4 * Procedures for interfacing to Open Firmware.
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/threads.h>
26 #include <linux/spinlock.h>
27 #include <linux/types.h>
28 #include <linux/pci.h>
29 #include <linux/stringify.h>
30 #include <linux/delay.h>
31 #include <linux/initrd.h>
32 #include <linux/bitops.h>
33 #include <linux/module.h>
38 #include <asm/abs_addr.h>
40 #include <asm/processor.h>
44 #include <asm/system.h>
46 #include <asm/pgtable.h>
48 #include <asm/iommu.h>
49 #include <asm/bootinfo.h>
50 #include <asm/ppcdebug.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pSeries_reconfig.h>
57 #define DBG(fmt...) udbg_printf(fmt)
62 struct pci_reg_property
{
63 struct pci_address addr
;
68 struct isa_reg_property
{
75 typedef int interpret_func(struct device_node
*, unsigned long *,
78 extern struct rtas_t rtas
;
79 extern struct lmb lmb
;
80 extern unsigned long klimit
;
82 static int __initdata dt_root_addr_cells
;
83 static int __initdata dt_root_size_cells
;
84 static int __initdata iommu_is_off
;
85 int __initdata iommu_force_on
;
89 static struct boot_param_header
*initial_boot_params __initdata
;
91 struct boot_param_header
*initial_boot_params
;
94 static struct device_node
*allnodes
= NULL
;
96 /* use when traversing tree through the allnext, child, sibling,
97 * or parent members of struct device_node.
99 static DEFINE_RWLOCK(devtree_lock
);
101 /* export that to outside world */
102 struct device_node
*of_chosen
;
105 * Wrapper for allocating memory for various data that needs to be
106 * attached to device nodes as they are processed at boot or when
107 * added to the device tree later (e.g. DLPAR). At boot there is
108 * already a region reserved so we just increment *mem_start by size;
109 * otherwise we call kmalloc.
111 static void * prom_alloc(unsigned long size
, unsigned long *mem_start
)
116 return kmalloc(size
, GFP_KERNEL
);
124 * Find the device_node with a given phandle.
126 static struct device_node
* find_phandle(phandle ph
)
128 struct device_node
*np
;
130 for (np
= allnodes
; np
!= 0; np
= np
->allnext
)
131 if (np
->linux_phandle
== ph
)
137 * Find the interrupt parent of a node.
139 static struct device_node
* __devinit
intr_parent(struct device_node
*p
)
143 parp
= (phandle
*) get_property(p
, "interrupt-parent", NULL
);
146 return find_phandle(*parp
);
150 * Find out the size of each entry of the interrupts property
153 int __devinit
prom_n_intr_cells(struct device_node
*np
)
155 struct device_node
*p
;
158 for (p
= np
; (p
= intr_parent(p
)) != NULL
; ) {
159 icp
= (unsigned int *)
160 get_property(p
, "#interrupt-cells", NULL
);
163 if (get_property(p
, "interrupt-controller", NULL
) != NULL
164 || get_property(p
, "interrupt-map", NULL
) != NULL
) {
165 printk("oops, node %s doesn't have #interrupt-cells\n",
171 printk("prom_n_intr_cells failed for %s\n", np
->full_name
);
177 * Map an interrupt from a device up to the platform interrupt
180 static int __devinit
map_interrupt(unsigned int **irq
, struct device_node
**ictrler
,
181 struct device_node
*np
, unsigned int *ints
,
184 struct device_node
*p
, *ipar
;
185 unsigned int *imap
, *imask
, *ip
;
186 int i
, imaplen
, match
;
187 int newintrc
= 0, newaddrc
= 0;
191 reg
= (unsigned int *) get_property(np
, "reg", NULL
);
192 naddrc
= prom_n_addr_cells(np
);
195 if (get_property(p
, "interrupt-controller", NULL
) != NULL
)
196 /* this node is an interrupt controller, stop here */
198 imap
= (unsigned int *)
199 get_property(p
, "interrupt-map", &imaplen
);
204 imask
= (unsigned int *)
205 get_property(p
, "interrupt-map-mask", NULL
);
207 printk("oops, %s has interrupt-map but no mask\n",
211 imaplen
/= sizeof(unsigned int);
214 while (imaplen
> 0 && !match
) {
215 /* check the child-interrupt field */
217 for (i
= 0; i
< naddrc
&& match
; ++i
)
218 match
= ((reg
[i
] ^ imap
[i
]) & imask
[i
]) == 0;
219 for (; i
< naddrc
+ nintrc
&& match
; ++i
)
220 match
= ((ints
[i
-naddrc
] ^ imap
[i
]) & imask
[i
]) == 0;
221 imap
+= naddrc
+ nintrc
;
222 imaplen
-= naddrc
+ nintrc
;
223 /* grab the interrupt parent */
224 ipar
= find_phandle((phandle
) *imap
++);
227 printk("oops, no int parent %x in map of %s\n",
228 imap
[-1], p
->full_name
);
231 /* find the parent's # addr and intr cells */
232 ip
= (unsigned int *)
233 get_property(ipar
, "#interrupt-cells", NULL
);
235 printk("oops, no #interrupt-cells on %s\n",
240 ip
= (unsigned int *)
241 get_property(ipar
, "#address-cells", NULL
);
242 newaddrc
= (ip
== NULL
)? 0: *ip
;
243 imap
+= newaddrc
+ newintrc
;
244 imaplen
-= newaddrc
+ newintrc
;
247 printk("oops, error decoding int-map on %s, len=%d\n",
248 p
->full_name
, imaplen
);
253 printk("oops, no match in %s int-map for %s\n",
254 p
->full_name
, np
->full_name
);
261 ints
= imap
- nintrc
;
266 printk("hmmm, int tree for %s doesn't have ctrler\n",
276 static int __devinit
finish_node_interrupts(struct device_node
*np
,
277 unsigned long *mem_start
,
281 int intlen
, intrcells
, intrcount
;
283 unsigned int *irq
, virq
;
284 struct device_node
*ic
;
286 ints
= (unsigned int *) get_property(np
, "interrupts", &intlen
);
289 intrcells
= prom_n_intr_cells(np
);
290 intlen
/= intrcells
* sizeof(unsigned int);
292 np
->intrs
= prom_alloc(intlen
* sizeof(*(np
->intrs
)), mem_start
);
300 for (i
= 0; i
< intlen
; ++i
, ints
+= intrcells
) {
301 n
= map_interrupt(&irq
, &ic
, np
, ints
, intrcells
);
305 /* don't map IRQ numbers under a cascaded 8259 controller */
306 if (ic
&& device_is_compatible(ic
, "chrp,iic")) {
307 np
->intrs
[intrcount
].line
= irq
[0];
309 virq
= virt_irq_create_mapping(irq
[0]);
310 if (virq
== NO_IRQ
) {
311 printk(KERN_CRIT
"Could not allocate interrupt"
312 " number for %s\n", np
->full_name
);
315 np
->intrs
[intrcount
].line
= irq_offset_up(virq
);
318 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
319 if (systemcfg
->platform
== PLATFORM_POWERMAC
&& ic
&& ic
->parent
) {
320 char *name
= get_property(ic
->parent
, "name", NULL
);
321 if (name
&& !strcmp(name
, "u3"))
322 np
->intrs
[intrcount
].line
+= 128;
323 else if (!(name
&& !strcmp(name
, "mac-io")))
324 /* ignore other cascaded controllers, such as
328 np
->intrs
[intrcount
].sense
= 1;
330 np
->intrs
[intrcount
].sense
= irq
[1];
332 printk("hmmm, got %d intr cells for %s:", n
,
334 for (j
= 0; j
< n
; ++j
)
335 printk(" %d", irq
[j
]);
340 np
->n_intrs
= intrcount
;
345 static int __devinit
interpret_pci_props(struct device_node
*np
,
346 unsigned long *mem_start
,
347 int naddrc
, int nsizec
,
350 struct address_range
*adr
;
351 struct pci_reg_property
*pci_addrs
;
354 pci_addrs
= (struct pci_reg_property
*)
355 get_property(np
, "assigned-addresses", &l
);
359 n_addrs
= l
/ sizeof(*pci_addrs
);
361 adr
= prom_alloc(n_addrs
* sizeof(*adr
), mem_start
);
369 np
->n_addrs
= n_addrs
;
371 for (i
= 0; i
< n_addrs
; i
++) {
372 adr
[i
].space
= pci_addrs
[i
].addr
.a_hi
;
373 adr
[i
].address
= pci_addrs
[i
].addr
.a_lo
|
374 ((u64
)pci_addrs
[i
].addr
.a_mid
<< 32);
375 adr
[i
].size
= pci_addrs
[i
].size_lo
;
381 static int __init
interpret_dbdma_props(struct device_node
*np
,
382 unsigned long *mem_start
,
383 int naddrc
, int nsizec
,
386 struct reg_property32
*rp
;
387 struct address_range
*adr
;
388 unsigned long base_address
;
390 struct device_node
*db
;
394 for (db
= np
->parent
; db
!= NULL
; db
= db
->parent
) {
395 if (!strcmp(db
->type
, "dbdma") && db
->n_addrs
!= 0) {
396 base_address
= db
->addrs
[0].address
;
402 rp
= (struct reg_property32
*) get_property(np
, "reg", &l
);
403 if (rp
!= 0 && l
>= sizeof(struct reg_property32
)) {
405 adr
= (struct address_range
*) (*mem_start
);
406 while ((l
-= sizeof(struct reg_property32
)) >= 0) {
409 adr
[i
].address
= rp
[i
].address
+ base_address
;
410 adr
[i
].size
= rp
[i
].size
;
416 (*mem_start
) += i
* sizeof(struct address_range
);
422 static int __init
interpret_macio_props(struct device_node
*np
,
423 unsigned long *mem_start
,
424 int naddrc
, int nsizec
,
427 struct reg_property32
*rp
;
428 struct address_range
*adr
;
429 unsigned long base_address
;
431 struct device_node
*db
;
435 for (db
= np
->parent
; db
!= NULL
; db
= db
->parent
) {
436 if (!strcmp(db
->type
, "mac-io") && db
->n_addrs
!= 0) {
437 base_address
= db
->addrs
[0].address
;
443 rp
= (struct reg_property32
*) get_property(np
, "reg", &l
);
444 if (rp
!= 0 && l
>= sizeof(struct reg_property32
)) {
446 adr
= (struct address_range
*) (*mem_start
);
447 while ((l
-= sizeof(struct reg_property32
)) >= 0) {
450 adr
[i
].address
= rp
[i
].address
+ base_address
;
451 adr
[i
].size
= rp
[i
].size
;
457 (*mem_start
) += i
* sizeof(struct address_range
);
463 static int __init
interpret_isa_props(struct device_node
*np
,
464 unsigned long *mem_start
,
465 int naddrc
, int nsizec
,
468 struct isa_reg_property
*rp
;
469 struct address_range
*adr
;
472 rp
= (struct isa_reg_property
*) get_property(np
, "reg", &l
);
473 if (rp
!= 0 && l
>= sizeof(struct isa_reg_property
)) {
475 adr
= (struct address_range
*) (*mem_start
);
476 while ((l
-= sizeof(struct isa_reg_property
)) >= 0) {
478 adr
[i
].space
= rp
[i
].space
;
479 adr
[i
].address
= rp
[i
].address
;
480 adr
[i
].size
= rp
[i
].size
;
486 (*mem_start
) += i
* sizeof(struct address_range
);
492 static int __init
interpret_root_props(struct device_node
*np
,
493 unsigned long *mem_start
,
494 int naddrc
, int nsizec
,
497 struct address_range
*adr
;
500 int rpsize
= (naddrc
+ nsizec
) * sizeof(unsigned int);
502 rp
= (unsigned int *) get_property(np
, "reg", &l
);
503 if (rp
!= 0 && l
>= rpsize
) {
505 adr
= (struct address_range
*) (*mem_start
);
506 while ((l
-= rpsize
) >= 0) {
509 adr
[i
].address
= rp
[naddrc
- 1];
510 adr
[i
].size
= rp
[naddrc
+ nsizec
- 1];
513 rp
+= naddrc
+ nsizec
;
517 (*mem_start
) += i
* sizeof(struct address_range
);
523 static int __devinit
finish_node(struct device_node
*np
,
524 unsigned long *mem_start
,
525 interpret_func
*ifunc
,
526 int naddrc
, int nsizec
,
529 struct device_node
*child
;
532 /* get the device addresses and interrupts */
534 rc
= ifunc(np
, mem_start
, naddrc
, nsizec
, measure_only
);
538 rc
= finish_node_interrupts(np
, mem_start
, measure_only
);
542 /* Look for #address-cells and #size-cells properties. */
543 ip
= (int *) get_property(np
, "#address-cells", NULL
);
546 ip
= (int *) get_property(np
, "#size-cells", NULL
);
550 if (!strcmp(np
->name
, "device-tree") || np
->parent
== NULL
)
551 ifunc
= interpret_root_props
;
552 else if (np
->type
== 0)
554 else if (!strcmp(np
->type
, "pci") || !strcmp(np
->type
, "vci"))
555 ifunc
= interpret_pci_props
;
556 else if (!strcmp(np
->type
, "dbdma"))
557 ifunc
= interpret_dbdma_props
;
558 else if (!strcmp(np
->type
, "mac-io") || ifunc
== interpret_macio_props
)
559 ifunc
= interpret_macio_props
;
560 else if (!strcmp(np
->type
, "isa"))
561 ifunc
= interpret_isa_props
;
562 else if (!strcmp(np
->name
, "uni-n") || !strcmp(np
->name
, "u3"))
563 ifunc
= interpret_root_props
;
564 else if (!((ifunc
== interpret_dbdma_props
565 || ifunc
== interpret_macio_props
)
566 && (!strcmp(np
->type
, "escc")
567 || !strcmp(np
->type
, "media-bay"))))
570 for (child
= np
->child
; child
!= NULL
; child
= child
->sibling
) {
571 rc
= finish_node(child
, mem_start
, ifunc
,
572 naddrc
, nsizec
, measure_only
);
581 * finish_device_tree is called once things are running normally
582 * (i.e. with text and data mapped to the address they were linked at).
583 * It traverses the device tree and fills in some of the additional,
584 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
585 * mapping is also initialized at this point.
587 void __init
finish_device_tree(void)
589 unsigned long start
, end
, size
= 0;
591 DBG(" -> finish_device_tree\n");
593 if (ppc64_interrupt_controller
== IC_INVALID
) {
594 DBG("failed to configure interrupt controller type\n");
595 panic("failed to configure interrupt controller type\n");
598 /* Initialize virtual IRQ map */
602 * Finish device-tree (pre-parsing some properties etc...)
603 * We do this in 2 passes. One with "measure_only" set, which
604 * will only measure the amount of memory needed, then we can
605 * allocate that memory, and call finish_node again. However,
606 * we must be careful as most routines will fail nowadays when
607 * prom_alloc() returns 0, so we must make sure our first pass
608 * doesn't start at 0. We pre-initialize size to 16 for that
609 * reason and then remove those additional 16 bytes
612 finish_node(allnodes
, &size
, NULL
, 0, 0, 1);
614 end
= start
= (unsigned long)abs_to_virt(lmb_alloc(size
, 128));
615 finish_node(allnodes
, &end
, NULL
, 0, 0, 0);
616 BUG_ON(end
!= start
+ size
);
618 DBG(" <- finish_device_tree\n");
622 #define printk udbg_printf
625 static inline char *find_flat_dt_string(u32 offset
)
627 return ((char *)initial_boot_params
) +
628 initial_boot_params
->off_dt_strings
+ offset
;
632 * This function is used to scan the flattened device-tree, it is
633 * used to extract the memory informations at boot before we can
636 static int __init
scan_flat_dt(int (*it
)(unsigned long node
,
637 const char *uname
, int depth
,
641 unsigned long p
= ((unsigned long)initial_boot_params
) +
642 initial_boot_params
->off_dt_struct
;
647 u32 tag
= *((u32
*)p
);
651 if (tag
== OF_DT_END_NODE
) {
655 if (tag
== OF_DT_NOP
)
657 if (tag
== OF_DT_END
)
659 if (tag
== OF_DT_PROP
) {
660 u32 sz
= *((u32
*)p
);
662 if (initial_boot_params
->version
< 0x10)
663 p
= _ALIGN(p
, sz
>= 8 ? 8 : 4);
668 if (tag
!= OF_DT_BEGIN_NODE
) {
669 printk(KERN_WARNING
"Invalid tag %x scanning flattened"
670 " device tree !\n", tag
);
675 p
= _ALIGN(p
+ strlen(pathp
) + 1, 4);
676 if ((*pathp
) == '/') {
678 for (lp
= NULL
, np
= pathp
; *np
; np
++)
684 rc
= it(p
, pathp
, depth
, data
);
693 * This function can be used within scan_flattened_dt callback to get
694 * access to properties
696 static void* __init
get_flat_dt_prop(unsigned long node
, const char *name
,
699 unsigned long p
= node
;
702 u32 tag
= *((u32
*)p
);
707 if (tag
== OF_DT_NOP
)
709 if (tag
!= OF_DT_PROP
)
713 noff
= *((u32
*)(p
+ 4));
715 if (initial_boot_params
->version
< 0x10)
716 p
= _ALIGN(p
, sz
>= 8 ? 8 : 4);
718 nstr
= find_flat_dt_string(noff
);
720 printk(KERN_WARNING
"Can't find property index"
724 if (strcmp(name
, nstr
) == 0) {
734 static void *__init
unflatten_dt_alloc(unsigned long *mem
, unsigned long size
,
739 *mem
= _ALIGN(*mem
, align
);
746 static unsigned long __init
unflatten_dt_node(unsigned long mem
,
748 struct device_node
*dad
,
749 struct device_node
***allnextpp
,
750 unsigned long fpsize
)
752 struct device_node
*np
;
753 struct property
*pp
, **prev_pp
= NULL
;
756 unsigned int l
, allocl
;
760 tag
= *((u32
*)(*p
));
761 if (tag
!= OF_DT_BEGIN_NODE
) {
762 printk("Weird tag at start of node: %x\n", tag
);
767 l
= allocl
= strlen(pathp
) + 1;
768 *p
= _ALIGN(*p
+ l
, 4);
770 /* version 0x10 has a more compact unit name here instead of the full
771 * path. we accumulate the full path size using "fpsize", we'll rebuild
772 * it later. We detect this because the first character of the name is
775 if ((*pathp
) != '/') {
778 /* root node: special case. fpsize accounts for path
779 * plus terminating zero. root node only has '/', so
780 * fpsize should be 2, but we want to avoid the first
781 * level nodes to have two '/' so we use fpsize 1 here
786 /* account for '/' and path size minus terminal 0
795 np
= unflatten_dt_alloc(&mem
, sizeof(struct device_node
) + allocl
,
796 __alignof__(struct device_node
));
798 memset(np
, 0, sizeof(*np
));
799 np
->full_name
= ((char*)np
) + sizeof(struct device_node
);
801 char *p
= np
->full_name
;
802 /* rebuild full path for new format */
803 if (dad
&& dad
->parent
) {
804 strcpy(p
, dad
->full_name
);
806 if ((strlen(p
) + l
+ 1) != allocl
) {
807 DBG("%s: p: %d, l: %d, a: %d\n",
808 pathp
, strlen(p
), l
, allocl
);
816 memcpy(np
->full_name
, pathp
, l
);
817 prev_pp
= &np
->properties
;
819 *allnextpp
= &np
->allnext
;
822 /* we temporarily use the next field as `last_child'*/
826 dad
->next
->sibling
= np
;
829 kref_init(&np
->kref
);
835 tag
= *((u32
*)(*p
));
836 if (tag
== OF_DT_NOP
) {
840 if (tag
!= OF_DT_PROP
)
844 noff
= *((u32
*)((*p
) + 4));
846 if (initial_boot_params
->version
< 0x10)
847 *p
= _ALIGN(*p
, sz
>= 8 ? 8 : 4);
849 pname
= find_flat_dt_string(noff
);
851 printk("Can't find property name in list !\n");
854 if (strcmp(pname
, "name") == 0)
856 l
= strlen(pname
) + 1;
857 pp
= unflatten_dt_alloc(&mem
, sizeof(struct property
),
858 __alignof__(struct property
));
860 if (strcmp(pname
, "linux,phandle") == 0) {
861 np
->node
= *((u32
*)*p
);
862 if (np
->linux_phandle
== 0)
863 np
->linux_phandle
= np
->node
;
865 if (strcmp(pname
, "ibm,phandle") == 0)
866 np
->linux_phandle
= *((u32
*)*p
);
869 pp
->value
= (void *)*p
;
873 *p
= _ALIGN((*p
) + sz
, 4);
875 /* with version 0x10 we may not have the name property, recreate
876 * it here from the unit name if absent
879 char *p
= pathp
, *ps
= pathp
, *pa
= NULL
;
892 pp
= unflatten_dt_alloc(&mem
, sizeof(struct property
) + sz
,
893 __alignof__(struct property
));
897 pp
->value
= (unsigned char *)(pp
+ 1);
900 memcpy(pp
->value
, ps
, sz
- 1);
901 ((char *)pp
->value
)[sz
- 1] = 0;
902 DBG("fixed up name for %s -> %s\n", pathp
, pp
->value
);
907 np
->name
= get_property(np
, "name", NULL
);
908 np
->type
= get_property(np
, "device_type", NULL
);
915 while (tag
== OF_DT_BEGIN_NODE
) {
916 mem
= unflatten_dt_node(mem
, p
, np
, allnextpp
, fpsize
);
917 tag
= *((u32
*)(*p
));
919 if (tag
!= OF_DT_END_NODE
) {
920 printk("Weird tag at end of node: %x\n", tag
);
929 * unflattens the device-tree passed by the firmware, creating the
930 * tree of struct device_node. It also fills the "name" and "type"
931 * pointers of the nodes so the normal device-tree walking functions
932 * can be used (this used to be done by finish_device_tree)
934 void __init
unflatten_device_tree(void)
936 unsigned long start
, mem
, size
;
937 struct device_node
**allnextp
= &allnodes
;
941 DBG(" -> unflatten_device_tree()\n");
943 /* First pass, scan for size */
944 start
= ((unsigned long)initial_boot_params
) +
945 initial_boot_params
->off_dt_struct
;
946 size
= unflatten_dt_node(0, &start
, NULL
, NULL
, 0);
947 size
= (size
| 3) + 1;
949 DBG(" size is %lx, allocating...\n", size
);
951 /* Allocate memory for the expanded device tree */
952 mem
= lmb_alloc(size
+ 4, __alignof__(struct device_node
));
954 DBG("Couldn't allocate memory with lmb_alloc()!\n");
955 panic("Couldn't allocate memory with lmb_alloc()!\n");
957 mem
= (unsigned long)abs_to_virt(mem
);
959 ((u32
*)mem
)[size
/ 4] = 0xdeadbeef;
961 DBG(" unflattening...\n", mem
);
963 /* Second pass, do actual unflattening */
964 start
= ((unsigned long)initial_boot_params
) +
965 initial_boot_params
->off_dt_struct
;
966 unflatten_dt_node(mem
, &start
, NULL
, &allnextp
, 0);
967 if (*((u32
*)start
) != OF_DT_END
)
968 printk(KERN_WARNING
"Weird tag at end of tree: %08x\n", *((u32
*)start
));
969 if (((u32
*)mem
)[size
/ 4] != 0xdeadbeef)
970 printk(KERN_WARNING
"End of tree marker overwritten: %08x\n",
971 ((u32
*)mem
)[size
/ 4] );
974 /* Get pointer to OF "/chosen" node for use everywhere */
975 of_chosen
= of_find_node_by_path("/chosen");
977 /* Retreive command line */
978 if (of_chosen
!= NULL
) {
979 p
= (char *)get_property(of_chosen
, "bootargs", &l
);
980 if (p
!= NULL
&& l
> 0)
981 strlcpy(cmd_line
, p
, min(l
, COMMAND_LINE_SIZE
));
983 #ifdef CONFIG_CMDLINE
984 if (l
== 0 || (l
== 1 && (*p
) == 0))
985 strlcpy(cmd_line
, CONFIG_CMDLINE
, COMMAND_LINE_SIZE
);
986 #endif /* CONFIG_CMDLINE */
988 DBG("Command line is: %s\n", cmd_line
);
990 DBG(" <- unflatten_device_tree()\n");
994 static int __init
early_init_dt_scan_cpus(unsigned long node
,
995 const char *uname
, int depth
, void *data
)
997 char *type
= get_flat_dt_prop(node
, "device_type", NULL
);
1001 /* We are scanning "cpu" nodes only */
1002 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
1005 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1007 if (systemcfg
->platform
== PLATFORM_PSERIES_LPAR
&& ppc64_pft_size
== 0) {
1009 pft_size
= (u32
*)get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
1010 if (pft_size
!= NULL
) {
1011 /* pft_size[0] is the NUMA CEC cookie */
1012 ppc64_pft_size
= pft_size
[1];
1016 if (initial_boot_params
&& initial_boot_params
->version
>= 2) {
1017 /* version 2 of the kexec param format adds the phys cpuid
1020 boot_cpuid_phys
= initial_boot_params
->boot_cpuid_phys
;
1023 /* Check if it's the boot-cpu, set it's hw index in paca now */
1024 if (get_flat_dt_prop(node
, "linux,boot-cpu", NULL
) != NULL
) {
1025 u32
*prop
= get_flat_dt_prop(node
, "reg", NULL
);
1026 set_hard_smp_processor_id(0, prop
== NULL
? 0 : *prop
);
1027 boot_cpuid_phys
= get_hard_smp_processor_id(0);
1031 #ifdef CONFIG_ALTIVEC
1032 /* Check if we have a VMX and eventually update CPU features */
1033 prop
= (u32
*)get_flat_dt_prop(node
, "ibm,vmx", NULL
);
1034 if (prop
&& (*prop
) > 0) {
1035 cur_cpu_spec
->cpu_features
|= CPU_FTR_ALTIVEC
;
1036 cur_cpu_spec
->cpu_user_features
|= PPC_FEATURE_HAS_ALTIVEC
;
1039 /* Same goes for Apple's "altivec" property */
1040 prop
= (u32
*)get_flat_dt_prop(node
, "altivec", NULL
);
1042 cur_cpu_spec
->cpu_features
|= CPU_FTR_ALTIVEC
;
1043 cur_cpu_spec
->cpu_user_features
|= PPC_FEATURE_HAS_ALTIVEC
;
1045 #endif /* CONFIG_ALTIVEC */
1048 * Check for an SMT capable CPU and set the CPU feature. We do
1049 * this by looking at the size of the ibm,ppc-interrupt-server#s
1052 prop
= (u32
*)get_flat_dt_prop(node
, "ibm,ppc-interrupt-server#s",
1054 cur_cpu_spec
->cpu_features
&= ~CPU_FTR_SMT
;
1055 if (prop
&& ((size
/ sizeof(u32
)) > 1))
1056 cur_cpu_spec
->cpu_features
|= CPU_FTR_SMT
;
1061 static int __init
early_init_dt_scan_chosen(unsigned long node
,
1062 const char *uname
, int depth
, void *data
)
1066 extern unsigned long memory_limit
, tce_alloc_start
, tce_alloc_end
;
1068 DBG("search \"chosen\", depth: %d, uname: %s\n", depth
, uname
);
1070 if (depth
!= 1 || strcmp(uname
, "chosen") != 0)
1073 /* get platform type */
1074 prop
= (u32
*)get_flat_dt_prop(node
, "linux,platform", NULL
);
1077 systemcfg
->platform
= *prop
;
1079 /* check if iommu is forced on or off */
1080 if (get_flat_dt_prop(node
, "linux,iommu-off", NULL
) != NULL
)
1082 if (get_flat_dt_prop(node
, "linux,iommu-force-on", NULL
) != NULL
)
1085 prop64
= (u64
*)get_flat_dt_prop(node
, "linux,memory-limit", NULL
);
1087 memory_limit
= *prop64
;
1089 prop64
= (u64
*)get_flat_dt_prop(node
, "linux,tce-alloc-start", NULL
);
1091 tce_alloc_start
= *prop64
;
1093 prop64
= (u64
*)get_flat_dt_prop(node
, "linux,tce-alloc-end", NULL
);
1095 tce_alloc_end
= *prop64
;
1097 #ifdef CONFIG_PPC_RTAS
1098 /* To help early debugging via the front panel, we retreive a minimal
1099 * set of RTAS infos now if available
1102 u64
*basep
, *entryp
;
1104 basep
= (u64
*)get_flat_dt_prop(node
, "linux,rtas-base", NULL
);
1105 entryp
= (u64
*)get_flat_dt_prop(node
, "linux,rtas-entry", NULL
);
1106 prop
= (u32
*)get_flat_dt_prop(node
, "linux,rtas-size", NULL
);
1107 if (basep
&& entryp
&& prop
) {
1109 rtas
.entry
= *entryp
;
1113 #endif /* CONFIG_PPC_RTAS */
1119 static int __init
early_init_dt_scan_root(unsigned long node
,
1120 const char *uname
, int depth
, void *data
)
1127 prop
= (u32
*)get_flat_dt_prop(node
, "#size-cells", NULL
);
1128 dt_root_size_cells
= (prop
== NULL
) ? 1 : *prop
;
1129 DBG("dt_root_size_cells = %x\n", dt_root_size_cells
);
1131 prop
= (u32
*)get_flat_dt_prop(node
, "#address-cells", NULL
);
1132 dt_root_addr_cells
= (prop
== NULL
) ? 2 : *prop
;
1133 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells
);
1139 static unsigned long __init
dt_mem_next_cell(int s
, cell_t
**cellp
)
1142 unsigned long r
= 0;
1144 /* Ignore more than 2 cells */
1160 static int __init
early_init_dt_scan_memory(unsigned long node
,
1161 const char *uname
, int depth
, void *data
)
1163 char *type
= get_flat_dt_prop(node
, "device_type", NULL
);
1167 /* We are scanning "memory" nodes only */
1168 if (type
== NULL
|| strcmp(type
, "memory") != 0)
1171 reg
= (cell_t
*)get_flat_dt_prop(node
, "reg", &l
);
1175 endp
= reg
+ (l
/ sizeof(cell_t
));
1177 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1178 uname
, l
, reg
[0], reg
[1], reg
[2], reg
[3]);
1180 while ((endp
- reg
) >= (dt_root_addr_cells
+ dt_root_size_cells
)) {
1181 unsigned long base
, size
;
1183 base
= dt_mem_next_cell(dt_root_addr_cells
, ®
);
1184 size
= dt_mem_next_cell(dt_root_size_cells
, ®
);
1188 DBG(" - %lx , %lx\n", base
, size
);
1190 if (base
>= 0x80000000ul
)
1192 if ((base
+ size
) > 0x80000000ul
)
1193 size
= 0x80000000ul
- base
;
1195 lmb_add(base
, size
);
1200 static void __init
early_reserve_mem(void)
1203 u64
*reserve_map
= (u64
*)(((unsigned long)initial_boot_params
) +
1204 initial_boot_params
->off_mem_rsvmap
);
1206 base
= *(reserve_map
++);
1207 size
= *(reserve_map
++);
1210 DBG("reserving: %lx -> %lx\n", base
, size
);
1211 lmb_reserve(base
, size
);
1215 DBG("memory reserved, lmbs :\n");
1220 void __init
early_init_devtree(void *params
)
1222 DBG(" -> early_init_devtree()\n");
1224 /* Setup flat device-tree pointer */
1225 initial_boot_params
= params
;
1227 /* By default, hash size is not set */
1230 /* Retreive various informations from the /chosen node of the
1231 * device-tree, including the platform type, initrd location and
1232 * size, TCE reserve, and more ...
1234 scan_flat_dt(early_init_dt_scan_chosen
, NULL
);
1236 /* Scan memory nodes and rebuild LMBs */
1238 scan_flat_dt(early_init_dt_scan_root
, NULL
);
1239 scan_flat_dt(early_init_dt_scan_memory
, NULL
);
1240 lmb_enforce_memory_limit();
1242 systemcfg
->physicalMemorySize
= lmb_phys_mem_size();
1243 lmb_reserve(0, __pa(klimit
));
1245 DBG("Phys. mem: %lx\n", systemcfg
->physicalMemorySize
);
1247 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1248 early_reserve_mem();
1250 DBG("Scanning CPUs ...\n");
1252 /* Retreive hash table size from flattened tree plus other
1253 * CPU related informations (altivec support, boot CPU ID, ...)
1255 scan_flat_dt(early_init_dt_scan_cpus
, NULL
);
1257 /* If hash size wasn't obtained above, we calculate it now based on
1258 * the total RAM size
1260 if (ppc64_pft_size
== 0) {
1261 unsigned long rnd_mem_size
, pteg_count
;
1263 /* round mem_size up to next power of 2 */
1264 rnd_mem_size
= 1UL << __ilog2(systemcfg
->physicalMemorySize
);
1265 if (rnd_mem_size
< systemcfg
->physicalMemorySize
)
1269 pteg_count
= max(rnd_mem_size
>> (12 + 1), 1UL << 11);
1271 ppc64_pft_size
= __ilog2(pteg_count
<< 7);
1274 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size
);
1275 DBG(" <- early_init_devtree()\n");
1281 prom_n_addr_cells(struct device_node
* np
)
1287 ip
= (int *) get_property(np
, "#address-cells", NULL
);
1290 } while (np
->parent
);
1291 /* No #address-cells property for the root node, default to 1 */
1296 prom_n_size_cells(struct device_node
* np
)
1302 ip
= (int *) get_property(np
, "#size-cells", NULL
);
1305 } while (np
->parent
);
1306 /* No #size-cells property for the root node, default to 1 */
1311 * Work out the sense (active-low level / active-high edge)
1312 * of each interrupt from the device tree.
1314 void __init
prom_get_irq_senses(unsigned char *senses
, int off
, int max
)
1316 struct device_node
*np
;
1319 /* default to level-triggered */
1320 memset(senses
, 1, max
- off
);
1322 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1323 for (j
= 0; j
< np
->n_intrs
; j
++) {
1324 i
= np
->intrs
[j
].line
;
1325 if (i
>= off
&& i
< max
)
1326 senses
[i
-off
] = np
->intrs
[j
].sense
?
1327 IRQ_SENSE_LEVEL
| IRQ_POLARITY_NEGATIVE
:
1328 IRQ_SENSE_EDGE
| IRQ_POLARITY_POSITIVE
;
1334 * Construct and return a list of the device_nodes with a given name.
1336 struct device_node
*
1337 find_devices(const char *name
)
1339 struct device_node
*head
, **prevp
, *np
;
1342 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1343 if (np
->name
!= 0 && strcasecmp(np
->name
, name
) == 0) {
1351 EXPORT_SYMBOL(find_devices
);
1354 * Construct and return a list of the device_nodes with a given type.
1356 struct device_node
*
1357 find_type_devices(const char *type
)
1359 struct device_node
*head
, **prevp
, *np
;
1362 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1363 if (np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0) {
1371 EXPORT_SYMBOL(find_type_devices
);
1374 * Returns all nodes linked together
1376 struct device_node
*
1377 find_all_nodes(void)
1379 struct device_node
*head
, **prevp
, *np
;
1382 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1389 EXPORT_SYMBOL(find_all_nodes
);
1391 /** Checks if the given "compat" string matches one of the strings in
1392 * the device's "compatible" property
1395 device_is_compatible(struct device_node
*device
, const char *compat
)
1400 cp
= (char *) get_property(device
, "compatible", &cplen
);
1404 if (strncasecmp(cp
, compat
, strlen(compat
)) == 0)
1413 EXPORT_SYMBOL(device_is_compatible
);
1417 * Indicates whether the root node has a given value in its
1418 * compatible property.
1421 machine_is_compatible(const char *compat
)
1423 struct device_node
*root
;
1426 root
= of_find_node_by_path("/");
1428 rc
= device_is_compatible(root
, compat
);
1433 EXPORT_SYMBOL(machine_is_compatible
);
1436 * Construct and return a list of the device_nodes with a given type
1437 * and compatible property.
1439 struct device_node
*
1440 find_compatible_devices(const char *type
, const char *compat
)
1442 struct device_node
*head
, **prevp
, *np
;
1445 for (np
= allnodes
; np
!= 0; np
= np
->allnext
) {
1447 && !(np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0))
1449 if (device_is_compatible(np
, compat
)) {
1457 EXPORT_SYMBOL(find_compatible_devices
);
1460 * Find the device_node with a given full_name.
1462 struct device_node
*
1463 find_path_device(const char *path
)
1465 struct device_node
*np
;
1467 for (np
= allnodes
; np
!= 0; np
= np
->allnext
)
1468 if (np
->full_name
!= 0 && strcasecmp(np
->full_name
, path
) == 0)
1472 EXPORT_SYMBOL(find_path_device
);
1476 * New implementation of the OF "find" APIs, return a refcounted
1477 * object, call of_node_put() when done. The device tree and list
1478 * are protected by a rw_lock.
1480 * Note that property management will need some locking as well,
1481 * this isn't dealt with yet.
1486 * of_find_node_by_name - Find a node by its "name" property
1487 * @from: The node to start searching from or NULL, the node
1488 * you pass will not be searched, only the next one
1489 * will; typically, you pass what the previous call
1490 * returned. of_node_put() will be called on it
1491 * @name: The name string to match against
1493 * Returns a node pointer with refcount incremented, use
1494 * of_node_put() on it when done.
1496 struct device_node
*of_find_node_by_name(struct device_node
*from
,
1499 struct device_node
*np
;
1501 read_lock(&devtree_lock
);
1502 np
= from
? from
->allnext
: allnodes
;
1503 for (; np
!= 0; np
= np
->allnext
)
1504 if (np
->name
!= 0 && strcasecmp(np
->name
, name
) == 0
1509 read_unlock(&devtree_lock
);
1512 EXPORT_SYMBOL(of_find_node_by_name
);
1515 * of_find_node_by_type - Find a node by its "device_type" property
1516 * @from: The node to start searching from or NULL, the node
1517 * you pass will not be searched, only the next one
1518 * will; typically, you pass what the previous call
1519 * returned. of_node_put() will be called on it
1520 * @name: The type string to match against
1522 * Returns a node pointer with refcount incremented, use
1523 * of_node_put() on it when done.
1525 struct device_node
*of_find_node_by_type(struct device_node
*from
,
1528 struct device_node
*np
;
1530 read_lock(&devtree_lock
);
1531 np
= from
? from
->allnext
: allnodes
;
1532 for (; np
!= 0; np
= np
->allnext
)
1533 if (np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0
1538 read_unlock(&devtree_lock
);
1541 EXPORT_SYMBOL(of_find_node_by_type
);
1544 * of_find_compatible_node - Find a node based on type and one of the
1545 * tokens in its "compatible" property
1546 * @from: The node to start searching from or NULL, the node
1547 * you pass will not be searched, only the next one
1548 * will; typically, you pass what the previous call
1549 * returned. of_node_put() will be called on it
1550 * @type: The type string to match "device_type" or NULL to ignore
1551 * @compatible: The string to match to one of the tokens in the device
1552 * "compatible" list.
1554 * Returns a node pointer with refcount incremented, use
1555 * of_node_put() on it when done.
1557 struct device_node
*of_find_compatible_node(struct device_node
*from
,
1558 const char *type
, const char *compatible
)
1560 struct device_node
*np
;
1562 read_lock(&devtree_lock
);
1563 np
= from
? from
->allnext
: allnodes
;
1564 for (; np
!= 0; np
= np
->allnext
) {
1566 && !(np
->type
!= 0 && strcasecmp(np
->type
, type
) == 0))
1568 if (device_is_compatible(np
, compatible
) && of_node_get(np
))
1573 read_unlock(&devtree_lock
);
1576 EXPORT_SYMBOL(of_find_compatible_node
);
1579 * of_find_node_by_path - Find a node matching a full OF path
1580 * @path: The full path to match
1582 * Returns a node pointer with refcount incremented, use
1583 * of_node_put() on it when done.
1585 struct device_node
*of_find_node_by_path(const char *path
)
1587 struct device_node
*np
= allnodes
;
1589 read_lock(&devtree_lock
);
1590 for (; np
!= 0; np
= np
->allnext
) {
1591 if (np
->full_name
!= 0 && strcasecmp(np
->full_name
, path
) == 0
1595 read_unlock(&devtree_lock
);
1598 EXPORT_SYMBOL(of_find_node_by_path
);
1601 * of_find_node_by_phandle - Find a node given a phandle
1602 * @handle: phandle of the node to find
1604 * Returns a node pointer with refcount incremented, use
1605 * of_node_put() on it when done.
1607 struct device_node
*of_find_node_by_phandle(phandle handle
)
1609 struct device_node
*np
;
1611 read_lock(&devtree_lock
);
1612 for (np
= allnodes
; np
!= 0; np
= np
->allnext
)
1613 if (np
->linux_phandle
== handle
)
1617 read_unlock(&devtree_lock
);
1620 EXPORT_SYMBOL(of_find_node_by_phandle
);
1623 * of_find_all_nodes - Get next node in global list
1624 * @prev: Previous node or NULL to start iteration
1625 * of_node_put() will be called on it
1627 * Returns a node pointer with refcount incremented, use
1628 * of_node_put() on it when done.
1630 struct device_node
*of_find_all_nodes(struct device_node
*prev
)
1632 struct device_node
*np
;
1634 read_lock(&devtree_lock
);
1635 np
= prev
? prev
->allnext
: allnodes
;
1636 for (; np
!= 0; np
= np
->allnext
)
1637 if (of_node_get(np
))
1641 read_unlock(&devtree_lock
);
1644 EXPORT_SYMBOL(of_find_all_nodes
);
1647 * of_get_parent - Get a node's parent if any
1648 * @node: Node to get parent
1650 * Returns a node pointer with refcount incremented, use
1651 * of_node_put() on it when done.
1653 struct device_node
*of_get_parent(const struct device_node
*node
)
1655 struct device_node
*np
;
1660 read_lock(&devtree_lock
);
1661 np
= of_node_get(node
->parent
);
1662 read_unlock(&devtree_lock
);
1665 EXPORT_SYMBOL(of_get_parent
);
1668 * of_get_next_child - Iterate a node childs
1669 * @node: parent node
1670 * @prev: previous child of the parent node, or NULL to get first
1672 * Returns a node pointer with refcount incremented, use
1673 * of_node_put() on it when done.
1675 struct device_node
*of_get_next_child(const struct device_node
*node
,
1676 struct device_node
*prev
)
1678 struct device_node
*next
;
1680 read_lock(&devtree_lock
);
1681 next
= prev
? prev
->sibling
: node
->child
;
1682 for (; next
!= 0; next
= next
->sibling
)
1683 if (of_node_get(next
))
1687 read_unlock(&devtree_lock
);
1690 EXPORT_SYMBOL(of_get_next_child
);
1693 * of_node_get - Increment refcount of a node
1694 * @node: Node to inc refcount, NULL is supported to
1695 * simplify writing of callers
1699 struct device_node
*of_node_get(struct device_node
*node
)
1702 kref_get(&node
->kref
);
1705 EXPORT_SYMBOL(of_node_get
);
1707 static inline struct device_node
* kref_to_device_node(struct kref
*kref
)
1709 return container_of(kref
, struct device_node
, kref
);
1713 * of_node_release - release a dynamically allocated node
1714 * @kref: kref element of the node to be released
1716 * In of_node_put() this function is passed to kref_put()
1717 * as the destructor.
1719 static void of_node_release(struct kref
*kref
)
1721 struct device_node
*node
= kref_to_device_node(kref
);
1722 struct property
*prop
= node
->properties
;
1724 if (!OF_IS_DYNAMIC(node
))
1727 struct property
*next
= prop
->next
;
1735 kfree(node
->full_name
);
1741 * of_node_put - Decrement refcount of a node
1742 * @node: Node to dec refcount, NULL is supported to
1743 * simplify writing of callers
1746 void of_node_put(struct device_node
*node
)
1749 kref_put(&node
->kref
, of_node_release
);
1751 EXPORT_SYMBOL(of_node_put
);
1754 * Fix up the uninitialized fields in a new device node:
1755 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1757 * A lot of boot-time code is duplicated here, because functions such
1758 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1761 * This should probably be split up into smaller chunks.
1764 static int of_finish_dynamic_node(struct device_node
*node
,
1765 unsigned long *unused1
, int unused2
,
1766 int unused3
, int unused4
)
1768 struct device_node
*parent
= of_get_parent(node
);
1770 phandle
*ibm_phandle
;
1772 node
->name
= get_property(node
, "name", NULL
);
1773 node
->type
= get_property(node
, "device_type", NULL
);
1780 /* We don't support that function on PowerMac, at least
1783 if (systemcfg
->platform
== PLATFORM_POWERMAC
)
1786 /* fix up new node's linux_phandle field */
1787 if ((ibm_phandle
= (unsigned int *)get_property(node
, "ibm,phandle", NULL
)))
1788 node
->linux_phandle
= *ibm_phandle
;
1791 of_node_put(parent
);
1796 * Plug a device node into the tree and global list.
1798 void of_attach_node(struct device_node
*np
)
1800 write_lock(&devtree_lock
);
1801 np
->sibling
= np
->parent
->child
;
1802 np
->allnext
= allnodes
;
1803 np
->parent
->child
= np
;
1805 write_unlock(&devtree_lock
);
1809 * "Unplug" a node from the device tree. The caller must hold
1810 * a reference to the node. The memory associated with the node
1811 * is not freed until its refcount goes to zero.
1813 void of_detach_node(const struct device_node
*np
)
1815 struct device_node
*parent
;
1817 write_lock(&devtree_lock
);
1819 parent
= np
->parent
;
1822 allnodes
= np
->allnext
;
1824 struct device_node
*prev
;
1825 for (prev
= allnodes
;
1826 prev
->allnext
!= np
;
1827 prev
= prev
->allnext
)
1829 prev
->allnext
= np
->allnext
;
1832 if (parent
->child
== np
)
1833 parent
->child
= np
->sibling
;
1835 struct device_node
*prevsib
;
1836 for (prevsib
= np
->parent
->child
;
1837 prevsib
->sibling
!= np
;
1838 prevsib
= prevsib
->sibling
)
1840 prevsib
->sibling
= np
->sibling
;
1843 write_unlock(&devtree_lock
);
1846 static int prom_reconfig_notifier(struct notifier_block
*nb
, unsigned long action
, void *node
)
1851 case PSERIES_RECONFIG_ADD
:
1852 err
= finish_node(node
, NULL
, of_finish_dynamic_node
, 0, 0, 0);
1854 printk(KERN_ERR
"finish_node returned %d\n", err
);
1865 static struct notifier_block prom_reconfig_nb
= {
1866 .notifier_call
= prom_reconfig_notifier
,
1867 .priority
= 10, /* This one needs to run first */
1870 static int __init
prom_reconfig_setup(void)
1872 return pSeries_reconfig_notifier_register(&prom_reconfig_nb
);
1874 __initcall(prom_reconfig_setup
);
1877 * Find a property with a given name for a given node
1878 * and return the value.
1881 get_property(struct device_node
*np
, const char *name
, int *lenp
)
1883 struct property
*pp
;
1885 for (pp
= np
->properties
; pp
!= 0; pp
= pp
->next
)
1886 if (strcmp(pp
->name
, name
) == 0) {
1893 EXPORT_SYMBOL(get_property
);
1896 * Add a property to a node
1899 prom_add_property(struct device_node
* np
, struct property
* prop
)
1901 struct property
**next
= &np
->properties
;
1905 next
= &(*next
)->next
;
1911 print_properties(struct device_node
*np
)
1913 struct property
*pp
;
1917 for (pp
= np
->properties
; pp
!= 0; pp
= pp
->next
) {
1918 printk(KERN_INFO
"%s", pp
->name
);
1919 for (i
= strlen(pp
->name
); i
< 16; ++i
)
1921 cp
= (char *) pp
->value
;
1922 for (i
= pp
->length
; i
> 0; --i
, ++cp
)
1923 if ((i
> 1 && (*cp
< 0x20 || *cp
> 0x7e))
1924 || (i
== 1 && *cp
!= 0))
1926 if (i
== 0 && pp
->length
> 1) {
1927 /* looks like a string */
1928 printk(" %s\n", (char *) pp
->value
);
1930 /* dump it in hex */
1934 if (pp
->length
% 4 == 0) {
1935 unsigned int *p
= (unsigned int *) pp
->value
;
1938 for (i
= 0; i
< n
; ++i
) {
1939 if (i
!= 0 && (i
% 4) == 0)
1941 printk(" %08x", *p
++);
1944 unsigned char *bp
= pp
->value
;
1946 for (i
= 0; i
< n
; ++i
) {
1947 if (i
!= 0 && (i
% 16) == 0)
1949 printk(" %02x", *bp
++);
1953 if (pp
->length
> 64)
1954 printk(" ... (length = %d)\n",