kbuild: fix silentoldconfig with make O=
[linux-2.6/verdex.git] / arch / mips / pci / ops-ddb5476.c
blob12da58e75ec7b565b3f38a3099331db3dfa30c6d
1 /*
2 * Copyright 2001 MontaVista Software Inc.
3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
5 * arch/mips/ddb5xxx/ddb5476/pci_ops.c
6 * Define the pci_ops for DB5477.
8 * Much of the code is derived from the original DDB5074 port by
9 * Geert Uytterhoeven <geert@sonycom.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
17 #include <linux/pci.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
21 #include <asm/addrspace.h>
22 #include <asm/debug.h>
24 #include <asm/ddb5xxx/ddb5xxx.h>
27 * config_swap structure records what set of pdar/pmr are used
28 * to access pci config space. It also provides a place hold the
29 * original values for future restoring.
31 struct pci_config_swap {
32 u32 pdar;
33 u32 pmr;
34 u32 config_base;
35 u32 config_size;
36 u32 pdar_backup;
37 u32 pmr_backup;
41 * On DDB5476, we have one set of swap registers
43 struct pci_config_swap ext_pci_swap = {
44 DDB_PCIW0,
45 DDB_PCIINIT0,
46 DDB_PCI_CONFIG_BASE,
47 DDB_PCI_CONFIG_SIZE
50 static int pci_config_workaround = 1;
53 * access config space
55 static inline u32 ddb_access_config_base(struct pci_config_swap *swap, u32 bus, /* 0 means top level bus */
56 u32 slot_num)
58 u32 pci_addr = 0;
59 u32 pciinit_offset = 0;
60 u32 virt_addr = swap->config_base;
61 u32 option;
63 if (pci_config_workaround) {
64 /* [jsun] work around Vrc5476 controller itself, returnning
65 * slot 0 essentially makes vrc5476 invisible
67 if (slot_num == 12)
68 slot_num = 0;
70 #if 0
71 /* BUG : skip P2P bridge for now */
72 if (slot_num == 5)
73 slot_num = 0;
74 #endif
76 } else {
77 /* now we have to be hornest, returning the true
78 * PCI config headers for vrc5476
80 if (slot_num == 12) {
81 swap->pdar_backup = ddb_in32(swap->pdar);
82 swap->pmr_backup = ddb_in32(swap->pmr);
83 return DDB_BASE + DDB_PCI_BASE;
87 /* minimum pdar (window) size is 2MB */
88 db_assert(swap->config_size >= (2 << 20));
90 db_assert(slot_num < (1 << 5));
91 db_assert(bus < (1 << 8));
93 /* backup registers */
94 swap->pdar_backup = ddb_in32(swap->pdar);
95 swap->pmr_backup = ddb_in32(swap->pmr);
97 /* set the pdar (pci window) register */
98 ddb_set_pdar(swap->pdar, swap->config_base, swap->config_size, 32, /* 32 bit wide */
99 0, /* not on local memory bus */
100 0); /* not visible from PCI bus (N/A) */
103 * calcuate the absolute pci config addr;
104 * according to the spec, we start scanning from adr:11 (0x800)
106 if (bus == 0) {
107 /* type 0 config */
108 pci_addr = 0x800 << slot_num;
109 } else {
110 /* type 1 config */
111 pci_addr = (bus << 16) | (slot_num << 11);
112 /* panic("ddb_access_config_base: we don't support type 1 config Yet"); */
116 * if pci_addr is less than pci config window size, we set
117 * pciinit_offset to 0 and adjust the virt_address.
118 * Otherwise we will try to adjust pciinit_offset.
120 if (pci_addr < swap->config_size) {
121 virt_addr = KSEG1ADDR(swap->config_base + pci_addr);
122 pciinit_offset = 0;
123 } else {
124 db_assert((pci_addr & (swap->config_size - 1)) == 0);
125 virt_addr = KSEG1ADDR(swap->config_base);
126 pciinit_offset = pci_addr;
129 /* set the pmr register */
130 option = DDB_PCI_ACCESS_32;
131 if (bus != 0)
132 option |= DDB_PCI_CFGTYPE1;
133 ddb_set_pmr(swap->pmr, DDB_PCICMD_CFG, pciinit_offset, option);
135 return virt_addr;
138 static inline void ddb_close_config_base(struct pci_config_swap *swap)
140 ddb_out32(swap->pdar, swap->pdar_backup);
141 ddb_out32(swap->pmr, swap->pmr_backup);
144 static int read_config_dword(struct pci_config_swap *swap,
145 struct pci_dev *dev, u32 where, u32 * val)
147 u32 bus, slot_num, func_num;
148 u32 base;
150 db_assert((where & 3) == 0);
151 db_assert(where < (1 << 8));
153 /* check if the bus is top-level */
154 if (dev->bus->parent != NULL) {
155 bus = dev->bus->number;
156 db_assert(bus != 0);
157 } else {
158 bus = 0;
161 slot_num = PCI_SLOT(dev->devfn);
162 func_num = PCI_FUNC(dev->devfn);
163 base = ddb_access_config_base(swap, bus, slot_num);
164 *val = *(volatile u32 *) (base + (func_num << 8) + where);
165 ddb_close_config_base(swap);
166 return PCIBIOS_SUCCESSFUL;
169 static int read_config_word(struct pci_config_swap *swap,
170 struct pci_dev *dev, u32 where, u16 * val)
172 int status;
173 u32 result;
175 db_assert((where & 1) == 0);
177 status = read_config_dword(swap, dev, where & ~3, &result);
178 if (where & 2)
179 result >>= 16;
180 *val = result & 0xffff;
181 return status;
184 static int read_config_byte(struct pci_config_swap *swap,
185 struct pci_dev *dev, u32 where, u8 * val)
187 int status;
188 u32 result;
190 status = read_config_dword(swap, dev, where & ~3, &result);
191 if (where & 1)
192 result >>= 8;
193 if (where & 2)
194 result >>= 16;
195 *val = result & 0xff;
196 return status;
199 static int write_config_dword(struct pci_config_swap *swap,
200 struct pci_dev *dev, u32 where, u32 val)
202 u32 bus, slot_num, func_num;
203 u32 base;
205 db_assert((where & 3) == 0);
206 db_assert(where < (1 << 8));
208 /* check if the bus is top-level */
209 if (dev->bus->parent != NULL) {
210 bus = dev->bus->number;
211 db_assert(bus != 0);
212 } else {
213 bus = 0;
216 slot_num = PCI_SLOT(dev->devfn);
217 func_num = PCI_FUNC(dev->devfn);
218 base = ddb_access_config_base(swap, bus, slot_num);
219 *(volatile u32 *) (base + (func_num << 8) + where) = val;
220 ddb_close_config_base(swap);
221 return PCIBIOS_SUCCESSFUL;
224 static int write_config_word(struct pci_config_swap *swap,
225 struct pci_dev *dev, u32 where, u16 val)
227 int status, shift = 0;
228 u32 result;
230 db_assert((where & 1) == 0);
232 status = read_config_dword(swap, dev, where & ~3, &result);
233 if (status != PCIBIOS_SUCCESSFUL)
234 return status;
236 if (where & 2)
237 shift += 16;
238 result &= ~(0xffff << shift);
239 result |= val << shift;
240 return write_config_dword(swap, dev, where & ~3, result);
243 static int write_config_byte(struct pci_config_swap *swap,
244 struct pci_dev *dev, u32 where, u8 val)
246 int status, shift = 0;
247 u32 result;
249 status = read_config_dword(swap, dev, where & ~3, &result);
250 if (status != PCIBIOS_SUCCESSFUL)
251 return status;
253 if (where & 2)
254 shift += 16;
255 if (where & 1)
256 shift += 8;
257 result &= ~(0xff << shift);
258 result |= val << shift;
259 return write_config_dword(swap, dev, where & ~3, result);
262 #define MAKE_PCI_OPS(prefix, rw, unitname, unittype, pciswap) \
263 static int prefix##_##rw##_config_##unitname(struct pci_dev *dev, int where, unittype val) \
265 return rw##_config_##unitname(pciswap, \
266 dev, \
267 where, \
268 val); \
271 MAKE_PCI_OPS(extpci, read, byte, u8 *, &ext_pci_swap)
272 MAKE_PCI_OPS(extpci, read, word, u16 *, &ext_pci_swap)
273 MAKE_PCI_OPS(extpci, read, dword, u32 *, &ext_pci_swap)
275 MAKE_PCI_OPS(extpci, write, byte, u8, &ext_pci_swap)
276 MAKE_PCI_OPS(extpci, write, word, u16, &ext_pci_swap)
277 MAKE_PCI_OPS(extpci, write, dword, u32, &ext_pci_swap)
279 struct pci_ops ddb5476_ext_pci_ops = {
280 extpci_read_config_byte,
281 extpci_read_config_word,
282 extpci_read_config_dword,
283 extpci_write_config_byte,
284 extpci_write_config_word,
285 extpci_write_config_dword