2 * linux/drivers/block/ll_rw_blk.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/backing-dev.h>
19 #include <linux/bio.h>
20 #include <linux/blkdev.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/blkdev.h>
36 #include <scsi/scsi_cmnd.h>
38 static void blk_unplug_work(void *data
);
39 static void blk_unplug_timeout(unsigned long data
);
40 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
43 * For the allocated request tables
45 static kmem_cache_t
*request_cachep
;
48 * For queue allocation
50 static kmem_cache_t
*requestq_cachep
;
53 * For io context allocations
55 static kmem_cache_t
*iocontext_cachep
;
57 static wait_queue_head_t congestion_wqh
[2] = {
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
63 * Controlling structure to kblockd
65 static struct workqueue_struct
*kblockd_workqueue
;
67 unsigned long blk_max_low_pfn
, blk_max_pfn
;
69 EXPORT_SYMBOL(blk_max_low_pfn
);
70 EXPORT_SYMBOL(blk_max_pfn
);
72 /* Amount of time in which a process may batch requests */
73 #define BLK_BATCH_TIME (HZ/50UL)
75 /* Number of requests a "batching" process may submit */
76 #define BLK_BATCH_REQ 32
79 * Return the threshold (number of used requests) at which the queue is
80 * considered to be congested. It include a little hysteresis to keep the
81 * context switch rate down.
83 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
85 return q
->nr_congestion_on
;
89 * The threshold at which a queue is considered to be uncongested
91 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
93 return q
->nr_congestion_off
;
96 static void blk_queue_congestion_threshold(struct request_queue
*q
)
100 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
101 if (nr
> q
->nr_requests
)
103 q
->nr_congestion_on
= nr
;
105 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
108 q
->nr_congestion_off
= nr
;
112 * A queue has just exitted congestion. Note this in the global counter of
113 * congested queues, and wake up anyone who was waiting for requests to be
116 static void clear_queue_congested(request_queue_t
*q
, int rw
)
119 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
121 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
122 clear_bit(bit
, &q
->backing_dev_info
.state
);
123 smp_mb__after_clear_bit();
124 if (waitqueue_active(wqh
))
129 * A queue has just entered congestion. Flag that in the queue's VM-visible
130 * state flags and increment the global gounter of congested queues.
132 static void set_queue_congested(request_queue_t
*q
, int rw
)
136 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
137 set_bit(bit
, &q
->backing_dev_info
.state
);
141 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
144 * Locates the passed device's request queue and returns the address of its
147 * Will return NULL if the request queue cannot be located.
149 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
151 struct backing_dev_info
*ret
= NULL
;
152 request_queue_t
*q
= bdev_get_queue(bdev
);
155 ret
= &q
->backing_dev_info
;
159 EXPORT_SYMBOL(blk_get_backing_dev_info
);
161 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
164 q
->activity_data
= data
;
167 EXPORT_SYMBOL(blk_queue_activity_fn
);
170 * blk_queue_prep_rq - set a prepare_request function for queue
172 * @pfn: prepare_request function
174 * It's possible for a queue to register a prepare_request callback which
175 * is invoked before the request is handed to the request_fn. The goal of
176 * the function is to prepare a request for I/O, it can be used to build a
177 * cdb from the request data for instance.
180 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
185 EXPORT_SYMBOL(blk_queue_prep_rq
);
188 * blk_queue_merge_bvec - set a merge_bvec function for queue
190 * @mbfn: merge_bvec_fn
192 * Usually queues have static limitations on the max sectors or segments that
193 * we can put in a request. Stacking drivers may have some settings that
194 * are dynamic, and thus we have to query the queue whether it is ok to
195 * add a new bio_vec to a bio at a given offset or not. If the block device
196 * has such limitations, it needs to register a merge_bvec_fn to control
197 * the size of bio's sent to it. Note that a block device *must* allow a
198 * single page to be added to an empty bio. The block device driver may want
199 * to use the bio_split() function to deal with these bio's. By default
200 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
203 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
205 q
->merge_bvec_fn
= mbfn
;
208 EXPORT_SYMBOL(blk_queue_merge_bvec
);
211 * blk_queue_make_request - define an alternate make_request function for a device
212 * @q: the request queue for the device to be affected
213 * @mfn: the alternate make_request function
216 * The normal way for &struct bios to be passed to a device
217 * driver is for them to be collected into requests on a request
218 * queue, and then to allow the device driver to select requests
219 * off that queue when it is ready. This works well for many block
220 * devices. However some block devices (typically virtual devices
221 * such as md or lvm) do not benefit from the processing on the
222 * request queue, and are served best by having the requests passed
223 * directly to them. This can be achieved by providing a function
224 * to blk_queue_make_request().
227 * The driver that does this *must* be able to deal appropriately
228 * with buffers in "highmemory". This can be accomplished by either calling
229 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
230 * blk_queue_bounce() to create a buffer in normal memory.
232 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
237 q
->nr_requests
= BLKDEV_MAX_RQ
;
238 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
239 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
240 q
->make_request_fn
= mfn
;
241 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
242 q
->backing_dev_info
.state
= 0;
243 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
244 blk_queue_max_sectors(q
, MAX_SECTORS
);
245 blk_queue_hardsect_size(q
, 512);
246 blk_queue_dma_alignment(q
, 511);
247 blk_queue_congestion_threshold(q
);
248 q
->nr_batching
= BLK_BATCH_REQ
;
250 q
->unplug_thresh
= 4; /* hmm */
251 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
252 if (q
->unplug_delay
== 0)
255 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
257 q
->unplug_timer
.function
= blk_unplug_timeout
;
258 q
->unplug_timer
.data
= (unsigned long)q
;
261 * by default assume old behaviour and bounce for any highmem page
263 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
265 blk_queue_activity_fn(q
, NULL
, NULL
);
267 INIT_LIST_HEAD(&q
->drain_list
);
270 EXPORT_SYMBOL(blk_queue_make_request
);
272 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
274 INIT_LIST_HEAD(&rq
->queuelist
);
277 rq
->rq_status
= RQ_ACTIVE
;
278 rq
->bio
= rq
->biotail
= NULL
;
287 rq
->nr_phys_segments
= 0;
290 rq
->end_io_data
= NULL
;
294 * blk_queue_ordered - does this queue support ordered writes
295 * @q: the request queue
299 * For journalled file systems, doing ordered writes on a commit
300 * block instead of explicitly doing wait_on_buffer (which is bad
301 * for performance) can be a big win. Block drivers supporting this
302 * feature should call this function and indicate so.
305 void blk_queue_ordered(request_queue_t
*q
, int flag
)
308 case QUEUE_ORDERED_NONE
:
310 kmem_cache_free(request_cachep
, q
->flush_rq
);
314 case QUEUE_ORDERED_TAG
:
317 case QUEUE_ORDERED_FLUSH
:
320 q
->flush_rq
= kmem_cache_alloc(request_cachep
,
324 printk("blk_queue_ordered: bad value %d\n", flag
);
329 EXPORT_SYMBOL(blk_queue_ordered
);
332 * blk_queue_issue_flush_fn - set function for issuing a flush
333 * @q: the request queue
334 * @iff: the function to be called issuing the flush
337 * If a driver supports issuing a flush command, the support is notified
338 * to the block layer by defining it through this call.
341 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
343 q
->issue_flush_fn
= iff
;
346 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
349 * Cache flushing for ordered writes handling
351 static void blk_pre_flush_end_io(struct request
*flush_rq
)
353 struct request
*rq
= flush_rq
->end_io_data
;
354 request_queue_t
*q
= rq
->q
;
356 rq
->flags
|= REQ_BAR_PREFLUSH
;
358 if (!flush_rq
->errors
)
359 elv_requeue_request(q
, rq
);
361 q
->end_flush_fn(q
, flush_rq
);
362 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
367 static void blk_post_flush_end_io(struct request
*flush_rq
)
369 struct request
*rq
= flush_rq
->end_io_data
;
370 request_queue_t
*q
= rq
->q
;
372 rq
->flags
|= REQ_BAR_POSTFLUSH
;
374 q
->end_flush_fn(q
, flush_rq
);
375 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
379 struct request
*blk_start_pre_flush(request_queue_t
*q
, struct request
*rq
)
381 struct request
*flush_rq
= q
->flush_rq
;
383 BUG_ON(!blk_barrier_rq(rq
));
385 if (test_and_set_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
))
388 rq_init(q
, flush_rq
);
389 flush_rq
->elevator_private
= NULL
;
390 flush_rq
->flags
= REQ_BAR_FLUSH
;
391 flush_rq
->rq_disk
= rq
->rq_disk
;
395 * prepare_flush returns 0 if no flush is needed, just mark both
396 * pre and post flush as done in that case
398 if (!q
->prepare_flush_fn(q
, flush_rq
)) {
399 rq
->flags
|= REQ_BAR_PREFLUSH
| REQ_BAR_POSTFLUSH
;
400 clear_bit(QUEUE_FLAG_FLUSH
, &q
->queue_flags
);
405 * some drivers dequeue requests right away, some only after io
406 * completion. make sure the request is dequeued.
408 if (!list_empty(&rq
->queuelist
))
409 blkdev_dequeue_request(rq
);
411 elv_deactivate_request(q
, rq
);
413 flush_rq
->end_io_data
= rq
;
414 flush_rq
->end_io
= blk_pre_flush_end_io
;
416 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
420 static void blk_start_post_flush(request_queue_t
*q
, struct request
*rq
)
422 struct request
*flush_rq
= q
->flush_rq
;
424 BUG_ON(!blk_barrier_rq(rq
));
426 rq_init(q
, flush_rq
);
427 flush_rq
->elevator_private
= NULL
;
428 flush_rq
->flags
= REQ_BAR_FLUSH
;
429 flush_rq
->rq_disk
= rq
->rq_disk
;
432 if (q
->prepare_flush_fn(q
, flush_rq
)) {
433 flush_rq
->end_io_data
= rq
;
434 flush_rq
->end_io
= blk_post_flush_end_io
;
436 __elv_add_request(q
, flush_rq
, ELEVATOR_INSERT_FRONT
, 0);
441 static inline int blk_check_end_barrier(request_queue_t
*q
, struct request
*rq
,
444 if (sectors
> rq
->nr_sectors
)
445 sectors
= rq
->nr_sectors
;
447 rq
->nr_sectors
-= sectors
;
448 return rq
->nr_sectors
;
451 static int __blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
,
452 int sectors
, int queue_locked
)
454 if (q
->ordered
!= QUEUE_ORDERED_FLUSH
)
456 if (!blk_fs_request(rq
) || !blk_barrier_rq(rq
))
458 if (blk_barrier_postflush(rq
))
461 if (!blk_check_end_barrier(q
, rq
, sectors
)) {
462 unsigned long flags
= 0;
465 spin_lock_irqsave(q
->queue_lock
, flags
);
467 blk_start_post_flush(q
, rq
);
470 spin_unlock_irqrestore(q
->queue_lock
, flags
);
477 * blk_complete_barrier_rq - complete possible barrier request
478 * @q: the request queue for the device
480 * @sectors: number of sectors to complete
483 * Used in driver end_io handling to determine whether to postpone
484 * completion of a barrier request until a post flush has been done. This
485 * is the unlocked variant, used if the caller doesn't already hold the
488 int blk_complete_barrier_rq(request_queue_t
*q
, struct request
*rq
, int sectors
)
490 return __blk_complete_barrier_rq(q
, rq
, sectors
, 0);
492 EXPORT_SYMBOL(blk_complete_barrier_rq
);
495 * blk_complete_barrier_rq_locked - complete possible barrier request
496 * @q: the request queue for the device
498 * @sectors: number of sectors to complete
501 * See blk_complete_barrier_rq(). This variant must be used if the caller
502 * holds the queue lock.
504 int blk_complete_barrier_rq_locked(request_queue_t
*q
, struct request
*rq
,
507 return __blk_complete_barrier_rq(q
, rq
, sectors
, 1);
509 EXPORT_SYMBOL(blk_complete_barrier_rq_locked
);
512 * blk_queue_bounce_limit - set bounce buffer limit for queue
513 * @q: the request queue for the device
514 * @dma_addr: bus address limit
517 * Different hardware can have different requirements as to what pages
518 * it can do I/O directly to. A low level driver can call
519 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
520 * buffers for doing I/O to pages residing above @page. By default
521 * the block layer sets this to the highest numbered "low" memory page.
523 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
525 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
528 * set appropriate bounce gfp mask -- unfortunately we don't have a
529 * full 4GB zone, so we have to resort to low memory for any bounces.
530 * ISA has its own < 16MB zone.
532 if (bounce_pfn
< blk_max_low_pfn
) {
533 BUG_ON(dma_addr
< BLK_BOUNCE_ISA
);
534 init_emergency_isa_pool();
535 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
537 q
->bounce_gfp
= GFP_NOIO
;
539 q
->bounce_pfn
= bounce_pfn
;
542 EXPORT_SYMBOL(blk_queue_bounce_limit
);
545 * blk_queue_max_sectors - set max sectors for a request for this queue
546 * @q: the request queue for the device
547 * @max_sectors: max sectors in the usual 512b unit
550 * Enables a low level driver to set an upper limit on the size of
553 void blk_queue_max_sectors(request_queue_t
*q
, unsigned short max_sectors
)
555 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
556 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
557 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
560 q
->max_sectors
= q
->max_hw_sectors
= max_sectors
;
563 EXPORT_SYMBOL(blk_queue_max_sectors
);
566 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
567 * @q: the request queue for the device
568 * @max_segments: max number of segments
571 * Enables a low level driver to set an upper limit on the number of
572 * physical data segments in a request. This would be the largest sized
573 * scatter list the driver could handle.
575 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
579 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
582 q
->max_phys_segments
= max_segments
;
585 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
588 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
589 * @q: the request queue for the device
590 * @max_segments: max number of segments
593 * Enables a low level driver to set an upper limit on the number of
594 * hw data segments in a request. This would be the largest number of
595 * address/length pairs the host adapter can actually give as once
598 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
602 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
605 q
->max_hw_segments
= max_segments
;
608 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
611 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
612 * @q: the request queue for the device
613 * @max_size: max size of segment in bytes
616 * Enables a low level driver to set an upper limit on the size of a
619 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
621 if (max_size
< PAGE_CACHE_SIZE
) {
622 max_size
= PAGE_CACHE_SIZE
;
623 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
626 q
->max_segment_size
= max_size
;
629 EXPORT_SYMBOL(blk_queue_max_segment_size
);
632 * blk_queue_hardsect_size - set hardware sector size for the queue
633 * @q: the request queue for the device
634 * @size: the hardware sector size, in bytes
637 * This should typically be set to the lowest possible sector size
638 * that the hardware can operate on (possible without reverting to
639 * even internal read-modify-write operations). Usually the default
640 * of 512 covers most hardware.
642 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
644 q
->hardsect_size
= size
;
647 EXPORT_SYMBOL(blk_queue_hardsect_size
);
650 * Returns the minimum that is _not_ zero, unless both are zero.
652 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
655 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
656 * @t: the stacking driver (top)
657 * @b: the underlying device (bottom)
659 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
661 /* zero is "infinity" */
662 t
->max_sectors
= t
->max_hw_sectors
=
663 min_not_zero(t
->max_sectors
,b
->max_sectors
);
665 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
666 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
667 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
668 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
671 EXPORT_SYMBOL(blk_queue_stack_limits
);
674 * blk_queue_segment_boundary - set boundary rules for segment merging
675 * @q: the request queue for the device
676 * @mask: the memory boundary mask
678 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
680 if (mask
< PAGE_CACHE_SIZE
- 1) {
681 mask
= PAGE_CACHE_SIZE
- 1;
682 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
685 q
->seg_boundary_mask
= mask
;
688 EXPORT_SYMBOL(blk_queue_segment_boundary
);
691 * blk_queue_dma_alignment - set dma length and memory alignment
692 * @q: the request queue for the device
693 * @mask: alignment mask
696 * set required memory and length aligment for direct dma transactions.
697 * this is used when buiding direct io requests for the queue.
700 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
702 q
->dma_alignment
= mask
;
705 EXPORT_SYMBOL(blk_queue_dma_alignment
);
708 * blk_queue_find_tag - find a request by its tag and queue
710 * @q: The request queue for the device
711 * @tag: The tag of the request
714 * Should be used when a device returns a tag and you want to match
717 * no locks need be held.
719 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
721 struct blk_queue_tag
*bqt
= q
->queue_tags
;
723 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
726 return bqt
->tag_index
[tag
];
729 EXPORT_SYMBOL(blk_queue_find_tag
);
732 * __blk_queue_free_tags - release tag maintenance info
733 * @q: the request queue for the device
736 * blk_cleanup_queue() will take care of calling this function, if tagging
737 * has been used. So there's no need to call this directly.
739 static void __blk_queue_free_tags(request_queue_t
*q
)
741 struct blk_queue_tag
*bqt
= q
->queue_tags
;
746 if (atomic_dec_and_test(&bqt
->refcnt
)) {
748 BUG_ON(!list_empty(&bqt
->busy_list
));
750 kfree(bqt
->tag_index
);
751 bqt
->tag_index
= NULL
;
759 q
->queue_tags
= NULL
;
760 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
764 * blk_queue_free_tags - release tag maintenance info
765 * @q: the request queue for the device
768 * This is used to disabled tagged queuing to a device, yet leave
771 void blk_queue_free_tags(request_queue_t
*q
)
773 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
776 EXPORT_SYMBOL(blk_queue_free_tags
);
779 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
781 struct request
**tag_index
;
782 unsigned long *tag_map
;
785 if (depth
> q
->nr_requests
* 2) {
786 depth
= q
->nr_requests
* 2;
787 printk(KERN_ERR
"%s: adjusted depth to %d\n",
788 __FUNCTION__
, depth
);
791 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
795 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
796 tag_map
= kmalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
800 memset(tag_index
, 0, depth
* sizeof(struct request
*));
801 memset(tag_map
, 0, nr_ulongs
* sizeof(unsigned long));
802 tags
->real_max_depth
= depth
;
803 tags
->max_depth
= depth
;
804 tags
->tag_index
= tag_index
;
805 tags
->tag_map
= tag_map
;
814 * blk_queue_init_tags - initialize the queue tag info
815 * @q: the request queue for the device
816 * @depth: the maximum queue depth supported
817 * @tags: the tag to use
819 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
820 struct blk_queue_tag
*tags
)
824 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
826 if (!tags
&& !q
->queue_tags
) {
827 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
831 if (init_tag_map(q
, tags
, depth
))
834 INIT_LIST_HEAD(&tags
->busy_list
);
836 atomic_set(&tags
->refcnt
, 1);
837 } else if (q
->queue_tags
) {
838 if ((rc
= blk_queue_resize_tags(q
, depth
)))
840 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
843 atomic_inc(&tags
->refcnt
);
846 * assign it, all done
848 q
->queue_tags
= tags
;
849 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
856 EXPORT_SYMBOL(blk_queue_init_tags
);
859 * blk_queue_resize_tags - change the queueing depth
860 * @q: the request queue for the device
861 * @new_depth: the new max command queueing depth
864 * Must be called with the queue lock held.
866 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
868 struct blk_queue_tag
*bqt
= q
->queue_tags
;
869 struct request
**tag_index
;
870 unsigned long *tag_map
;
871 int max_depth
, nr_ulongs
;
877 * if we already have large enough real_max_depth. just
878 * adjust max_depth. *NOTE* as requests with tag value
879 * between new_depth and real_max_depth can be in-flight, tag
880 * map can not be shrunk blindly here.
882 if (new_depth
<= bqt
->real_max_depth
) {
883 bqt
->max_depth
= new_depth
;
888 * save the old state info, so we can copy it back
890 tag_index
= bqt
->tag_index
;
891 tag_map
= bqt
->tag_map
;
892 max_depth
= bqt
->real_max_depth
;
894 if (init_tag_map(q
, bqt
, new_depth
))
897 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
898 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
899 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
906 EXPORT_SYMBOL(blk_queue_resize_tags
);
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
920 * queue lock must be held.
922 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
924 struct blk_queue_tag
*bqt
= q
->queue_tags
;
929 if (unlikely(tag
>= bqt
->real_max_depth
))
931 * This can happen after tag depth has been reduced.
932 * FIXME: how about a warning or info message here?
936 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
937 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
942 list_del_init(&rq
->queuelist
);
943 rq
->flags
&= ~REQ_QUEUED
;
946 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
947 printk(KERN_ERR
"%s: tag %d is missing\n",
950 bqt
->tag_index
[tag
] = NULL
;
954 EXPORT_SYMBOL(blk_queue_end_tag
);
957 * blk_queue_start_tag - find a free tag and assign it
958 * @q: the request queue for the device
959 * @rq: the block request that needs tagging
962 * This can either be used as a stand-alone helper, or possibly be
963 * assigned as the queue &prep_rq_fn (in which case &struct request
964 * automagically gets a tag assigned). Note that this function
965 * assumes that any type of request can be queued! if this is not
966 * true for your device, you must check the request type before
967 * calling this function. The request will also be removed from
968 * the request queue, so it's the drivers responsibility to readd
969 * it if it should need to be restarted for some reason.
972 * queue lock must be held.
974 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
976 struct blk_queue_tag
*bqt
= q
->queue_tags
;
979 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
981 "%s: request %p for device [%s] already tagged %d",
983 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
987 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
988 if (tag
>= bqt
->max_depth
)
991 __set_bit(tag
, bqt
->tag_map
);
993 rq
->flags
|= REQ_QUEUED
;
995 bqt
->tag_index
[tag
] = rq
;
996 blkdev_dequeue_request(rq
);
997 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1002 EXPORT_SYMBOL(blk_queue_start_tag
);
1005 * blk_queue_invalidate_tags - invalidate all pending tags
1006 * @q: the request queue for the device
1009 * Hardware conditions may dictate a need to stop all pending requests.
1010 * In this case, we will safely clear the block side of the tag queue and
1011 * readd all requests to the request queue in the right order.
1014 * queue lock must be held.
1016 void blk_queue_invalidate_tags(request_queue_t
*q
)
1018 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1019 struct list_head
*tmp
, *n
;
1022 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1023 rq
= list_entry_rq(tmp
);
1025 if (rq
->tag
== -1) {
1027 "%s: bad tag found on list\n", __FUNCTION__
);
1028 list_del_init(&rq
->queuelist
);
1029 rq
->flags
&= ~REQ_QUEUED
;
1031 blk_queue_end_tag(q
, rq
);
1033 rq
->flags
&= ~REQ_STARTED
;
1034 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1038 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1040 static char *rq_flags
[] = {
1058 "REQ_DRIVE_TASKFILE",
1065 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1069 printk("%s: dev %s: flags = ", msg
,
1070 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1073 if (rq
->flags
& (1 << bit
))
1074 printk("%s ", rq_flags
[bit
]);
1076 } while (bit
< __REQ_NR_BITS
);
1078 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1080 rq
->current_nr_sectors
);
1081 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1083 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1085 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1086 printk("%02x ", rq
->cmd
[bit
]);
1091 EXPORT_SYMBOL(blk_dump_rq_flags
);
1093 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1095 struct bio_vec
*bv
, *bvprv
= NULL
;
1096 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1097 int high
, highprv
= 1;
1099 if (unlikely(!bio
->bi_io_vec
))
1102 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1103 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1104 bio_for_each_segment(bv
, bio
, i
) {
1106 * the trick here is making sure that a high page is never
1107 * considered part of another segment, since that might
1108 * change with the bounce page.
1110 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1111 if (high
|| highprv
)
1112 goto new_hw_segment
;
1114 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1116 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1118 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1120 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1121 goto new_hw_segment
;
1123 seg_size
+= bv
->bv_len
;
1124 hw_seg_size
+= bv
->bv_len
;
1129 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1130 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1131 hw_seg_size
+= bv
->bv_len
;
1134 if (hw_seg_size
> bio
->bi_hw_front_size
)
1135 bio
->bi_hw_front_size
= hw_seg_size
;
1136 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1142 seg_size
= bv
->bv_len
;
1145 if (hw_seg_size
> bio
->bi_hw_back_size
)
1146 bio
->bi_hw_back_size
= hw_seg_size
;
1147 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1148 bio
->bi_hw_front_size
= hw_seg_size
;
1149 bio
->bi_phys_segments
= nr_phys_segs
;
1150 bio
->bi_hw_segments
= nr_hw_segs
;
1151 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1155 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1158 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1161 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1163 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1167 * bio and nxt are contigous in memory, check if the queue allows
1168 * these two to be merged into one
1170 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1176 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1179 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1180 blk_recount_segments(q
, bio
);
1181 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1182 blk_recount_segments(q
, nxt
);
1183 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1184 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1186 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1193 * map a request to scatterlist, return number of sg entries setup. Caller
1194 * must make sure sg can hold rq->nr_phys_segments entries
1196 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1198 struct bio_vec
*bvec
, *bvprv
;
1200 int nsegs
, i
, cluster
;
1203 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1206 * for each bio in rq
1209 rq_for_each_bio(bio
, rq
) {
1211 * for each segment in bio
1213 bio_for_each_segment(bvec
, bio
, i
) {
1214 int nbytes
= bvec
->bv_len
;
1216 if (bvprv
&& cluster
) {
1217 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1220 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1222 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1225 sg
[nsegs
- 1].length
+= nbytes
;
1228 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1229 sg
[nsegs
].page
= bvec
->bv_page
;
1230 sg
[nsegs
].length
= nbytes
;
1231 sg
[nsegs
].offset
= bvec
->bv_offset
;
1236 } /* segments in bio */
1242 EXPORT_SYMBOL(blk_rq_map_sg
);
1245 * the standard queue merge functions, can be overridden with device
1246 * specific ones if so desired
1249 static inline int ll_new_mergeable(request_queue_t
*q
,
1250 struct request
*req
,
1253 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1255 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1256 req
->flags
|= REQ_NOMERGE
;
1257 if (req
== q
->last_merge
)
1258 q
->last_merge
= NULL
;
1263 * A hw segment is just getting larger, bump just the phys
1266 req
->nr_phys_segments
+= nr_phys_segs
;
1270 static inline int ll_new_hw_segment(request_queue_t
*q
,
1271 struct request
*req
,
1274 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1275 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1277 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1278 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1279 req
->flags
|= REQ_NOMERGE
;
1280 if (req
== q
->last_merge
)
1281 q
->last_merge
= NULL
;
1286 * This will form the start of a new hw segment. Bump both
1289 req
->nr_hw_segments
+= nr_hw_segs
;
1290 req
->nr_phys_segments
+= nr_phys_segs
;
1294 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1299 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1300 req
->flags
|= REQ_NOMERGE
;
1301 if (req
== q
->last_merge
)
1302 q
->last_merge
= NULL
;
1305 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1306 blk_recount_segments(q
, req
->biotail
);
1307 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1308 blk_recount_segments(q
, bio
);
1309 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1310 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1311 !BIOVEC_VIRT_OVERSIZE(len
)) {
1312 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1315 if (req
->nr_hw_segments
== 1)
1316 req
->bio
->bi_hw_front_size
= len
;
1317 if (bio
->bi_hw_segments
== 1)
1318 bio
->bi_hw_back_size
= len
;
1323 return ll_new_hw_segment(q
, req
, bio
);
1326 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1331 if (req
->nr_sectors
+ bio_sectors(bio
) > q
->max_sectors
) {
1332 req
->flags
|= REQ_NOMERGE
;
1333 if (req
== q
->last_merge
)
1334 q
->last_merge
= NULL
;
1337 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1338 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1339 blk_recount_segments(q
, bio
);
1340 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1341 blk_recount_segments(q
, req
->bio
);
1342 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1343 !BIOVEC_VIRT_OVERSIZE(len
)) {
1344 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1347 if (bio
->bi_hw_segments
== 1)
1348 bio
->bi_hw_front_size
= len
;
1349 if (req
->nr_hw_segments
== 1)
1350 req
->biotail
->bi_hw_back_size
= len
;
1355 return ll_new_hw_segment(q
, req
, bio
);
1358 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1359 struct request
*next
)
1361 int total_phys_segments
;
1362 int total_hw_segments
;
1365 * First check if the either of the requests are re-queued
1366 * requests. Can't merge them if they are.
1368 if (req
->special
|| next
->special
)
1372 * Will it become too large?
1374 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1377 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1378 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1379 total_phys_segments
--;
1381 if (total_phys_segments
> q
->max_phys_segments
)
1384 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1385 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1386 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1388 * propagate the combined length to the end of the requests
1390 if (req
->nr_hw_segments
== 1)
1391 req
->bio
->bi_hw_front_size
= len
;
1392 if (next
->nr_hw_segments
== 1)
1393 next
->biotail
->bi_hw_back_size
= len
;
1394 total_hw_segments
--;
1397 if (total_hw_segments
> q
->max_hw_segments
)
1400 /* Merge is OK... */
1401 req
->nr_phys_segments
= total_phys_segments
;
1402 req
->nr_hw_segments
= total_hw_segments
;
1407 * "plug" the device if there are no outstanding requests: this will
1408 * force the transfer to start only after we have put all the requests
1411 * This is called with interrupts off and no requests on the queue and
1412 * with the queue lock held.
1414 void blk_plug_device(request_queue_t
*q
)
1416 WARN_ON(!irqs_disabled());
1419 * don't plug a stopped queue, it must be paired with blk_start_queue()
1420 * which will restart the queueing
1422 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1425 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1426 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1429 EXPORT_SYMBOL(blk_plug_device
);
1432 * remove the queue from the plugged list, if present. called with
1433 * queue lock held and interrupts disabled.
1435 int blk_remove_plug(request_queue_t
*q
)
1437 WARN_ON(!irqs_disabled());
1439 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1442 del_timer(&q
->unplug_timer
);
1446 EXPORT_SYMBOL(blk_remove_plug
);
1449 * remove the plug and let it rip..
1451 void __generic_unplug_device(request_queue_t
*q
)
1453 if (unlikely(test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
)))
1456 if (!blk_remove_plug(q
))
1461 EXPORT_SYMBOL(__generic_unplug_device
);
1464 * generic_unplug_device - fire a request queue
1465 * @q: The &request_queue_t in question
1468 * Linux uses plugging to build bigger requests queues before letting
1469 * the device have at them. If a queue is plugged, the I/O scheduler
1470 * is still adding and merging requests on the queue. Once the queue
1471 * gets unplugged, the request_fn defined for the queue is invoked and
1472 * transfers started.
1474 void generic_unplug_device(request_queue_t
*q
)
1476 spin_lock_irq(q
->queue_lock
);
1477 __generic_unplug_device(q
);
1478 spin_unlock_irq(q
->queue_lock
);
1480 EXPORT_SYMBOL(generic_unplug_device
);
1482 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1485 request_queue_t
*q
= bdi
->unplug_io_data
;
1488 * devices don't necessarily have an ->unplug_fn defined
1494 static void blk_unplug_work(void *data
)
1496 request_queue_t
*q
= data
;
1501 static void blk_unplug_timeout(unsigned long data
)
1503 request_queue_t
*q
= (request_queue_t
*)data
;
1505 kblockd_schedule_work(&q
->unplug_work
);
1509 * blk_start_queue - restart a previously stopped queue
1510 * @q: The &request_queue_t in question
1513 * blk_start_queue() will clear the stop flag on the queue, and call
1514 * the request_fn for the queue if it was in a stopped state when
1515 * entered. Also see blk_stop_queue(). Queue lock must be held.
1517 void blk_start_queue(request_queue_t
*q
)
1519 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1522 * one level of recursion is ok and is much faster than kicking
1523 * the unplug handling
1525 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1527 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1530 kblockd_schedule_work(&q
->unplug_work
);
1534 EXPORT_SYMBOL(blk_start_queue
);
1537 * blk_stop_queue - stop a queue
1538 * @q: The &request_queue_t in question
1541 * The Linux block layer assumes that a block driver will consume all
1542 * entries on the request queue when the request_fn strategy is called.
1543 * Often this will not happen, because of hardware limitations (queue
1544 * depth settings). If a device driver gets a 'queue full' response,
1545 * or if it simply chooses not to queue more I/O at one point, it can
1546 * call this function to prevent the request_fn from being called until
1547 * the driver has signalled it's ready to go again. This happens by calling
1548 * blk_start_queue() to restart queue operations. Queue lock must be held.
1550 void blk_stop_queue(request_queue_t
*q
)
1553 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1555 EXPORT_SYMBOL(blk_stop_queue
);
1558 * blk_sync_queue - cancel any pending callbacks on a queue
1562 * The block layer may perform asynchronous callback activity
1563 * on a queue, such as calling the unplug function after a timeout.
1564 * A block device may call blk_sync_queue to ensure that any
1565 * such activity is cancelled, thus allowing it to release resources
1566 * the the callbacks might use. The caller must already have made sure
1567 * that its ->make_request_fn will not re-add plugging prior to calling
1571 void blk_sync_queue(struct request_queue
*q
)
1573 del_timer_sync(&q
->unplug_timer
);
1576 EXPORT_SYMBOL(blk_sync_queue
);
1579 * blk_run_queue - run a single device queue
1580 * @q: The queue to run
1582 void blk_run_queue(struct request_queue
*q
)
1584 unsigned long flags
;
1586 spin_lock_irqsave(q
->queue_lock
, flags
);
1588 if (!elv_queue_empty(q
))
1590 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1592 EXPORT_SYMBOL(blk_run_queue
);
1595 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1596 * @q: the request queue to be released
1599 * blk_cleanup_queue is the pair to blk_init_queue() or
1600 * blk_queue_make_request(). It should be called when a request queue is
1601 * being released; typically when a block device is being de-registered.
1602 * Currently, its primary task it to free all the &struct request
1603 * structures that were allocated to the queue and the queue itself.
1606 * Hopefully the low level driver will have finished any
1607 * outstanding requests first...
1609 void blk_cleanup_queue(request_queue_t
* q
)
1611 struct request_list
*rl
= &q
->rq
;
1613 if (!atomic_dec_and_test(&q
->refcnt
))
1617 elevator_exit(q
->elevator
);
1622 mempool_destroy(rl
->rq_pool
);
1625 __blk_queue_free_tags(q
);
1627 blk_queue_ordered(q
, QUEUE_ORDERED_NONE
);
1629 kmem_cache_free(requestq_cachep
, q
);
1632 EXPORT_SYMBOL(blk_cleanup_queue
);
1634 static int blk_init_free_list(request_queue_t
*q
)
1636 struct request_list
*rl
= &q
->rq
;
1638 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1639 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1640 init_waitqueue_head(&rl
->wait
[READ
]);
1641 init_waitqueue_head(&rl
->wait
[WRITE
]);
1642 init_waitqueue_head(&rl
->drain
);
1644 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1645 mempool_free_slab
, request_cachep
, q
->node
);
1653 static int __make_request(request_queue_t
*, struct bio
*);
1655 request_queue_t
*blk_alloc_queue(int gfp_mask
)
1657 return blk_alloc_queue_node(gfp_mask
, -1);
1659 EXPORT_SYMBOL(blk_alloc_queue
);
1661 request_queue_t
*blk_alloc_queue_node(int gfp_mask
, int node_id
)
1665 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1669 memset(q
, 0, sizeof(*q
));
1670 init_timer(&q
->unplug_timer
);
1671 atomic_set(&q
->refcnt
, 1);
1673 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1674 q
->backing_dev_info
.unplug_io_data
= q
;
1678 EXPORT_SYMBOL(blk_alloc_queue_node
);
1681 * blk_init_queue - prepare a request queue for use with a block device
1682 * @rfn: The function to be called to process requests that have been
1683 * placed on the queue.
1684 * @lock: Request queue spin lock
1687 * If a block device wishes to use the standard request handling procedures,
1688 * which sorts requests and coalesces adjacent requests, then it must
1689 * call blk_init_queue(). The function @rfn will be called when there
1690 * are requests on the queue that need to be processed. If the device
1691 * supports plugging, then @rfn may not be called immediately when requests
1692 * are available on the queue, but may be called at some time later instead.
1693 * Plugged queues are generally unplugged when a buffer belonging to one
1694 * of the requests on the queue is needed, or due to memory pressure.
1696 * @rfn is not required, or even expected, to remove all requests off the
1697 * queue, but only as many as it can handle at a time. If it does leave
1698 * requests on the queue, it is responsible for arranging that the requests
1699 * get dealt with eventually.
1701 * The queue spin lock must be held while manipulating the requests on the
1704 * Function returns a pointer to the initialized request queue, or NULL if
1705 * it didn't succeed.
1708 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1709 * when the block device is deactivated (such as at module unload).
1712 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1714 return blk_init_queue_node(rfn
, lock
, -1);
1716 EXPORT_SYMBOL(blk_init_queue
);
1719 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1721 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1727 if (blk_init_free_list(q
))
1731 * if caller didn't supply a lock, they get per-queue locking with
1735 spin_lock_init(&q
->__queue_lock
);
1736 lock
= &q
->__queue_lock
;
1739 q
->request_fn
= rfn
;
1740 q
->back_merge_fn
= ll_back_merge_fn
;
1741 q
->front_merge_fn
= ll_front_merge_fn
;
1742 q
->merge_requests_fn
= ll_merge_requests_fn
;
1743 q
->prep_rq_fn
= NULL
;
1744 q
->unplug_fn
= generic_unplug_device
;
1745 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1746 q
->queue_lock
= lock
;
1748 blk_queue_segment_boundary(q
, 0xffffffff);
1750 blk_queue_make_request(q
, __make_request
);
1751 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1753 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1754 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1759 if (!elevator_init(q
, NULL
)) {
1760 blk_queue_congestion_threshold(q
);
1764 blk_cleanup_queue(q
);
1766 kmem_cache_free(requestq_cachep
, q
);
1769 EXPORT_SYMBOL(blk_init_queue_node
);
1771 int blk_get_queue(request_queue_t
*q
)
1773 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1774 atomic_inc(&q
->refcnt
);
1781 EXPORT_SYMBOL(blk_get_queue
);
1783 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1785 elv_put_request(q
, rq
);
1786 mempool_free(rq
, q
->rq
.rq_pool
);
1789 static inline struct request
*
1790 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
, int gfp_mask
)
1792 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1798 * first three bits are identical in rq->flags and bio->bi_rw,
1799 * see bio.h and blkdev.h
1803 if (!elv_set_request(q
, rq
, bio
, gfp_mask
))
1806 mempool_free(rq
, q
->rq
.rq_pool
);
1811 * ioc_batching returns true if the ioc is a valid batching request and
1812 * should be given priority access to a request.
1814 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1820 * Make sure the process is able to allocate at least 1 request
1821 * even if the batch times out, otherwise we could theoretically
1824 return ioc
->nr_batch_requests
== q
->nr_batching
||
1825 (ioc
->nr_batch_requests
> 0
1826 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1830 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1831 * will cause the process to be a "batcher" on all queues in the system. This
1832 * is the behaviour we want though - once it gets a wakeup it should be given
1835 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1837 if (!ioc
|| ioc_batching(q
, ioc
))
1840 ioc
->nr_batch_requests
= q
->nr_batching
;
1841 ioc
->last_waited
= jiffies
;
1844 static void __freed_request(request_queue_t
*q
, int rw
)
1846 struct request_list
*rl
= &q
->rq
;
1848 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1849 clear_queue_congested(q
, rw
);
1851 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
1852 if (waitqueue_active(&rl
->wait
[rw
]))
1853 wake_up(&rl
->wait
[rw
]);
1855 blk_clear_queue_full(q
, rw
);
1860 * A request has just been released. Account for it, update the full and
1861 * congestion status, wake up any waiters. Called under q->queue_lock.
1863 static void freed_request(request_queue_t
*q
, int rw
)
1865 struct request_list
*rl
= &q
->rq
;
1869 __freed_request(q
, rw
);
1871 if (unlikely(rl
->starved
[rw
^ 1]))
1872 __freed_request(q
, rw
^ 1);
1874 if (!rl
->count
[READ
] && !rl
->count
[WRITE
]) {
1876 if (unlikely(waitqueue_active(&rl
->drain
)))
1877 wake_up(&rl
->drain
);
1881 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1883 * Get a free request, queue_lock must be held.
1884 * Returns NULL on failure, with queue_lock held.
1885 * Returns !NULL on success, with queue_lock *not held*.
1887 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1890 struct request
*rq
= NULL
;
1891 struct request_list
*rl
= &q
->rq
;
1892 struct io_context
*ioc
= current_io_context(GFP_ATOMIC
);
1894 if (unlikely(test_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
)))
1897 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
1899 * The queue will fill after this allocation, so set it as
1900 * full, and mark this process as "batching". This process
1901 * will be allowed to complete a batch of requests, others
1904 if (!blk_queue_full(q
, rw
)) {
1905 ioc_set_batching(q
, ioc
);
1906 blk_set_queue_full(q
, rw
);
1910 switch (elv_may_queue(q
, rw
, bio
)) {
1913 case ELV_MQUEUE_MAY
:
1915 case ELV_MQUEUE_MUST
:
1919 if (blk_queue_full(q
, rw
) && !ioc_batching(q
, ioc
)) {
1921 * The queue is full and the allocating process is not a
1922 * "batcher", and not exempted by the IO scheduler
1929 * Only allow batching queuers to allocate up to 50% over the defined
1930 * limit of requests, otherwise we could have thousands of requests
1931 * allocated with any setting of ->nr_requests
1933 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
1937 rl
->starved
[rw
] = 0;
1938 if (rl
->count
[rw
] >= queue_congestion_on_threshold(q
))
1939 set_queue_congested(q
, rw
);
1940 spin_unlock_irq(q
->queue_lock
);
1942 rq
= blk_alloc_request(q
, rw
, bio
, gfp_mask
);
1945 * Allocation failed presumably due to memory. Undo anything
1946 * we might have messed up.
1948 * Allocating task should really be put onto the front of the
1949 * wait queue, but this is pretty rare.
1951 spin_lock_irq(q
->queue_lock
);
1952 freed_request(q
, rw
);
1955 * in the very unlikely event that allocation failed and no
1956 * requests for this direction was pending, mark us starved
1957 * so that freeing of a request in the other direction will
1958 * notice us. another possible fix would be to split the
1959 * rq mempool into READ and WRITE
1962 if (unlikely(rl
->count
[rw
] == 0))
1963 rl
->starved
[rw
] = 1;
1968 if (ioc_batching(q
, ioc
))
1969 ioc
->nr_batch_requests
--;
1978 * No available requests for this queue, unplug the device and wait for some
1979 * requests to become available.
1981 * Called with q->queue_lock held, and returns with it unlocked.
1983 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
1988 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
1991 struct request_list
*rl
= &q
->rq
;
1993 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
1994 TASK_UNINTERRUPTIBLE
);
1996 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
1999 struct io_context
*ioc
;
2001 __generic_unplug_device(q
);
2002 spin_unlock_irq(q
->queue_lock
);
2006 * After sleeping, we become a "batching" process and
2007 * will be able to allocate at least one request, and
2008 * up to a big batch of them for a small period time.
2009 * See ioc_batching, ioc_set_batching
2011 ioc
= current_io_context(GFP_NOIO
);
2012 ioc_set_batching(q
, ioc
);
2014 spin_lock_irq(q
->queue_lock
);
2016 finish_wait(&rl
->wait
[rw
], &wait
);
2022 struct request
*blk_get_request(request_queue_t
*q
, int rw
, int gfp_mask
)
2026 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2028 spin_lock_irq(q
->queue_lock
);
2029 if (gfp_mask
& __GFP_WAIT
) {
2030 rq
= get_request_wait(q
, rw
, NULL
);
2032 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2034 spin_unlock_irq(q
->queue_lock
);
2036 /* q->queue_lock is unlocked at this point */
2040 EXPORT_SYMBOL(blk_get_request
);
2043 * blk_requeue_request - put a request back on queue
2044 * @q: request queue where request should be inserted
2045 * @rq: request to be inserted
2048 * Drivers often keep queueing requests until the hardware cannot accept
2049 * more, when that condition happens we need to put the request back
2050 * on the queue. Must be called with queue lock held.
2052 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2054 if (blk_rq_tagged(rq
))
2055 blk_queue_end_tag(q
, rq
);
2057 elv_requeue_request(q
, rq
);
2060 EXPORT_SYMBOL(blk_requeue_request
);
2063 * blk_insert_request - insert a special request in to a request queue
2064 * @q: request queue where request should be inserted
2065 * @rq: request to be inserted
2066 * @at_head: insert request at head or tail of queue
2067 * @data: private data
2070 * Many block devices need to execute commands asynchronously, so they don't
2071 * block the whole kernel from preemption during request execution. This is
2072 * accomplished normally by inserting aritficial requests tagged as
2073 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2074 * scheduled for actual execution by the request queue.
2076 * We have the option of inserting the head or the tail of the queue.
2077 * Typically we use the tail for new ioctls and so forth. We use the head
2078 * of the queue for things like a QUEUE_FULL message from a device, or a
2079 * host that is unable to accept a particular command.
2081 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2082 int at_head
, void *data
)
2084 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2085 unsigned long flags
;
2088 * tell I/O scheduler that this isn't a regular read/write (ie it
2089 * must not attempt merges on this) and that it acts as a soft
2092 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2096 spin_lock_irqsave(q
->queue_lock
, flags
);
2099 * If command is tagged, release the tag
2101 if (blk_rq_tagged(rq
))
2102 blk_queue_end_tag(q
, rq
);
2104 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2105 __elv_add_request(q
, rq
, where
, 0);
2107 if (blk_queue_plugged(q
))
2108 __generic_unplug_device(q
);
2111 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2114 EXPORT_SYMBOL(blk_insert_request
);
2117 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2118 * @q: request queue where request should be inserted
2119 * @rq: request structure to fill
2120 * @ubuf: the user buffer
2121 * @len: length of user data
2124 * Data will be mapped directly for zero copy io, if possible. Otherwise
2125 * a kernel bounce buffer is used.
2127 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2128 * still in process context.
2130 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2131 * before being submitted to the device, as pages mapped may be out of
2132 * reach. It's the callers responsibility to make sure this happens. The
2133 * original bio must be passed back in to blk_rq_unmap_user() for proper
2136 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2139 unsigned long uaddr
;
2143 if (len
> (q
->max_sectors
<< 9))
2148 reading
= rq_data_dir(rq
) == READ
;
2151 * if alignment requirement is satisfied, map in user pages for
2152 * direct dma. else, set up kernel bounce buffers
2154 uaddr
= (unsigned long) ubuf
;
2155 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2156 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2158 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2161 rq
->bio
= rq
->biotail
= bio
;
2162 blk_rq_bio_prep(q
, rq
, bio
);
2164 rq
->buffer
= rq
->data
= NULL
;
2170 * bio is the err-ptr
2172 return PTR_ERR(bio
);
2175 EXPORT_SYMBOL(blk_rq_map_user
);
2178 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2179 * @q: request queue where request should be inserted
2180 * @rq: request to map data to
2181 * @iov: pointer to the iovec
2182 * @iov_count: number of elements in the iovec
2185 * Data will be mapped directly for zero copy io, if possible. Otherwise
2186 * a kernel bounce buffer is used.
2188 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2189 * still in process context.
2191 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2192 * before being submitted to the device, as pages mapped may be out of
2193 * reach. It's the callers responsibility to make sure this happens. The
2194 * original bio must be passed back in to blk_rq_unmap_user() for proper
2197 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2198 struct sg_iovec
*iov
, int iov_count
)
2202 if (!iov
|| iov_count
<= 0)
2205 /* we don't allow misaligned data like bio_map_user() does. If the
2206 * user is using sg, they're expected to know the alignment constraints
2207 * and respect them accordingly */
2208 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2210 return PTR_ERR(bio
);
2212 rq
->bio
= rq
->biotail
= bio
;
2213 blk_rq_bio_prep(q
, rq
, bio
);
2214 rq
->buffer
= rq
->data
= NULL
;
2215 rq
->data_len
= bio
->bi_size
;
2219 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2222 * blk_rq_unmap_user - unmap a request with user data
2223 * @bio: bio to be unmapped
2224 * @ulen: length of user buffer
2227 * Unmap a bio previously mapped by blk_rq_map_user().
2229 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2234 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2235 bio_unmap_user(bio
);
2237 ret
= bio_uncopy_user(bio
);
2243 EXPORT_SYMBOL(blk_rq_unmap_user
);
2246 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2247 * @q: request queue where request should be inserted
2248 * @rq: request to fill
2249 * @kbuf: the kernel buffer
2250 * @len: length of user data
2251 * @gfp_mask: memory allocation flags
2253 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2254 unsigned int len
, unsigned int gfp_mask
)
2258 if (len
> (q
->max_sectors
<< 9))
2263 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2265 return PTR_ERR(bio
);
2267 if (rq_data_dir(rq
) == WRITE
)
2268 bio
->bi_rw
|= (1 << BIO_RW
);
2270 rq
->bio
= rq
->biotail
= bio
;
2271 blk_rq_bio_prep(q
, rq
, bio
);
2273 rq
->buffer
= rq
->data
= NULL
;
2278 EXPORT_SYMBOL(blk_rq_map_kern
);
2281 * blk_execute_rq_nowait - insert a request into queue for execution
2282 * @q: queue to insert the request in
2283 * @bd_disk: matching gendisk
2284 * @rq: request to insert
2285 * @at_head: insert request at head or tail of queue
2286 * @done: I/O completion handler
2289 * Insert a fully prepared request at the back of the io scheduler queue
2290 * for execution. Don't wait for completion.
2292 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2293 struct request
*rq
, int at_head
,
2294 void (*done
)(struct request
*))
2296 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2298 rq
->rq_disk
= bd_disk
;
2299 rq
->flags
|= REQ_NOMERGE
;
2301 elv_add_request(q
, rq
, where
, 1);
2302 generic_unplug_device(q
);
2306 * blk_execute_rq - insert a request into queue for execution
2307 * @q: queue to insert the request in
2308 * @bd_disk: matching gendisk
2309 * @rq: request to insert
2310 * @at_head: insert request at head or tail of queue
2313 * Insert a fully prepared request at the back of the io scheduler queue
2314 * for execution and wait for completion.
2316 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2317 struct request
*rq
, int at_head
)
2319 DECLARE_COMPLETION(wait
);
2320 char sense
[SCSI_SENSE_BUFFERSIZE
];
2324 * we need an extra reference to the request, so we can look at
2325 * it after io completion
2330 memset(sense
, 0, sizeof(sense
));
2335 rq
->waiting
= &wait
;
2336 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2337 wait_for_completion(&wait
);
2346 EXPORT_SYMBOL(blk_execute_rq
);
2349 * blkdev_issue_flush - queue a flush
2350 * @bdev: blockdev to issue flush for
2351 * @error_sector: error sector
2354 * Issue a flush for the block device in question. Caller can supply
2355 * room for storing the error offset in case of a flush error, if they
2356 * wish to. Caller must run wait_for_completion() on its own.
2358 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2362 if (bdev
->bd_disk
== NULL
)
2365 q
= bdev_get_queue(bdev
);
2368 if (!q
->issue_flush_fn
)
2371 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2374 EXPORT_SYMBOL(blkdev_issue_flush
);
2377 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2380 * @error_sector: error offset
2383 * Devices understanding the SCSI command set, can use this function as
2384 * a helper for issuing a cache flush. Note: driver is required to store
2385 * the error offset (in case of error flushing) in ->sector of struct
2388 int blkdev_scsi_issue_flush_fn(request_queue_t
*q
, struct gendisk
*disk
,
2389 sector_t
*error_sector
)
2391 struct request
*rq
= blk_get_request(q
, WRITE
, __GFP_WAIT
);
2394 rq
->flags
|= REQ_BLOCK_PC
| REQ_SOFTBARRIER
;
2396 memset(rq
->cmd
, 0, sizeof(rq
->cmd
));
2401 rq
->timeout
= 60 * HZ
;
2403 ret
= blk_execute_rq(q
, disk
, rq
, 0);
2405 if (ret
&& error_sector
)
2406 *error_sector
= rq
->sector
;
2408 blk_put_request(rq
);
2412 EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn
);
2414 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2416 int rw
= rq_data_dir(rq
);
2418 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2422 __disk_stat_add(rq
->rq_disk
, read_sectors
, nr_sectors
);
2424 __disk_stat_inc(rq
->rq_disk
, read_merges
);
2425 } else if (rw
== WRITE
) {
2426 __disk_stat_add(rq
->rq_disk
, write_sectors
, nr_sectors
);
2428 __disk_stat_inc(rq
->rq_disk
, write_merges
);
2431 disk_round_stats(rq
->rq_disk
);
2432 rq
->rq_disk
->in_flight
++;
2437 * add-request adds a request to the linked list.
2438 * queue lock is held and interrupts disabled, as we muck with the
2439 * request queue list.
2441 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2443 drive_stat_acct(req
, req
->nr_sectors
, 1);
2446 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2449 * elevator indicated where it wants this request to be
2450 * inserted at elevator_merge time
2452 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2456 * disk_round_stats() - Round off the performance stats on a struct
2459 * The average IO queue length and utilisation statistics are maintained
2460 * by observing the current state of the queue length and the amount of
2461 * time it has been in this state for.
2463 * Normally, that accounting is done on IO completion, but that can result
2464 * in more than a second's worth of IO being accounted for within any one
2465 * second, leading to >100% utilisation. To deal with that, we call this
2466 * function to do a round-off before returning the results when reading
2467 * /proc/diskstats. This accounts immediately for all queue usage up to
2468 * the current jiffies and restarts the counters again.
2470 void disk_round_stats(struct gendisk
*disk
)
2472 unsigned long now
= jiffies
;
2474 __disk_stat_add(disk
, time_in_queue
,
2475 disk
->in_flight
* (now
- disk
->stamp
));
2478 if (disk
->in_flight
)
2479 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp_idle
));
2480 disk
->stamp_idle
= now
;
2484 * queue lock must be held
2486 static void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2488 struct request_list
*rl
= req
->rl
;
2492 if (unlikely(--req
->ref_count
))
2495 req
->rq_status
= RQ_INACTIVE
;
2499 * Request may not have originated from ll_rw_blk. if not,
2500 * it didn't come out of our reserved rq pools
2503 int rw
= rq_data_dir(req
);
2505 elv_completed_request(q
, req
);
2507 BUG_ON(!list_empty(&req
->queuelist
));
2509 blk_free_request(q
, req
);
2510 freed_request(q
, rw
);
2514 void blk_put_request(struct request
*req
)
2517 * if req->rl isn't set, this request didnt originate from the
2518 * block layer, so it's safe to just disregard it
2521 unsigned long flags
;
2522 request_queue_t
*q
= req
->q
;
2524 spin_lock_irqsave(q
->queue_lock
, flags
);
2525 __blk_put_request(q
, req
);
2526 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2530 EXPORT_SYMBOL(blk_put_request
);
2533 * blk_end_sync_rq - executes a completion event on a request
2534 * @rq: request to complete
2536 void blk_end_sync_rq(struct request
*rq
)
2538 struct completion
*waiting
= rq
->waiting
;
2541 __blk_put_request(rq
->q
, rq
);
2544 * complete last, if this is a stack request the process (and thus
2545 * the rq pointer) could be invalid right after this complete()
2549 EXPORT_SYMBOL(blk_end_sync_rq
);
2552 * blk_congestion_wait - wait for a queue to become uncongested
2553 * @rw: READ or WRITE
2554 * @timeout: timeout in jiffies
2556 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2557 * If no queues are congested then just wait for the next request to be
2560 long blk_congestion_wait(int rw
, long timeout
)
2564 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2566 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2567 ret
= io_schedule_timeout(timeout
);
2568 finish_wait(wqh
, &wait
);
2572 EXPORT_SYMBOL(blk_congestion_wait
);
2575 * Has to be called with the request spinlock acquired
2577 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2578 struct request
*next
)
2580 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2586 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2589 if (rq_data_dir(req
) != rq_data_dir(next
)
2590 || req
->rq_disk
!= next
->rq_disk
2591 || next
->waiting
|| next
->special
)
2595 * If we are allowed to merge, then append bio list
2596 * from next to rq and release next. merge_requests_fn
2597 * will have updated segment counts, update sector
2600 if (!q
->merge_requests_fn(q
, req
, next
))
2604 * At this point we have either done a back merge
2605 * or front merge. We need the smaller start_time of
2606 * the merged requests to be the current request
2607 * for accounting purposes.
2609 if (time_after(req
->start_time
, next
->start_time
))
2610 req
->start_time
= next
->start_time
;
2612 req
->biotail
->bi_next
= next
->bio
;
2613 req
->biotail
= next
->biotail
;
2615 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2617 elv_merge_requests(q
, req
, next
);
2620 disk_round_stats(req
->rq_disk
);
2621 req
->rq_disk
->in_flight
--;
2624 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2626 __blk_put_request(q
, next
);
2630 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2632 struct request
*next
= elv_latter_request(q
, rq
);
2635 return attempt_merge(q
, rq
, next
);
2640 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2642 struct request
*prev
= elv_former_request(q
, rq
);
2645 return attempt_merge(q
, prev
, rq
);
2651 * blk_attempt_remerge - attempt to remerge active head with next request
2652 * @q: The &request_queue_t belonging to the device
2653 * @rq: The head request (usually)
2656 * For head-active devices, the queue can easily be unplugged so quickly
2657 * that proper merging is not done on the front request. This may hurt
2658 * performance greatly for some devices. The block layer cannot safely
2659 * do merging on that first request for these queues, but the driver can
2660 * call this function and make it happen any way. Only the driver knows
2661 * when it is safe to do so.
2663 void blk_attempt_remerge(request_queue_t
*q
, struct request
*rq
)
2665 unsigned long flags
;
2667 spin_lock_irqsave(q
->queue_lock
, flags
);
2668 attempt_back_merge(q
, rq
);
2669 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2672 EXPORT_SYMBOL(blk_attempt_remerge
);
2674 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2676 struct request
*req
;
2677 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2678 unsigned short prio
;
2681 sector
= bio
->bi_sector
;
2682 nr_sectors
= bio_sectors(bio
);
2683 cur_nr_sectors
= bio_cur_sectors(bio
);
2684 prio
= bio_prio(bio
);
2686 rw
= bio_data_dir(bio
);
2687 sync
= bio_sync(bio
);
2690 * low level driver can indicate that it wants pages above a
2691 * certain limit bounced to low memory (ie for highmem, or even
2692 * ISA dma in theory)
2694 blk_queue_bounce(q
, &bio
);
2696 spin_lock_prefetch(q
->queue_lock
);
2698 barrier
= bio_barrier(bio
);
2699 if (unlikely(barrier
) && (q
->ordered
== QUEUE_ORDERED_NONE
)) {
2704 spin_lock_irq(q
->queue_lock
);
2706 if (unlikely(barrier
) || elv_queue_empty(q
))
2709 el_ret
= elv_merge(q
, &req
, bio
);
2711 case ELEVATOR_BACK_MERGE
:
2712 BUG_ON(!rq_mergeable(req
));
2714 if (!q
->back_merge_fn(q
, req
, bio
))
2717 req
->biotail
->bi_next
= bio
;
2719 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2720 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2721 drive_stat_acct(req
, nr_sectors
, 0);
2722 if (!attempt_back_merge(q
, req
))
2723 elv_merged_request(q
, req
);
2726 case ELEVATOR_FRONT_MERGE
:
2727 BUG_ON(!rq_mergeable(req
));
2729 if (!q
->front_merge_fn(q
, req
, bio
))
2732 bio
->bi_next
= req
->bio
;
2736 * may not be valid. if the low level driver said
2737 * it didn't need a bounce buffer then it better
2738 * not touch req->buffer either...
2740 req
->buffer
= bio_data(bio
);
2741 req
->current_nr_sectors
= cur_nr_sectors
;
2742 req
->hard_cur_sectors
= cur_nr_sectors
;
2743 req
->sector
= req
->hard_sector
= sector
;
2744 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2745 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2746 drive_stat_acct(req
, nr_sectors
, 0);
2747 if (!attempt_front_merge(q
, req
))
2748 elv_merged_request(q
, req
);
2751 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2758 * Grab a free request. This is might sleep but can not fail.
2759 * Returns with the queue unlocked.
2761 req
= get_request_wait(q
, rw
, bio
);
2764 * After dropping the lock and possibly sleeping here, our request
2765 * may now be mergeable after it had proven unmergeable (above).
2766 * We don't worry about that case for efficiency. It won't happen
2767 * often, and the elevators are able to handle it.
2770 req
->flags
|= REQ_CMD
;
2773 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2775 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2776 req
->flags
|= REQ_FAILFAST
;
2779 * REQ_BARRIER implies no merging, but lets make it explicit
2781 if (unlikely(barrier
))
2782 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2785 req
->hard_sector
= req
->sector
= sector
;
2786 req
->hard_nr_sectors
= req
->nr_sectors
= nr_sectors
;
2787 req
->current_nr_sectors
= req
->hard_cur_sectors
= cur_nr_sectors
;
2788 req
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2789 req
->nr_hw_segments
= bio_hw_segments(q
, bio
);
2790 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2791 req
->waiting
= NULL
;
2792 req
->bio
= req
->biotail
= bio
;
2794 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2795 req
->start_time
= jiffies
;
2797 spin_lock_irq(q
->queue_lock
);
2798 if (elv_queue_empty(q
))
2800 add_request(q
, req
);
2803 __generic_unplug_device(q
);
2805 spin_unlock_irq(q
->queue_lock
);
2809 bio_endio(bio
, nr_sectors
<< 9, err
);
2814 * If bio->bi_dev is a partition, remap the location
2816 static inline void blk_partition_remap(struct bio
*bio
)
2818 struct block_device
*bdev
= bio
->bi_bdev
;
2820 if (bdev
!= bdev
->bd_contains
) {
2821 struct hd_struct
*p
= bdev
->bd_part
;
2823 switch (bio_data_dir(bio
)) {
2825 p
->read_sectors
+= bio_sectors(bio
);
2829 p
->write_sectors
+= bio_sectors(bio
);
2833 bio
->bi_sector
+= p
->start_sect
;
2834 bio
->bi_bdev
= bdev
->bd_contains
;
2838 void blk_finish_queue_drain(request_queue_t
*q
)
2840 struct request_list
*rl
= &q
->rq
;
2844 spin_lock_irq(q
->queue_lock
);
2845 clear_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
);
2847 while (!list_empty(&q
->drain_list
)) {
2848 rq
= list_entry_rq(q
->drain_list
.next
);
2850 list_del_init(&rq
->queuelist
);
2851 elv_requeue_request(q
, rq
);
2858 spin_unlock_irq(q
->queue_lock
);
2860 wake_up(&rl
->wait
[0]);
2861 wake_up(&rl
->wait
[1]);
2862 wake_up(&rl
->drain
);
2865 static int wait_drain(request_queue_t
*q
, struct request_list
*rl
, int dispatch
)
2867 int wait
= rl
->count
[READ
] + rl
->count
[WRITE
];
2870 wait
+= !list_empty(&q
->queue_head
);
2876 * We rely on the fact that only requests allocated through blk_alloc_request()
2877 * have io scheduler private data structures associated with them. Any other
2878 * type of request (allocated on stack or through kmalloc()) should not go
2879 * to the io scheduler core, but be attached to the queue head instead.
2881 void blk_wait_queue_drained(request_queue_t
*q
, int wait_dispatch
)
2883 struct request_list
*rl
= &q
->rq
;
2886 spin_lock_irq(q
->queue_lock
);
2887 set_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
);
2889 while (wait_drain(q
, rl
, wait_dispatch
)) {
2890 prepare_to_wait(&rl
->drain
, &wait
, TASK_UNINTERRUPTIBLE
);
2892 if (wait_drain(q
, rl
, wait_dispatch
)) {
2893 __generic_unplug_device(q
);
2894 spin_unlock_irq(q
->queue_lock
);
2896 spin_lock_irq(q
->queue_lock
);
2899 finish_wait(&rl
->drain
, &wait
);
2902 spin_unlock_irq(q
->queue_lock
);
2906 * block waiting for the io scheduler being started again.
2908 static inline void block_wait_queue_running(request_queue_t
*q
)
2912 while (unlikely(test_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
))) {
2913 struct request_list
*rl
= &q
->rq
;
2915 prepare_to_wait_exclusive(&rl
->drain
, &wait
,
2916 TASK_UNINTERRUPTIBLE
);
2919 * re-check the condition. avoids using prepare_to_wait()
2920 * in the fast path (queue is running)
2922 if (test_bit(QUEUE_FLAG_DRAIN
, &q
->queue_flags
))
2925 finish_wait(&rl
->drain
, &wait
);
2929 static void handle_bad_sector(struct bio
*bio
)
2931 char b
[BDEVNAME_SIZE
];
2933 printk(KERN_INFO
"attempt to access beyond end of device\n");
2934 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2935 bdevname(bio
->bi_bdev
, b
),
2937 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2938 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2940 set_bit(BIO_EOF
, &bio
->bi_flags
);
2944 * generic_make_request: hand a buffer to its device driver for I/O
2945 * @bio: The bio describing the location in memory and on the device.
2947 * generic_make_request() is used to make I/O requests of block
2948 * devices. It is passed a &struct bio, which describes the I/O that needs
2951 * generic_make_request() does not return any status. The
2952 * success/failure status of the request, along with notification of
2953 * completion, is delivered asynchronously through the bio->bi_end_io
2954 * function described (one day) else where.
2956 * The caller of generic_make_request must make sure that bi_io_vec
2957 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2958 * set to describe the device address, and the
2959 * bi_end_io and optionally bi_private are set to describe how
2960 * completion notification should be signaled.
2962 * generic_make_request and the drivers it calls may use bi_next if this
2963 * bio happens to be merged with someone else, and may change bi_dev and
2964 * bi_sector for remaps as it sees fit. So the values of these fields
2965 * should NOT be depended on after the call to generic_make_request.
2967 void generic_make_request(struct bio
*bio
)
2971 int ret
, nr_sectors
= bio_sectors(bio
);
2974 /* Test device or partition size, when known. */
2975 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2977 sector_t sector
= bio
->bi_sector
;
2979 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2981 * This may well happen - the kernel calls bread()
2982 * without checking the size of the device, e.g., when
2983 * mounting a device.
2985 handle_bad_sector(bio
);
2991 * Resolve the mapping until finished. (drivers are
2992 * still free to implement/resolve their own stacking
2993 * by explicitly returning 0)
2995 * NOTE: we don't repeat the blk_size check for each new device.
2996 * Stacking drivers are expected to know what they are doing.
2999 char b
[BDEVNAME_SIZE
];
3001 q
= bdev_get_queue(bio
->bi_bdev
);
3004 "generic_make_request: Trying to access "
3005 "nonexistent block-device %s (%Lu)\n",
3006 bdevname(bio
->bi_bdev
, b
),
3007 (long long) bio
->bi_sector
);
3009 bio_endio(bio
, bio
->bi_size
, -EIO
);
3013 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
3014 printk("bio too big device %s (%u > %u)\n",
3015 bdevname(bio
->bi_bdev
, b
),
3021 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3024 block_wait_queue_running(q
);
3027 * If this device has partitions, remap block n
3028 * of partition p to block n+start(p) of the disk.
3030 blk_partition_remap(bio
);
3032 ret
= q
->make_request_fn(q
, bio
);
3036 EXPORT_SYMBOL(generic_make_request
);
3039 * submit_bio: submit a bio to the block device layer for I/O
3040 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3041 * @bio: The &struct bio which describes the I/O
3043 * submit_bio() is very similar in purpose to generic_make_request(), and
3044 * uses that function to do most of the work. Both are fairly rough
3045 * interfaces, @bio must be presetup and ready for I/O.
3048 void submit_bio(int rw
, struct bio
*bio
)
3050 int count
= bio_sectors(bio
);
3052 BIO_BUG_ON(!bio
->bi_size
);
3053 BIO_BUG_ON(!bio
->bi_io_vec
);
3056 mod_page_state(pgpgout
, count
);
3058 mod_page_state(pgpgin
, count
);
3060 if (unlikely(block_dump
)) {
3061 char b
[BDEVNAME_SIZE
];
3062 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3063 current
->comm
, current
->pid
,
3064 (rw
& WRITE
) ? "WRITE" : "READ",
3065 (unsigned long long)bio
->bi_sector
,
3066 bdevname(bio
->bi_bdev
,b
));
3069 generic_make_request(bio
);
3072 EXPORT_SYMBOL(submit_bio
);
3074 static void blk_recalc_rq_segments(struct request
*rq
)
3076 struct bio
*bio
, *prevbio
= NULL
;
3077 int nr_phys_segs
, nr_hw_segs
;
3078 unsigned int phys_size
, hw_size
;
3079 request_queue_t
*q
= rq
->q
;
3084 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3085 rq_for_each_bio(bio
, rq
) {
3086 /* Force bio hw/phys segs to be recalculated. */
3087 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3089 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3090 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3092 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3093 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3095 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3096 pseg
<= q
->max_segment_size
) {
3098 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3102 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3103 hseg
<= q
->max_segment_size
) {
3105 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3112 rq
->nr_phys_segments
= nr_phys_segs
;
3113 rq
->nr_hw_segments
= nr_hw_segs
;
3116 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3118 if (blk_fs_request(rq
)) {
3119 rq
->hard_sector
+= nsect
;
3120 rq
->hard_nr_sectors
-= nsect
;
3123 * Move the I/O submission pointers ahead if required.
3125 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3126 (rq
->sector
<= rq
->hard_sector
)) {
3127 rq
->sector
= rq
->hard_sector
;
3128 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3129 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3130 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3131 rq
->buffer
= bio_data(rq
->bio
);
3135 * if total number of sectors is less than the first segment
3136 * size, something has gone terribly wrong
3138 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3139 printk("blk: request botched\n");
3140 rq
->nr_sectors
= rq
->current_nr_sectors
;
3145 static int __end_that_request_first(struct request
*req
, int uptodate
,
3148 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3152 * extend uptodate bool to allow < 0 value to be direct io error
3155 if (end_io_error(uptodate
))
3156 error
= !uptodate
? -EIO
: uptodate
;
3159 * for a REQ_BLOCK_PC request, we want to carry any eventual
3160 * sense key with us all the way through
3162 if (!blk_pc_request(req
))
3166 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3167 printk("end_request: I/O error, dev %s, sector %llu\n",
3168 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3169 (unsigned long long)req
->sector
);
3172 total_bytes
= bio_nbytes
= 0;
3173 while ((bio
= req
->bio
) != NULL
) {
3176 if (nr_bytes
>= bio
->bi_size
) {
3177 req
->bio
= bio
->bi_next
;
3178 nbytes
= bio
->bi_size
;
3179 bio_endio(bio
, nbytes
, error
);
3183 int idx
= bio
->bi_idx
+ next_idx
;
3185 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3186 blk_dump_rq_flags(req
, "__end_that");
3187 printk("%s: bio idx %d >= vcnt %d\n",
3189 bio
->bi_idx
, bio
->bi_vcnt
);
3193 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3194 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3197 * not a complete bvec done
3199 if (unlikely(nbytes
> nr_bytes
)) {
3200 bio_nbytes
+= nr_bytes
;
3201 total_bytes
+= nr_bytes
;
3206 * advance to the next vector
3209 bio_nbytes
+= nbytes
;
3212 total_bytes
+= nbytes
;
3215 if ((bio
= req
->bio
)) {
3217 * end more in this run, or just return 'not-done'
3219 if (unlikely(nr_bytes
<= 0))
3231 * if the request wasn't completed, update state
3234 bio_endio(bio
, bio_nbytes
, error
);
3235 bio
->bi_idx
+= next_idx
;
3236 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3237 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3240 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3241 blk_recalc_rq_segments(req
);
3246 * end_that_request_first - end I/O on a request
3247 * @req: the request being processed
3248 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3249 * @nr_sectors: number of sectors to end I/O on
3252 * Ends I/O on a number of sectors attached to @req, and sets it up
3253 * for the next range of segments (if any) in the cluster.
3256 * 0 - we are done with this request, call end_that_request_last()
3257 * 1 - still buffers pending for this request
3259 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3261 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3264 EXPORT_SYMBOL(end_that_request_first
);
3267 * end_that_request_chunk - end I/O on a request
3268 * @req: the request being processed
3269 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3270 * @nr_bytes: number of bytes to complete
3273 * Ends I/O on a number of bytes attached to @req, and sets it up
3274 * for the next range of segments (if any). Like end_that_request_first(),
3275 * but deals with bytes instead of sectors.
3278 * 0 - we are done with this request, call end_that_request_last()
3279 * 1 - still buffers pending for this request
3281 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3283 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3286 EXPORT_SYMBOL(end_that_request_chunk
);
3289 * queue lock must be held
3291 void end_that_request_last(struct request
*req
)
3293 struct gendisk
*disk
= req
->rq_disk
;
3295 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3296 laptop_io_completion();
3298 if (disk
&& blk_fs_request(req
)) {
3299 unsigned long duration
= jiffies
- req
->start_time
;
3300 switch (rq_data_dir(req
)) {
3302 __disk_stat_inc(disk
, writes
);
3303 __disk_stat_add(disk
, write_ticks
, duration
);
3306 __disk_stat_inc(disk
, reads
);
3307 __disk_stat_add(disk
, read_ticks
, duration
);
3310 disk_round_stats(disk
);
3316 __blk_put_request(req
->q
, req
);
3319 EXPORT_SYMBOL(end_that_request_last
);
3321 void end_request(struct request
*req
, int uptodate
)
3323 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3324 add_disk_randomness(req
->rq_disk
);
3325 blkdev_dequeue_request(req
);
3326 end_that_request_last(req
);
3330 EXPORT_SYMBOL(end_request
);
3332 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3334 /* first three bits are identical in rq->flags and bio->bi_rw */
3335 rq
->flags
|= (bio
->bi_rw
& 7);
3337 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3338 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3339 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3340 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3341 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3342 rq
->buffer
= bio_data(bio
);
3344 rq
->bio
= rq
->biotail
= bio
;
3347 EXPORT_SYMBOL(blk_rq_bio_prep
);
3349 int kblockd_schedule_work(struct work_struct
*work
)
3351 return queue_work(kblockd_workqueue
, work
);
3354 EXPORT_SYMBOL(kblockd_schedule_work
);
3356 void kblockd_flush(void)
3358 flush_workqueue(kblockd_workqueue
);
3360 EXPORT_SYMBOL(kblockd_flush
);
3362 int __init
blk_dev_init(void)
3364 kblockd_workqueue
= create_workqueue("kblockd");
3365 if (!kblockd_workqueue
)
3366 panic("Failed to create kblockd\n");
3368 request_cachep
= kmem_cache_create("blkdev_requests",
3369 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3371 requestq_cachep
= kmem_cache_create("blkdev_queue",
3372 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3374 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3375 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3377 blk_max_low_pfn
= max_low_pfn
;
3378 blk_max_pfn
= max_pfn
;
3384 * IO Context helper functions
3386 void put_io_context(struct io_context
*ioc
)
3391 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3393 if (atomic_dec_and_test(&ioc
->refcount
)) {
3394 if (ioc
->aic
&& ioc
->aic
->dtor
)
3395 ioc
->aic
->dtor(ioc
->aic
);
3396 if (ioc
->cic
&& ioc
->cic
->dtor
)
3397 ioc
->cic
->dtor(ioc
->cic
);
3399 kmem_cache_free(iocontext_cachep
, ioc
);
3402 EXPORT_SYMBOL(put_io_context
);
3404 /* Called by the exitting task */
3405 void exit_io_context(void)
3407 unsigned long flags
;
3408 struct io_context
*ioc
;
3410 local_irq_save(flags
);
3412 ioc
= current
->io_context
;
3413 current
->io_context
= NULL
;
3415 task_unlock(current
);
3416 local_irq_restore(flags
);
3418 if (ioc
->aic
&& ioc
->aic
->exit
)
3419 ioc
->aic
->exit(ioc
->aic
);
3420 if (ioc
->cic
&& ioc
->cic
->exit
)
3421 ioc
->cic
->exit(ioc
->cic
);
3423 put_io_context(ioc
);
3427 * If the current task has no IO context then create one and initialise it.
3428 * Otherwise, return its existing IO context.
3430 * This returned IO context doesn't have a specifically elevated refcount,
3431 * but since the current task itself holds a reference, the context can be
3432 * used in general code, so long as it stays within `current` context.
3434 struct io_context
*current_io_context(int gfp_flags
)
3436 struct task_struct
*tsk
= current
;
3437 struct io_context
*ret
;
3439 ret
= tsk
->io_context
;
3443 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3445 atomic_set(&ret
->refcount
, 1);
3446 ret
->task
= current
;
3447 ret
->set_ioprio
= NULL
;
3448 ret
->last_waited
= jiffies
; /* doesn't matter... */
3449 ret
->nr_batch_requests
= 0; /* because this is 0 */
3452 tsk
->io_context
= ret
;
3457 EXPORT_SYMBOL(current_io_context
);
3460 * If the current task has no IO context then create one and initialise it.
3461 * If it does have a context, take a ref on it.
3463 * This is always called in the context of the task which submitted the I/O.
3465 struct io_context
*get_io_context(int gfp_flags
)
3467 struct io_context
*ret
;
3468 ret
= current_io_context(gfp_flags
);
3470 atomic_inc(&ret
->refcount
);
3473 EXPORT_SYMBOL(get_io_context
);
3475 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3477 struct io_context
*src
= *psrc
;
3478 struct io_context
*dst
= *pdst
;
3481 BUG_ON(atomic_read(&src
->refcount
) == 0);
3482 atomic_inc(&src
->refcount
);
3483 put_io_context(dst
);
3487 EXPORT_SYMBOL(copy_io_context
);
3489 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3491 struct io_context
*temp
;
3496 EXPORT_SYMBOL(swap_io_context
);
3501 struct queue_sysfs_entry
{
3502 struct attribute attr
;
3503 ssize_t (*show
)(struct request_queue
*, char *);
3504 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3508 queue_var_show(unsigned int var
, char *page
)
3510 return sprintf(page
, "%d\n", var
);
3514 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3516 char *p
= (char *) page
;
3518 *var
= simple_strtoul(p
, &p
, 10);
3522 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3524 return queue_var_show(q
->nr_requests
, (page
));
3528 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3530 struct request_list
*rl
= &q
->rq
;
3532 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3533 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3534 q
->nr_requests
= BLKDEV_MIN_RQ
;
3535 blk_queue_congestion_threshold(q
);
3537 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3538 set_queue_congested(q
, READ
);
3539 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3540 clear_queue_congested(q
, READ
);
3542 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3543 set_queue_congested(q
, WRITE
);
3544 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3545 clear_queue_congested(q
, WRITE
);
3547 if (rl
->count
[READ
] >= q
->nr_requests
) {
3548 blk_set_queue_full(q
, READ
);
3549 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3550 blk_clear_queue_full(q
, READ
);
3551 wake_up(&rl
->wait
[READ
]);
3554 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3555 blk_set_queue_full(q
, WRITE
);
3556 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3557 blk_clear_queue_full(q
, WRITE
);
3558 wake_up(&rl
->wait
[WRITE
]);
3563 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3565 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3567 return queue_var_show(ra_kb
, (page
));
3571 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3573 unsigned long ra_kb
;
3574 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3576 spin_lock_irq(q
->queue_lock
);
3577 if (ra_kb
> (q
->max_sectors
>> 1))
3578 ra_kb
= (q
->max_sectors
>> 1);
3580 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3581 spin_unlock_irq(q
->queue_lock
);
3586 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3588 int max_sectors_kb
= q
->max_sectors
>> 1;
3590 return queue_var_show(max_sectors_kb
, (page
));
3594 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3596 unsigned long max_sectors_kb
,
3597 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3598 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3599 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3602 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3605 * Take the queue lock to update the readahead and max_sectors
3606 * values synchronously:
3608 spin_lock_irq(q
->queue_lock
);
3610 * Trim readahead window as well, if necessary:
3612 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3613 if (ra_kb
> max_sectors_kb
)
3614 q
->backing_dev_info
.ra_pages
=
3615 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3617 q
->max_sectors
= max_sectors_kb
<< 1;
3618 spin_unlock_irq(q
->queue_lock
);
3623 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3625 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3627 return queue_var_show(max_hw_sectors_kb
, (page
));
3631 static struct queue_sysfs_entry queue_requests_entry
= {
3632 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3633 .show
= queue_requests_show
,
3634 .store
= queue_requests_store
,
3637 static struct queue_sysfs_entry queue_ra_entry
= {
3638 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3639 .show
= queue_ra_show
,
3640 .store
= queue_ra_store
,
3643 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3644 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3645 .show
= queue_max_sectors_show
,
3646 .store
= queue_max_sectors_store
,
3649 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3650 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3651 .show
= queue_max_hw_sectors_show
,
3654 static struct queue_sysfs_entry queue_iosched_entry
= {
3655 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3656 .show
= elv_iosched_show
,
3657 .store
= elv_iosched_store
,
3660 static struct attribute
*default_attrs
[] = {
3661 &queue_requests_entry
.attr
,
3662 &queue_ra_entry
.attr
,
3663 &queue_max_hw_sectors_entry
.attr
,
3664 &queue_max_sectors_entry
.attr
,
3665 &queue_iosched_entry
.attr
,
3669 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3672 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3674 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3675 struct request_queue
*q
;
3677 q
= container_of(kobj
, struct request_queue
, kobj
);
3681 return entry
->show(q
, page
);
3685 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3686 const char *page
, size_t length
)
3688 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3689 struct request_queue
*q
;
3691 q
= container_of(kobj
, struct request_queue
, kobj
);
3695 return entry
->store(q
, page
, length
);
3698 static struct sysfs_ops queue_sysfs_ops
= {
3699 .show
= queue_attr_show
,
3700 .store
= queue_attr_store
,
3703 static struct kobj_type queue_ktype
= {
3704 .sysfs_ops
= &queue_sysfs_ops
,
3705 .default_attrs
= default_attrs
,
3708 int blk_register_queue(struct gendisk
*disk
)
3712 request_queue_t
*q
= disk
->queue
;
3714 if (!q
|| !q
->request_fn
)
3717 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3718 if (!q
->kobj
.parent
)
3721 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3722 q
->kobj
.ktype
= &queue_ktype
;
3724 ret
= kobject_register(&q
->kobj
);
3728 ret
= elv_register_queue(q
);
3730 kobject_unregister(&q
->kobj
);
3737 void blk_unregister_queue(struct gendisk
*disk
)
3739 request_queue_t
*q
= disk
->queue
;
3741 if (q
&& q
->request_fn
) {
3742 elv_unregister_queue(q
);
3744 kobject_unregister(&q
->kobj
);
3745 kobject_put(&disk
->kobj
);