2 * linux/arch/ppc64/kernel/process.c
4 * Derived from "arch/i386/kernel/process.c"
5 * Copyright (C) 1995 Linus Torvalds
7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8 * Paul Mackerras (paulus@cs.anu.edu.au)
11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
25 #include <linux/smp.h>
26 #include <linux/smp_lock.h>
27 #include <linux/stddef.h>
28 #include <linux/unistd.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/init_task.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/kallsyms.h>
37 #include <linux/interrupt.h>
38 #include <linux/utsname.h>
39 #include <linux/kprobes.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/system.h>
45 #include <asm/processor.h>
47 #include <asm/mmu_context.h>
49 #include <asm/ppcdebug.h>
50 #include <asm/machdep.h>
51 #include <asm/iSeries/HvCallHpt.h>
52 #include <asm/cputable.h>
53 #include <asm/firmware.h>
54 #include <asm/sections.h>
55 #include <asm/tlbflush.h>
59 struct task_struct
*last_task_used_math
= NULL
;
60 struct task_struct
*last_task_used_altivec
= NULL
;
64 * Make sure the floating-point register state in the
65 * the thread_struct is up to date for task tsk.
67 void flush_fp_to_thread(struct task_struct
*tsk
)
69 if (tsk
->thread
.regs
) {
71 * We need to disable preemption here because if we didn't,
72 * another process could get scheduled after the regs->msr
73 * test but before we have finished saving the FP registers
74 * to the thread_struct. That process could take over the
75 * FPU, and then when we get scheduled again we would store
76 * bogus values for the remaining FP registers.
79 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
82 * This should only ever be called for current or
83 * for a stopped child process. Since we save away
84 * the FP register state on context switch on SMP,
85 * there is something wrong if a stopped child appears
86 * to still have its FP state in the CPU registers.
88 BUG_ON(tsk
!= current
);
96 void enable_kernel_fp(void)
98 WARN_ON(preemptible());
101 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
))
104 giveup_fpu(NULL
); /* just enables FP for kernel */
106 giveup_fpu(last_task_used_math
);
107 #endif /* CONFIG_SMP */
109 EXPORT_SYMBOL(enable_kernel_fp
);
111 int dump_task_fpu(struct task_struct
*tsk
, elf_fpregset_t
*fpregs
)
113 if (!tsk
->thread
.regs
)
115 flush_fp_to_thread(current
);
117 memcpy(fpregs
, &tsk
->thread
.fpr
[0], sizeof(*fpregs
));
122 #ifdef CONFIG_ALTIVEC
124 void enable_kernel_altivec(void)
126 WARN_ON(preemptible());
129 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
))
130 giveup_altivec(current
);
132 giveup_altivec(NULL
); /* just enables FP for kernel */
134 giveup_altivec(last_task_used_altivec
);
135 #endif /* CONFIG_SMP */
137 EXPORT_SYMBOL(enable_kernel_altivec
);
140 * Make sure the VMX/Altivec register state in the
141 * the thread_struct is up to date for task tsk.
143 void flush_altivec_to_thread(struct task_struct
*tsk
)
145 if (tsk
->thread
.regs
) {
147 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
149 BUG_ON(tsk
!= current
);
151 giveup_altivec(current
);
157 int dump_task_altivec(struct pt_regs
*regs
, elf_vrregset_t
*vrregs
)
159 flush_altivec_to_thread(current
);
160 memcpy(vrregs
, ¤t
->thread
.vr
[0], sizeof(*vrregs
));
164 #endif /* CONFIG_ALTIVEC */
166 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
168 struct task_struct
*__switch_to(struct task_struct
*prev
,
169 struct task_struct
*new)
171 struct thread_struct
*new_thread
, *old_thread
;
173 struct task_struct
*last
;
176 /* avoid complexity of lazy save/restore of fpu
177 * by just saving it every time we switch out if
178 * this task used the fpu during the last quantum.
180 * If it tries to use the fpu again, it'll trap and
181 * reload its fp regs. So we don't have to do a restore
182 * every switch, just a save.
185 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_FP
))
187 #ifdef CONFIG_ALTIVEC
188 if (prev
->thread
.regs
&& (prev
->thread
.regs
->msr
& MSR_VEC
))
189 giveup_altivec(prev
);
190 #endif /* CONFIG_ALTIVEC */
191 #endif /* CONFIG_SMP */
193 #if defined(CONFIG_ALTIVEC) && !defined(CONFIG_SMP)
194 /* Avoid the trap. On smp this this never happens since
195 * we don't set last_task_used_altivec -- Cort
197 if (new->thread
.regs
&& last_task_used_altivec
== new)
198 new->thread
.regs
->msr
|= MSR_VEC
;
199 #endif /* CONFIG_ALTIVEC */
203 new_thread
= &new->thread
;
204 old_thread
= ¤t
->thread
;
206 /* Collect purr utilization data per process and per processor
207 * wise purr is nothing but processor time base
209 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
210 struct cpu_usage
*cu
= &__get_cpu_var(cpu_usage_array
);
211 long unsigned start_tb
, current_tb
;
212 start_tb
= old_thread
->start_tb
;
213 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
214 old_thread
->accum_tb
+= (current_tb
- start_tb
);
215 new_thread
->start_tb
= current_tb
;
218 local_irq_save(flags
);
219 last
= _switch(old_thread
, new_thread
);
221 local_irq_restore(flags
);
226 static int instructions_to_print
= 16;
228 static void show_instructions(struct pt_regs
*regs
)
231 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
234 printk("Instruction dump:");
236 for (i
= 0; i
< instructions_to_print
; i
++) {
242 if (((REGION_ID(pc
) != KERNEL_REGION_ID
) &&
243 (REGION_ID(pc
) != VMALLOC_REGION_ID
)) ||
244 __get_user(instr
, (unsigned int *)pc
)) {
248 printk("<%08x> ", instr
);
250 printk("%08x ", instr
);
259 void show_regs(struct pt_regs
* regs
)
264 printk("NIP: %016lX XER: %08X LR: %016lX CTR: %016lX\n",
265 regs
->nip
, (unsigned int)regs
->xer
, regs
->link
, regs
->ctr
);
266 printk("REGS: %p TRAP: %04lx %s (%s)\n",
267 regs
, regs
->trap
, print_tainted(), system_utsname
.release
);
268 printk("MSR: %016lx EE: %01x PR: %01x FP: %01x ME: %01x "
269 "IR/DR: %01x%01x CR: %08X\n",
270 regs
->msr
, regs
->msr
&MSR_EE
? 1 : 0, regs
->msr
&MSR_PR
? 1 : 0,
271 regs
->msr
& MSR_FP
? 1 : 0,regs
->msr
&MSR_ME
? 1 : 0,
272 regs
->msr
&MSR_IR
? 1 : 0,
273 regs
->msr
&MSR_DR
? 1 : 0,
274 (unsigned int)regs
->ccr
);
276 printk("DAR: %016lx DSISR: %016lx\n", regs
->dar
, regs
->dsisr
);
277 printk("TASK: %p[%d] '%s' THREAD: %p",
278 current
, current
->pid
, current
->comm
, current
->thread_info
);
281 printk(" CPU: %d", smp_processor_id());
282 #endif /* CONFIG_SMP */
284 for (i
= 0; i
< 32; i
++) {
286 printk("\n" KERN_INFO
"GPR%02d: ", i
);
289 printk("%016lX ", regs
->gpr
[i
]);
290 if (i
== 13 && !FULL_REGS(regs
))
295 * Lookup NIP late so we have the best change of getting the
296 * above info out without failing
298 printk("NIP [%016lx] ", regs
->nip
);
299 print_symbol("%s\n", regs
->nip
);
300 printk("LR [%016lx] ", regs
->link
);
301 print_symbol("%s\n", regs
->link
);
302 show_stack(current
, (unsigned long *)regs
->gpr
[1]);
303 if (!user_mode(regs
))
304 show_instructions(regs
);
307 void exit_thread(void)
309 kprobe_flush_task(current
);
312 if (last_task_used_math
== current
)
313 last_task_used_math
= NULL
;
314 #ifdef CONFIG_ALTIVEC
315 if (last_task_used_altivec
== current
)
316 last_task_used_altivec
= NULL
;
317 #endif /* CONFIG_ALTIVEC */
318 #endif /* CONFIG_SMP */
321 void flush_thread(void)
323 struct thread_info
*t
= current_thread_info();
325 kprobe_flush_task(current
);
326 if (t
->flags
& _TIF_ABI_PENDING
)
327 t
->flags
^= (_TIF_ABI_PENDING
| _TIF_32BIT
);
330 if (last_task_used_math
== current
)
331 last_task_used_math
= NULL
;
332 #ifdef CONFIG_ALTIVEC
333 if (last_task_used_altivec
== current
)
334 last_task_used_altivec
= NULL
;
335 #endif /* CONFIG_ALTIVEC */
336 #endif /* CONFIG_SMP */
340 release_thread(struct task_struct
*t
)
346 * This gets called before we allocate a new thread and copy
347 * the current task into it.
349 void prepare_to_copy(struct task_struct
*tsk
)
351 flush_fp_to_thread(current
);
352 flush_altivec_to_thread(current
);
359 copy_thread(int nr
, unsigned long clone_flags
, unsigned long usp
,
360 unsigned long unused
, struct task_struct
*p
, struct pt_regs
*regs
)
362 struct pt_regs
*childregs
, *kregs
;
363 extern void ret_from_fork(void);
364 unsigned long sp
= (unsigned long)p
->thread_info
+ THREAD_SIZE
;
367 sp
-= sizeof(struct pt_regs
);
368 childregs
= (struct pt_regs
*) sp
;
370 if ((childregs
->msr
& MSR_PR
) == 0) {
371 /* for kernel thread, set stackptr in new task */
372 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
373 p
->thread
.regs
= NULL
; /* no user register state */
374 clear_ti_thread_flag(p
->thread_info
, TIF_32BIT
);
376 childregs
->gpr
[1] = usp
;
377 p
->thread
.regs
= childregs
;
378 if (clone_flags
& CLONE_SETTLS
) {
379 if (test_thread_flag(TIF_32BIT
))
380 childregs
->gpr
[2] = childregs
->gpr
[6];
382 childregs
->gpr
[13] = childregs
->gpr
[6];
385 childregs
->gpr
[3] = 0; /* Result from fork() */
386 sp
-= STACK_FRAME_OVERHEAD
;
389 * The way this works is that at some point in the future
390 * some task will call _switch to switch to the new task.
391 * That will pop off the stack frame created below and start
392 * the new task running at ret_from_fork. The new task will
393 * do some house keeping and then return from the fork or clone
394 * system call, using the stack frame created above.
396 sp
-= sizeof(struct pt_regs
);
397 kregs
= (struct pt_regs
*) sp
;
398 sp
-= STACK_FRAME_OVERHEAD
;
400 if (cpu_has_feature(CPU_FTR_SLB
)) {
401 unsigned long sp_vsid
= get_kernel_vsid(sp
);
403 sp_vsid
<<= SLB_VSID_SHIFT
;
404 sp_vsid
|= SLB_VSID_KERNEL
;
405 if (cpu_has_feature(CPU_FTR_16M_PAGE
))
406 sp_vsid
|= SLB_VSID_L
;
408 p
->thread
.ksp_vsid
= sp_vsid
;
412 * The PPC64 ABI makes use of a TOC to contain function
413 * pointers. The function (ret_from_except) is actually a pointer
414 * to the TOC entry. The first entry is a pointer to the actual
417 kregs
->nip
= *((unsigned long *)ret_from_fork
);
423 * Set up a thread for executing a new program
425 void start_thread(struct pt_regs
*regs
, unsigned long fdptr
, unsigned long sp
)
427 unsigned long entry
, toc
, load_addr
= regs
->gpr
[2];
429 /* fdptr is a relocated pointer to the function descriptor for
430 * the elf _start routine. The first entry in the function
431 * descriptor is the entry address of _start and the second
432 * entry is the TOC value we need to use.
435 __get_user(entry
, (unsigned long __user
*)fdptr
);
436 __get_user(toc
, (unsigned long __user
*)fdptr
+1);
438 /* Check whether the e_entry function descriptor entries
439 * need to be relocated before we can use them.
441 if (load_addr
!= 0) {
447 * If we exec out of a kernel thread then thread.regs will not be
450 if (!current
->thread
.regs
) {
451 unsigned long childregs
= (unsigned long)current
->thread_info
+
453 childregs
-= sizeof(struct pt_regs
);
454 current
->thread
.regs
= (struct pt_regs
*)childregs
;
460 regs
->msr
= MSR_USER64
;
462 if (last_task_used_math
== current
)
463 last_task_used_math
= 0;
464 #endif /* CONFIG_SMP */
465 memset(current
->thread
.fpr
, 0, sizeof(current
->thread
.fpr
));
466 current
->thread
.fpscr
= 0;
467 #ifdef CONFIG_ALTIVEC
469 if (last_task_used_altivec
== current
)
470 last_task_used_altivec
= 0;
471 #endif /* CONFIG_SMP */
472 memset(current
->thread
.vr
, 0, sizeof(current
->thread
.vr
));
473 current
->thread
.vscr
.u
[0] = 0;
474 current
->thread
.vscr
.u
[1] = 0;
475 current
->thread
.vscr
.u
[2] = 0;
476 current
->thread
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
477 current
->thread
.vrsave
= 0;
478 current
->thread
.used_vr
= 0;
479 #endif /* CONFIG_ALTIVEC */
481 EXPORT_SYMBOL(start_thread
);
483 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
485 struct pt_regs
*regs
= tsk
->thread
.regs
;
487 if (val
> PR_FP_EXC_PRECISE
)
489 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
490 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
491 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
492 | tsk
->thread
.fpexc_mode
;
496 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
500 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
501 return put_user(val
, (unsigned int __user
*) adr
);
504 int sys_clone(unsigned long clone_flags
, unsigned long p2
, unsigned long p3
,
505 unsigned long p4
, unsigned long p5
, unsigned long p6
,
506 struct pt_regs
*regs
)
508 unsigned long parent_tidptr
= 0;
509 unsigned long child_tidptr
= 0;
512 p2
= regs
->gpr
[1]; /* stack pointer for child */
514 if (clone_flags
& (CLONE_PARENT_SETTID
| CLONE_CHILD_SETTID
|
515 CLONE_CHILD_CLEARTID
)) {
518 if (test_thread_flag(TIF_32BIT
)) {
519 parent_tidptr
&= 0xffffffff;
520 child_tidptr
&= 0xffffffff;
524 return do_fork(clone_flags
, p2
, regs
, 0,
525 (int __user
*)parent_tidptr
, (int __user
*)child_tidptr
);
528 int sys_fork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
529 unsigned long p4
, unsigned long p5
, unsigned long p6
,
530 struct pt_regs
*regs
)
532 return do_fork(SIGCHLD
, regs
->gpr
[1], regs
, 0, NULL
, NULL
);
535 int sys_vfork(unsigned long p1
, unsigned long p2
, unsigned long p3
,
536 unsigned long p4
, unsigned long p5
, unsigned long p6
,
537 struct pt_regs
*regs
)
539 return do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, regs
->gpr
[1], regs
, 0,
543 int sys_execve(unsigned long a0
, unsigned long a1
, unsigned long a2
,
544 unsigned long a3
, unsigned long a4
, unsigned long a5
,
545 struct pt_regs
*regs
)
550 filename
= getname((char __user
*) a0
);
551 error
= PTR_ERR(filename
);
552 if (IS_ERR(filename
))
554 flush_fp_to_thread(current
);
555 flush_altivec_to_thread(current
);
556 error
= do_execve(filename
, (char __user
* __user
*) a1
,
557 (char __user
* __user
*) a2
, regs
);
561 current
->ptrace
&= ~PT_DTRACE
;
562 task_unlock(current
);
570 static int kstack_depth_to_print
= 64;
572 static int validate_sp(unsigned long sp
, struct task_struct
*p
,
573 unsigned long nbytes
)
575 unsigned long stack_page
= (unsigned long)p
->thread_info
;
577 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
578 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
581 #ifdef CONFIG_IRQSTACKS
582 stack_page
= (unsigned long) hardirq_ctx
[task_cpu(p
)];
583 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
584 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
587 stack_page
= (unsigned long) softirq_ctx
[task_cpu(p
)];
588 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
589 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
596 unsigned long get_wchan(struct task_struct
*p
)
598 unsigned long ip
, sp
;
601 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
605 if (!validate_sp(sp
, p
, 112))
609 sp
= *(unsigned long *)sp
;
610 if (!validate_sp(sp
, p
, 112))
613 ip
= *(unsigned long *)(sp
+ 16);
614 if (!in_sched_functions(ip
))
617 } while (count
++ < 16);
620 EXPORT_SYMBOL(get_wchan
);
622 void show_stack(struct task_struct
*p
, unsigned long *_sp
)
624 unsigned long ip
, newsp
, lr
;
626 unsigned long sp
= (unsigned long)_sp
;
639 printk("Call Trace:\n");
641 if (!validate_sp(sp
, p
, 112))
644 _sp
= (unsigned long *) sp
;
647 if (!firstframe
|| ip
!= lr
) {
648 printk("[%016lx] [%016lx] ", sp
, ip
);
649 print_symbol("%s", ip
);
651 printk(" (unreliable)");
657 * See if this is an exception frame.
658 * We look for the "regshere" marker in the current frame.
660 if (validate_sp(sp
, p
, sizeof(struct pt_regs
) + 400)
661 && _sp
[12] == 0x7265677368657265ul
) {
662 struct pt_regs
*regs
= (struct pt_regs
*)
663 (sp
+ STACK_FRAME_OVERHEAD
);
664 printk("--- Exception: %lx", regs
->trap
);
665 print_symbol(" at %s\n", regs
->nip
);
667 print_symbol(" LR = %s\n", lr
);
672 } while (count
++ < kstack_depth_to_print
);
675 void dump_stack(void)
677 show_stack(current
, (unsigned long *)__get_SP());
679 EXPORT_SYMBOL(dump_stack
);