2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2003-2005 Silicon Graphics, Inc. All Rights Reserved.
9 #include <linux/types.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <asm/sn/sn_sal.h>
13 #include <asm/sn/addrs.h>
14 #include <asm/sn/pcidev.h>
15 #include <asm/sn/pcibus_provider_defs.h>
16 #include <asm/sn/tioce_provider.h>
19 * Bus address ranges for the 5 flavors of TIOCE DMA
22 #define TIOCE_D64_MIN 0x8000000000000000UL
23 #define TIOCE_D64_MAX 0xffffffffffffffffUL
24 #define TIOCE_D64_ADDR(a) ((a) >= TIOCE_D64_MIN)
26 #define TIOCE_D32_MIN 0x0000000080000000UL
27 #define TIOCE_D32_MAX 0x00000000ffffffffUL
28 #define TIOCE_D32_ADDR(a) ((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
30 #define TIOCE_M32_MIN 0x0000000000000000UL
31 #define TIOCE_M32_MAX 0x000000007fffffffUL
32 #define TIOCE_M32_ADDR(a) ((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
34 #define TIOCE_M40_MIN 0x0000004000000000UL
35 #define TIOCE_M40_MAX 0x0000007fffffffffUL
36 #define TIOCE_M40_ADDR(a) ((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
38 #define TIOCE_M40S_MIN 0x0000008000000000UL
39 #define TIOCE_M40S_MAX 0x000000ffffffffffUL
40 #define TIOCE_M40S_ADDR(a) ((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
43 * ATE manipulation macros.
46 #define ATE_PAGESHIFT(ps) (__ffs(ps))
47 #define ATE_PAGEMASK(ps) ((ps)-1)
49 #define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
50 #define ATE_NPAGES(start, len, pagesize) \
51 (ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
53 #define ATE_VALID(ate) ((ate) & (1UL << 63))
54 #define ATE_MAKE(addr, ps) (((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63))
57 * Flavors of ate-based mapping supported by tioce_alloc_map()
60 #define TIOCE_ATE_M32 1
61 #define TIOCE_ATE_M40 2
62 #define TIOCE_ATE_M40S 3
64 #define KB(x) ((x) << 10)
65 #define MB(x) ((x) << 20)
66 #define GB(x) ((x) << 30)
69 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
70 * @ct_addr: system coretalk address
72 * Map @ct_addr into 64-bit CE bus space. No device context is necessary
73 * and no CE mapping are consumed.
75 * Bits 53:0 come from the coretalk address. The remaining bits are set as
78 * 63 - must be 1 to indicate d64 mode to CE hardware
79 * 62 - barrier bit ... controlled with tioce_dma_barrier()
80 * 61 - 0 since this is not an MSI transaction
81 * 60:54 - reserved, MBZ
84 tioce_dma_d64(unsigned long ct_addr
)
88 bus_addr
= ct_addr
| (1UL << 63);
94 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
95 * @pci_dev: pci device context
96 * @base: ptr to store struct tioce_mmr * for the CE holding this device
97 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
98 * @port: ptr to store the CE port number that this device is on
100 * Return pointers to various CE-related structures for the CE upstream of
104 pcidev_to_tioce(struct pci_dev
*pdev
, struct tioce
**base
,
105 struct tioce_kernel
**kernel
, int *port
)
107 struct pcidev_info
*pcidev_info
;
108 struct tioce_common
*ce_common
;
109 struct tioce_kernel
*ce_kernel
;
111 pcidev_info
= SN_PCIDEV_INFO(pdev
);
112 ce_common
= (struct tioce_common
*)pcidev_info
->pdi_pcibus_info
;
113 ce_kernel
= (struct tioce_kernel
*)ce_common
->ce_kernel_private
;
116 *base
= (struct tioce
*)ce_common
->ce_pcibus
.bs_base
;
121 * we use port as a zero-based value internally, even though the
122 * documentation is 1-based.
126 (pdev
->bus
->number
< ce_kernel
->ce_port1_secondary
) ? 0 : 1;
130 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
131 * space using one of the various ATE-based address modes.
132 * @ce_kern: tioce context
133 * @type: map mode to use
134 * @port: 0-based port that the requesting device is downstream of
135 * @ct_addr: the coretalk address to map
136 * @len: number of bytes to map
138 * Given the addressing type, set up various paramaters that define the
139 * ATE pool to use. Search for a contiguous block of entries to cover the
140 * length, and if enough resources exist, fill in the ATE's and construct a
141 * tioce_dmamap struct to track the mapping.
144 tioce_alloc_map(struct tioce_kernel
*ce_kern
, int type
, int port
,
145 uint64_t ct_addr
, int len
)
154 uint64_t *ate_shadow
;
157 struct tioce
*ce_mmr
;
159 struct tioce_dmamap
*map
;
161 ce_mmr
= (struct tioce
*)ce_kern
->ce_common
->ce_pcibus
.bs_base
;
166 * The first 64 entries of the ate3240 pool are dedicated to
167 * super-page (TIOCE_ATE_M40S) mode.
170 entries
= TIOCE_NUM_M3240_ATES
- 64;
171 ate_shadow
= ce_kern
->ce_ate3240_shadow
;
172 ate_reg
= ce_mmr
->ce_ure_ate3240
;
173 pagesize
= ce_kern
->ce_ate3240_pagesize
;
174 bus_base
= TIOCE_M32_MIN
;
178 entries
= TIOCE_NUM_M40_ATES
;
179 ate_shadow
= ce_kern
->ce_ate40_shadow
;
180 ate_reg
= ce_mmr
->ce_ure_ate40
;
182 bus_base
= TIOCE_M40_MIN
;
186 * ate3240 entries 0-31 are dedicated to port1 super-page
187 * mappings. ate3240 entries 32-63 are dedicated to port2.
191 ate_shadow
= ce_kern
->ce_ate3240_shadow
;
192 ate_reg
= ce_mmr
->ce_ure_ate3240
;
194 bus_base
= TIOCE_M40S_MIN
;
200 nates
= ATE_NPAGES(ct_addr
, len
, pagesize
);
204 last
= first
+ entries
- nates
;
205 for (i
= first
; i
<= last
; i
++) {
206 if (ATE_VALID(ate_shadow
[i
]))
209 for (j
= i
; j
< i
+ nates
; j
++)
210 if (ATE_VALID(ate_shadow
[j
]))
220 map
= kcalloc(1, sizeof(struct tioce_dmamap
), GFP_ATOMIC
);
225 for (j
= 0; j
< nates
; j
++) {
228 ate
= ATE_MAKE(addr
, pagesize
);
229 ate_shadow
[i
+ j
] = ate
;
230 ate_reg
[i
+ j
] = ate
;
235 map
->nbytes
= nates
* pagesize
;
236 map
->ct_start
= ct_addr
& ~ATE_PAGEMASK(pagesize
);
237 map
->pci_start
= bus_base
+ (i
* pagesize
);
238 map
->ate_hw
= &ate_reg
[i
];
239 map
->ate_shadow
= &ate_shadow
[i
];
240 map
->ate_count
= nates
;
242 list_add(&map
->ce_dmamap_list
, &ce_kern
->ce_dmamap_list
);
244 return (map
->pci_start
+ (ct_addr
- map
->ct_start
));
248 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
249 * @pdev: linux pci_dev representing the function
250 * @paddr: system physical address
252 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
255 tioce_dma_d32(struct pci_dev
*pdev
, uint64_t ct_addr
)
259 struct tioce
*ce_mmr
;
260 struct tioce_kernel
*ce_kern
;
265 ct_upper
= ct_addr
& ~0x3fffffffUL
;
266 ct_lower
= ct_addr
& 0x3fffffffUL
;
268 pcidev_to_tioce(pdev
, &ce_mmr
, &ce_kern
, &port
);
270 if (ce_kern
->ce_port
[port
].dirmap_refcnt
== 0) {
271 volatile uint64_t tmp
;
273 ce_kern
->ce_port
[port
].dirmap_shadow
= ct_upper
;
274 ce_mmr
->ce_ure_dir_map
[port
] = ct_upper
;
275 tmp
= ce_mmr
->ce_ure_dir_map
[port
];
278 dma_ok
= (ce_kern
->ce_port
[port
].dirmap_shadow
== ct_upper
);
281 ce_kern
->ce_port
[port
].dirmap_refcnt
++;
282 bus_addr
= TIOCE_D32_MIN
+ ct_lower
;
290 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
292 * @bus_addr: bus address to swizzle
294 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
298 tioce_dma_barrier(uint64_t bus_addr
, int on
)
300 uint64_t barrier_bit
;
302 /* barrier not supported in M40/M40S mode */
303 if (TIOCE_M40_ADDR(bus_addr
) || TIOCE_M40S_ADDR(bus_addr
))
306 if (TIOCE_D64_ADDR(bus_addr
))
307 barrier_bit
= (1UL << 62);
308 else /* must be m32 or d32 */
309 barrier_bit
= (1UL << 30);
311 return (on
) ? (bus_addr
| barrier_bit
) : (bus_addr
& ~barrier_bit
);
315 * tioce_dma_unmap - release CE mapping resources
316 * @pdev: linux pci_dev representing the function
317 * @bus_addr: bus address returned by an earlier tioce_dma_map
318 * @dir: mapping direction (unused)
320 * Locate mapping resources associated with @bus_addr and release them.
321 * For mappings created using the direct modes there are no resources
325 tioce_dma_unmap(struct pci_dev
*pdev
, dma_addr_t bus_addr
, int dir
)
329 struct tioce_kernel
*ce_kern
;
330 struct tioce
*ce_mmr
;
333 bus_addr
= tioce_dma_barrier(bus_addr
, 0);
334 pcidev_to_tioce(pdev
, &ce_mmr
, &ce_kern
, &port
);
336 /* nothing to do for D64 */
338 if (TIOCE_D64_ADDR(bus_addr
))
341 spin_lock_irqsave(&ce_kern
->ce_lock
, flags
);
343 if (TIOCE_D32_ADDR(bus_addr
)) {
344 if (--ce_kern
->ce_port
[port
].dirmap_refcnt
== 0) {
345 ce_kern
->ce_port
[port
].dirmap_shadow
= 0;
346 ce_mmr
->ce_ure_dir_map
[port
] = 0;
349 struct tioce_dmamap
*map
;
351 list_for_each_entry(map
, &ce_kern
->ce_dmamap_list
,
355 last
= map
->pci_start
+ map
->nbytes
- 1;
356 if (bus_addr
>= map
->pci_start
&& bus_addr
<= last
)
360 if (&map
->ce_dmamap_list
== &ce_kern
->ce_dmamap_list
) {
362 "%s: %s - no map found for bus_addr 0x%lx\n",
363 __FUNCTION__
, pci_name(pdev
), bus_addr
);
364 } else if (--map
->refcnt
== 0) {
365 for (i
= 0; i
< map
->ate_count
; i
++) {
366 map
->ate_shadow
[i
] = 0;
370 list_del(&map
->ce_dmamap_list
);
375 spin_unlock_irqrestore(&ce_kern
->ce_lock
, flags
);
379 * tioce_do_dma_map - map pages for PCI DMA
380 * @pdev: linux pci_dev representing the function
381 * @paddr: host physical address to map
382 * @byte_count: bytes to map
384 * This is the main wrapper for mapping host physical pages to CE PCI space.
385 * The mapping mode used is based on the device's dma_mask.
388 tioce_do_dma_map(struct pci_dev
*pdev
, uint64_t paddr
, size_t byte_count
,
393 uint64_t mapaddr
= 0;
394 struct tioce_kernel
*ce_kern
;
395 struct tioce_dmamap
*map
;
399 dma_mask
= (barrier
) ? pdev
->dev
.coherent_dma_mask
: pdev
->dma_mask
;
401 /* cards must be able to address at least 31 bits */
402 if (dma_mask
< 0x7fffffffUL
)
405 ct_addr
= PHYS_TO_TIODMA(paddr
);
408 * If the device can generate 64 bit addresses, create a D64 map.
409 * Since this should never fail, bypass the rest of the checks.
411 if (dma_mask
== ~0UL) {
412 mapaddr
= tioce_dma_d64(ct_addr
);
416 pcidev_to_tioce(pdev
, NULL
, &ce_kern
, &port
);
418 spin_lock_irqsave(&ce_kern
->ce_lock
, flags
);
421 * D64 didn't work ... See if we have an existing map that covers
422 * this address range. Must account for devices dma_mask here since
423 * an existing map might have been done in a mode using more pci
424 * address bits than this device can support.
426 list_for_each_entry(map
, &ce_kern
->ce_dmamap_list
, ce_dmamap_list
) {
429 last
= map
->ct_start
+ map
->nbytes
- 1;
430 if (ct_addr
>= map
->ct_start
&&
431 ct_addr
+ byte_count
- 1 <= last
&&
432 map
->pci_start
<= dma_mask
) {
434 mapaddr
= map
->pci_start
+ (ct_addr
- map
->ct_start
);
440 * If we don't have a map yet, and the card can generate 40
441 * bit addresses, try the M40/M40S modes. Note these modes do not
442 * support a barrier bit, so if we need a consistent map these
445 if (!mapaddr
&& !barrier
&& dma_mask
>= 0xffffffffffUL
) {
447 * We have two options for 40-bit mappings: 16GB "super" ATE's
448 * and 64MB "regular" ATE's. We'll try both if needed for a
449 * given mapping but which one we try first depends on the
450 * size. For requests >64MB, prefer to use a super page with
451 * regular as the fallback. Otherwise, try in the reverse order.
454 if (byte_count
> MB(64)) {
455 mapaddr
= tioce_alloc_map(ce_kern
, TIOCE_ATE_M40S
,
456 port
, ct_addr
, byte_count
);
459 tioce_alloc_map(ce_kern
, TIOCE_ATE_M40
, -1,
460 ct_addr
, byte_count
);
462 mapaddr
= tioce_alloc_map(ce_kern
, TIOCE_ATE_M40
, -1,
463 ct_addr
, byte_count
);
466 tioce_alloc_map(ce_kern
, TIOCE_ATE_M40S
,
467 port
, ct_addr
, byte_count
);
472 * 32-bit direct is the next mode to try
474 if (!mapaddr
&& dma_mask
>= 0xffffffffUL
)
475 mapaddr
= tioce_dma_d32(pdev
, ct_addr
);
478 * Last resort, try 32-bit ATE-based map.
482 tioce_alloc_map(ce_kern
, TIOCE_ATE_M32
, -1, ct_addr
,
485 spin_unlock_irqrestore(&ce_kern
->ce_lock
, flags
);
488 if (mapaddr
& barrier
)
489 mapaddr
= tioce_dma_barrier(mapaddr
, 1);
495 * tioce_dma - standard pci dma map interface
496 * @pdev: pci device requesting the map
497 * @paddr: system physical address to map into pci space
498 * @byte_count: # bytes to map
500 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
504 tioce_dma(struct pci_dev
*pdev
, uint64_t paddr
, size_t byte_count
)
506 return tioce_do_dma_map(pdev
, paddr
, byte_count
, 0);
510 * tioce_dma_consistent - consistent pci dma map interface
511 * @pdev: pci device requesting the map
512 * @paddr: system physical address to map into pci space
513 * @byte_count: # bytes to map
515 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
518 tioce_dma_consistent(struct pci_dev
*pdev
, uint64_t paddr
, size_t byte_count
)
520 return tioce_do_dma_map(pdev
, paddr
, byte_count
, 1);
524 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
526 * @arg: pointer to tioce_common struct for the given CE
529 * Handle a CE error interrupt. Simply a wrapper around a SAL call which
530 * defers processing to the SGI prom.
531 */ static irqreturn_t
532 tioce_error_intr_handler(int irq
, void *arg
, struct pt_regs
*pt
)
534 struct tioce_common
*soft
= arg
;
535 struct ia64_sal_retval ret_stuff
;
536 ret_stuff
.status
= 0;
539 SAL_CALL_NOLOCK(ret_stuff
, (u64
) SN_SAL_IOIF_ERROR_INTERRUPT
,
540 soft
->ce_pcibus
.bs_persist_segment
,
541 soft
->ce_pcibus
.bs_persist_busnum
, 0, 0, 0, 0, 0);
547 * tioce_kern_init - init kernel structures related to a given TIOCE
548 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
549 */ static struct tioce_kernel
*
550 tioce_kern_init(struct tioce_common
*tioce_common
)
554 struct tioce
*tioce_mmr
;
555 struct tioce_kernel
*tioce_kern
;
557 tioce_kern
= kcalloc(1, sizeof(struct tioce_kernel
), GFP_KERNEL
);
562 tioce_kern
->ce_common
= tioce_common
;
563 spin_lock_init(&tioce_kern
->ce_lock
);
564 INIT_LIST_HEAD(&tioce_kern
->ce_dmamap_list
);
565 tioce_common
->ce_kernel_private
= (uint64_t) tioce_kern
;
568 * Determine the secondary bus number of the port2 logical PPB.
569 * This is used to decide whether a given pci device resides on
570 * port1 or port2. Note: We don't have enough plumbing set up
571 * here to use pci_read_config_xxx() so use the raw_pci_ops vector.
574 raw_pci_ops
->read(tioce_common
->ce_pcibus
.bs_persist_segment
,
575 tioce_common
->ce_pcibus
.bs_persist_busnum
,
576 PCI_DEVFN(2, 0), PCI_SECONDARY_BUS
, 1, &tmp
);
577 tioce_kern
->ce_port1_secondary
= (uint8_t) tmp
;
580 * Set PMU pagesize to the largest size available, and zero out
584 tioce_mmr
= (struct tioce
*)tioce_common
->ce_pcibus
.bs_base
;
585 tioce_mmr
->ce_ure_page_map
&= ~CE_URE_PAGESIZE_MASK
;
586 tioce_mmr
->ce_ure_page_map
|= CE_URE_256K_PAGESIZE
;
587 tioce_kern
->ce_ate3240_pagesize
= KB(256);
589 for (i
= 0; i
< TIOCE_NUM_M40_ATES
; i
++) {
590 tioce_kern
->ce_ate40_shadow
[i
] = 0;
591 tioce_mmr
->ce_ure_ate40
[i
] = 0;
594 for (i
= 0; i
< TIOCE_NUM_M3240_ATES
; i
++) {
595 tioce_kern
->ce_ate3240_shadow
[i
] = 0;
596 tioce_mmr
->ce_ure_ate3240
[i
] = 0;
603 * tioce_force_interrupt - implement altix force_interrupt() backend for CE
604 * @sn_irq_info: sn asic irq that we need an interrupt generated for
606 * Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
607 * force a secondary interrupt to be generated. This is to work around an
608 * asic issue where there is a small window of opportunity for a legacy device
609 * interrupt to be lost.
612 tioce_force_interrupt(struct sn_irq_info
*sn_irq_info
)
614 struct pcidev_info
*pcidev_info
;
615 struct tioce_common
*ce_common
;
616 struct tioce
*ce_mmr
;
617 uint64_t force_int_val
;
619 if (!sn_irq_info
->irq_bridge
)
622 if (sn_irq_info
->irq_bridge_type
!= PCIIO_ASIC_TYPE_TIOCE
)
625 pcidev_info
= (struct pcidev_info
*)sn_irq_info
->irq_pciioinfo
;
629 ce_common
= (struct tioce_common
*)pcidev_info
->pdi_pcibus_info
;
630 ce_mmr
= (struct tioce
*)ce_common
->ce_pcibus
.bs_base
;
633 * irq_int_bit is originally set up by prom, and holds the interrupt
634 * bit shift (not mask) as defined by the bit definitions in the
635 * ce_adm_int mmr. These shifts are not the same for the
636 * ce_adm_force_int register, so do an explicit mapping here to make
640 switch (sn_irq_info
->irq_int_bit
) {
641 case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT
:
642 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT
;
644 case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT
:
645 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT
;
647 case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT
:
648 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT
;
650 case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT
:
651 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT
;
653 case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT
:
654 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT
;
656 case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT
:
657 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT
;
659 case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT
:
660 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT
;
662 case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT
:
663 force_int_val
= 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT
;
668 ce_mmr
->ce_adm_force_int
= force_int_val
;
672 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
673 * functions. Note: only applies to line interrupts, not MSI's.
675 * @sn_irq_info: SN IRQ context
677 * Given an sn_irq_info, set the associated CE device's interrupt destination
678 * register. Since the interrupt destination registers are on a per-ce-slot
679 * basis, this will retarget line interrupts for all functions downstream of
683 tioce_target_interrupt(struct sn_irq_info
*sn_irq_info
)
685 struct pcidev_info
*pcidev_info
;
686 struct tioce_common
*ce_common
;
687 struct tioce
*ce_mmr
;
690 pcidev_info
= (struct pcidev_info
*)sn_irq_info
->irq_pciioinfo
;
694 ce_common
= (struct tioce_common
*)pcidev_info
->pdi_pcibus_info
;
695 ce_mmr
= (struct tioce
*)ce_common
->ce_pcibus
.bs_base
;
697 bit
= sn_irq_info
->irq_int_bit
;
699 ce_mmr
->ce_adm_int_mask
|= (1UL << bit
);
700 ce_mmr
->ce_adm_int_dest
[bit
] =
701 ((uint64_t)sn_irq_info
->irq_irq
<< INTR_VECTOR_SHFT
) |
702 sn_irq_info
->irq_xtalkaddr
;
703 ce_mmr
->ce_adm_int_mask
&= ~(1UL << bit
);
705 tioce_force_interrupt(sn_irq_info
);
709 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
710 * @prom_bussoft: Common prom/kernel struct representing the bus
712 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
713 * space. Allocates and initializes a kernel-only area for a given CE,
714 * and sets up an irq for handling CE error interrupts.
716 * On successful setup, returns the kernel version of tioce_common back to
720 tioce_bus_fixup(struct pcibus_bussoft
*prom_bussoft
, struct pci_controller
*controller
)
722 struct tioce_common
*tioce_common
;
725 * Allocate kernel bus soft and copy from prom.
728 tioce_common
= kcalloc(1, sizeof(struct tioce_common
), GFP_KERNEL
);
732 memcpy(tioce_common
, prom_bussoft
, sizeof(struct tioce_common
));
733 tioce_common
->ce_pcibus
.bs_base
|= __IA64_UNCACHED_OFFSET
;
735 if (tioce_kern_init(tioce_common
) == NULL
) {
740 if (request_irq(SGI_PCIASIC_ERROR
,
741 tioce_error_intr_handler
,
742 SA_SHIRQ
, "TIOCE error", (void *)tioce_common
))
744 "%s: Unable to get irq %d. "
745 "Error interrupts won't be routed for "
746 "TIOCE bus %04x:%02x\n",
747 __FUNCTION__
, SGI_PCIASIC_ERROR
,
748 tioce_common
->ce_pcibus
.bs_persist_segment
,
749 tioce_common
->ce_pcibus
.bs_persist_busnum
);
754 static struct sn_pcibus_provider tioce_pci_interfaces
= {
755 .dma_map
= tioce_dma
,
756 .dma_map_consistent
= tioce_dma_consistent
,
757 .dma_unmap
= tioce_dma_unmap
,
758 .bus_fixup
= tioce_bus_fixup
,
759 .force_interrupt
= tioce_force_interrupt
,
760 .target_interrupt
= tioce_target_interrupt
764 * tioce_init_provider - init SN PCI provider ops for TIO CE
767 tioce_init_provider(void)
769 sn_pci_provider
[PCIIO_ASIC_TYPE_TIOCE
] = &tioce_pci_interfaces
;