn_to_page(start_pfn);
497 args.start = start;
498 args.end = start + size;
499 args.nid = nid;
500 args.zone = zone;
502 efi_memmap_walk(virtual_memmap_init, &args);
507 ia64_pfn_valid (unsigned long pfn)
509 char byte;
510 struct page *pg = pfn_to_page(pfn);
512 return (__get_user(byte, (char __user *) pg) == 0)
513 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
514 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
516 EXPORT_SYMBOL(ia64_pfn_valid);
519 find_largest_hole (u64 start, u64 end, void *arg)
521 u64 *max_gap = arg;
523 static u64 last_end = PAGE_OFFSET;
525 /* NOTE: this algorithm assumes efi memmap table is ordered */
527 if (*max_gap < (start - last_end))
528 *max_gap = start - last_end;
529 last_end = end;
530 return 0;
532 #endif /* CONFIG_VIRTUAL_MEM_MAP */
534 static int
535 count_reserved_pages (u64 start, u64 end, void *arg)
537 unsigned long num_reserved = 0;
538 unsigned long *count = arg;
540 for (; start < end; start += PAGE_SIZE)
541 if (PageReserved(virt_to_page(start)))
542 ++num_reserved;
543 *count += num_reserved;
544 return 0;
548 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
549 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
550 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
551 * useful for performance testing, but conceivably could also come in handy for debugging
552 * purposes.
555 static int nolwsys;
557 static int __init
558 nolwsys_setup (char *s)
560 nolwsys = 1;
561 return 1;
564 __setup("nolwsys", nolwsys_setup);
566 void
567 mem_init (void)
569 long reserved_pages, codesize, datasize, initsize;
570 pg_data_t *pgdat;
571 int i;
572 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
574 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
575 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
576 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
578 #ifdef CONFIG_PCI
580 * This needs to be called _after_ the command line has been parsed but _before_
581 * any drivers that may need the PCI DMA interface are initialized or bootmem has
582 * been freed.
584 platform_dma_init();
585 #endif
587 #ifndef CONFIG_DISCONTIGMEM
588 if (!mem_map)
589 BUG();
590 max_mapnr = max_low_pfn;
591 #endif
593 high_memory = __va(max_low_pfn * PAGE_SIZE);
595 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
596 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
597 kclist_add(&kcore_kernel, _stext, _end - _stext);
599 for_each_pgdat(pgdat)
600 if (pgdat->bdata->node_bootmem_map)
601 totalram_pages += free_all_bootmem_node(pgdat);
603 reserved_pages = 0;
604 efi_memmap_walk(count_reserved_pages, &reserved_pages);
606 codesize = (unsigned long) _etext - (unsigned long) _stext;
607 datasize = (unsigned long) _edata - (unsigned long) _etext;
608 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
610 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
611 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
612 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
613 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
617 * For fsyscall entrpoints with no light-weight handler, use the ordinary
618 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
619 * code can tell them apart.
621 for (i = 0; i < NR_syscalls; ++i) {
622 extern unsigned long fsyscall_table[NR_syscalls];
623 extern unsigned long sys_call_table[NR_syscalls];
625 if (!fsyscall_table[i] || nolwsys)
626 fsyscall_table[i] = sys_call_table[i] | 1;
628 setup_gate();
630 #ifdef CONFIG_IA32_SUPPORT
631 ia32_mem_init();
632 #endif