2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
5 * Copyright (c) 2001-2005 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/errno.h>
26 #include <linux/pagemap.h>
27 #include <linux/swap.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/bit_spinlock.h>
42 * ntfs_end_buffer_async_read - async io completion for reading attributes
43 * @bh: buffer head on which io is completed
44 * @uptodate: whether @bh is now uptodate or not
46 * Asynchronous I/O completion handler for reading pages belonging to the
47 * attribute address space of an inode. The inodes can either be files or
48 * directories or they can be fake inodes describing some attribute.
50 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
51 * page has been completed and mark the page uptodate or set the error bit on
52 * the page. To determine the size of the records that need fixing up, we
53 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
54 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
57 static void ntfs_end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
60 struct buffer_head
*first
, *tmp
;
63 int page_uptodate
= 1;
66 ni
= NTFS_I(page
->mapping
->host
);
68 if (likely(uptodate
)) {
69 s64 file_ofs
, initialized_size
;
71 set_buffer_uptodate(bh
);
73 file_ofs
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
75 read_lock_irqsave(&ni
->size_lock
, flags
);
76 initialized_size
= ni
->initialized_size
;
77 read_unlock_irqrestore(&ni
->size_lock
, flags
);
78 /* Check for the current buffer head overflowing. */
79 if (file_ofs
+ bh
->b_size
> initialized_size
) {
83 if (file_ofs
< initialized_size
)
84 ofs
= initialized_size
- file_ofs
;
85 addr
= kmap_atomic(page
, KM_BIO_SRC_IRQ
);
86 memset(addr
+ bh_offset(bh
) + ofs
, 0, bh
->b_size
- ofs
);
87 flush_dcache_page(page
);
88 kunmap_atomic(addr
, KM_BIO_SRC_IRQ
);
91 clear_buffer_uptodate(bh
);
93 ntfs_error(ni
->vol
->sb
, "Buffer I/O error, logical block %llu.",
94 (unsigned long long)bh
->b_blocknr
);
96 first
= page_buffers(page
);
97 local_irq_save(flags
);
98 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
99 clear_buffer_async_read(bh
);
103 if (!buffer_uptodate(tmp
))
105 if (buffer_async_read(tmp
)) {
106 if (likely(buffer_locked(tmp
)))
108 /* Async buffers must be locked. */
111 tmp
= tmp
->b_this_page
;
113 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
114 local_irq_restore(flags
);
116 * If none of the buffers had errors then we can set the page uptodate,
117 * but we first have to perform the post read mst fixups, if the
118 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
119 * Note we ignore fixup errors as those are detected when
120 * map_mft_record() is called which gives us per record granularity
121 * rather than per page granularity.
123 if (!NInoMstProtected(ni
)) {
124 if (likely(page_uptodate
&& !PageError(page
)))
125 SetPageUptodate(page
);
128 unsigned int i
, recs
;
131 rec_size
= ni
->itype
.index
.block_size
;
132 recs
= PAGE_CACHE_SIZE
/ rec_size
;
133 /* Should have been verified before we got here... */
135 addr
= kmap_atomic(page
, KM_BIO_SRC_IRQ
);
136 for (i
= 0; i
< recs
; i
++)
137 post_read_mst_fixup((NTFS_RECORD
*)(addr
+
138 i
* rec_size
), rec_size
);
139 flush_dcache_page(page
);
140 kunmap_atomic(addr
, KM_BIO_SRC_IRQ
);
141 if (likely(page_uptodate
&& !PageError(page
)))
142 SetPageUptodate(page
);
147 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
148 local_irq_restore(flags
);
153 * ntfs_read_block - fill a @page of an address space with data
154 * @page: page cache page to fill with data
156 * Fill the page @page of the address space belonging to the @page->host inode.
157 * We read each buffer asynchronously and when all buffers are read in, our io
158 * completion handler ntfs_end_buffer_read_async(), if required, automatically
159 * applies the mst fixups to the page before finally marking it uptodate and
162 * We only enforce allocated_size limit because i_size is checked for in
163 * generic_file_read().
165 * Return 0 on success and -errno on error.
167 * Contains an adapted version of fs/buffer.c::block_read_full_page().
169 static int ntfs_read_block(struct page
*page
)
176 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
177 sector_t iblock
, lblock
, zblock
;
179 unsigned int blocksize
, vcn_ofs
;
181 unsigned char blocksize_bits
;
183 ni
= NTFS_I(page
->mapping
->host
);
186 /* $MFT/$DATA must have its complete runlist in memory at all times. */
187 BUG_ON(!ni
->runlist
.rl
&& !ni
->mft_no
&& !NInoAttr(ni
));
189 blocksize_bits
= VFS_I(ni
)->i_blkbits
;
190 blocksize
= 1 << blocksize_bits
;
192 if (!page_has_buffers(page
)) {
193 create_empty_buffers(page
, blocksize
, 0);
194 if (unlikely(!page_has_buffers(page
))) {
199 bh
= head
= page_buffers(page
);
202 iblock
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
203 read_lock_irqsave(&ni
->size_lock
, flags
);
204 lblock
= (ni
->allocated_size
+ blocksize
- 1) >> blocksize_bits
;
205 zblock
= (ni
->initialized_size
+ blocksize
- 1) >> blocksize_bits
;
206 read_unlock_irqrestore(&ni
->size_lock
, flags
);
208 /* Loop through all the buffers in the page. */
215 if (unlikely(buffer_uptodate(bh
)))
217 if (unlikely(buffer_mapped(bh
))) {
222 bh
->b_bdev
= vol
->sb
->s_bdev
;
223 /* Is the block within the allowed limits? */
224 if (iblock
< lblock
) {
225 BOOL is_retry
= FALSE
;
227 /* Convert iblock into corresponding vcn and offset. */
228 vcn
= (VCN
)iblock
<< blocksize_bits
>>
229 vol
->cluster_size_bits
;
230 vcn_ofs
= ((VCN
)iblock
<< blocksize_bits
) &
231 vol
->cluster_size_mask
;
234 down_read(&ni
->runlist
.lock
);
237 if (likely(rl
!= NULL
)) {
238 /* Seek to element containing target vcn. */
239 while (rl
->length
&& rl
[1].vcn
<= vcn
)
241 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
243 lcn
= LCN_RL_NOT_MAPPED
;
244 /* Successful remap. */
246 /* Setup buffer head to correct block. */
247 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
)
248 + vcn_ofs
) >> blocksize_bits
;
249 set_buffer_mapped(bh
);
250 /* Only read initialized data blocks. */
251 if (iblock
< zblock
) {
255 /* Fully non-initialized data block, zero it. */
258 /* It is a hole, need to zero it. */
261 /* If first try and runlist unmapped, map and retry. */
262 if (!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
) {
265 * Attempt to map runlist, dropping lock for
268 up_read(&ni
->runlist
.lock
);
269 err
= ntfs_map_runlist(ni
, vcn
);
271 goto lock_retry_remap
;
274 up_read(&ni
->runlist
.lock
);
276 * If buffer is outside the runlist, treat it as a
277 * hole. This can happen due to concurrent truncate
280 if (err
== -ENOENT
|| lcn
== LCN_ENOENT
) {
284 /* Hard error, zero out region. */
289 ntfs_error(vol
->sb
, "Failed to read from inode 0x%lx, "
290 "attribute type 0x%x, vcn 0x%llx, "
291 "offset 0x%x because its location on "
292 "disk could not be determined%s "
293 "(error code %i).", ni
->mft_no
,
294 ni
->type
, (unsigned long long)vcn
,
295 vcn_ofs
, is_retry
? " even after "
296 "retrying" : "", err
);
299 * Either iblock was outside lblock limits or
300 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
301 * of the page and set the buffer uptodate.
304 bh
->b_blocknr
= -1UL;
305 clear_buffer_mapped(bh
);
307 kaddr
= kmap_atomic(page
, KM_USER0
);
308 memset(kaddr
+ i
* blocksize
, 0, blocksize
);
309 kunmap_atomic(kaddr
, KM_USER0
);
310 flush_dcache_page(page
);
312 set_buffer_uptodate(bh
);
313 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
315 /* Release the lock if we took it. */
317 up_read(&ni
->runlist
.lock
);
319 /* Check we have at least one buffer ready for i/o. */
321 struct buffer_head
*tbh
;
323 /* Lock the buffers. */
324 for (i
= 0; i
< nr
; i
++) {
327 tbh
->b_end_io
= ntfs_end_buffer_async_read
;
328 set_buffer_async_read(tbh
);
330 /* Finally, start i/o on the buffers. */
331 for (i
= 0; i
< nr
; i
++) {
333 if (likely(!buffer_uptodate(tbh
)))
334 submit_bh(READ
, tbh
);
336 ntfs_end_buffer_async_read(tbh
, 1);
340 /* No i/o was scheduled on any of the buffers. */
341 if (likely(!PageError(page
)))
342 SetPageUptodate(page
);
343 else /* Signal synchronous i/o error. */
350 * ntfs_readpage - fill a @page of a @file with data from the device
351 * @file: open file to which the page @page belongs or NULL
352 * @page: page cache page to fill with data
354 * For non-resident attributes, ntfs_readpage() fills the @page of the open
355 * file @file by calling the ntfs version of the generic block_read_full_page()
356 * function, ntfs_read_block(), which in turn creates and reads in the buffers
357 * associated with the page asynchronously.
359 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
360 * data from the mft record (which at this stage is most likely in memory) and
361 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
362 * even if the mft record is not cached at this point in time, we need to wait
363 * for it to be read in before we can do the copy.
365 * Return 0 on success and -errno on error.
367 static int ntfs_readpage(struct file
*file
, struct page
*page
)
369 ntfs_inode
*ni
, *base_ni
;
371 ntfs_attr_search_ctx
*ctx
;
378 BUG_ON(!PageLocked(page
));
380 * This can potentially happen because we clear PageUptodate() during
381 * ntfs_writepage() of MstProtected() attributes.
383 if (PageUptodate(page
)) {
387 ni
= NTFS_I(page
->mapping
->host
);
389 * Only $DATA attributes can be encrypted and only unnamed $DATA
390 * attributes can be compressed. Index root can have the flags set but
391 * this means to create compressed/encrypted files, not that the
392 * attribute is compressed/encrypted.
394 if (ni
->type
!= AT_INDEX_ROOT
) {
395 /* If attribute is encrypted, deny access, just like NT4. */
396 if (NInoEncrypted(ni
)) {
397 BUG_ON(ni
->type
!= AT_DATA
);
401 /* Compressed data streams are handled in compress.c. */
402 if (NInoNonResident(ni
) && NInoCompressed(ni
)) {
403 BUG_ON(ni
->type
!= AT_DATA
);
404 BUG_ON(ni
->name_len
);
405 return ntfs_read_compressed_block(page
);
408 /* NInoNonResident() == NInoIndexAllocPresent() */
409 if (NInoNonResident(ni
)) {
410 /* Normal, non-resident data stream. */
411 return ntfs_read_block(page
);
414 * Attribute is resident, implying it is not compressed or encrypted.
415 * This also means the attribute is smaller than an mft record and
416 * hence smaller than a page, so can simply zero out any pages with
417 * index above 0. Note the attribute can actually be marked compressed
418 * but if it is resident the actual data is not compressed so we are
419 * ok to ignore the compressed flag here.
421 if (unlikely(page
->index
> 0)) {
422 kaddr
= kmap_atomic(page
, KM_USER0
);
423 memset(kaddr
, 0, PAGE_CACHE_SIZE
);
424 flush_dcache_page(page
);
425 kunmap_atomic(kaddr
, KM_USER0
);
431 base_ni
= ni
->ext
.base_ntfs_ino
;
432 /* Map, pin, and lock the mft record. */
433 mrec
= map_mft_record(base_ni
);
439 * If a parallel write made the attribute non-resident, drop the mft
440 * record and retry the readpage.
442 if (unlikely(NInoNonResident(ni
))) {
443 unmap_mft_record(base_ni
);
446 ctx
= ntfs_attr_get_search_ctx(base_ni
, mrec
);
447 if (unlikely(!ctx
)) {
451 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
452 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
454 goto put_unm_err_out
;
455 attr_len
= le32_to_cpu(ctx
->attr
->data
.resident
.value_length
);
456 read_lock_irqsave(&ni
->size_lock
, flags
);
457 if (unlikely(attr_len
> ni
->initialized_size
))
458 attr_len
= ni
->initialized_size
;
459 read_unlock_irqrestore(&ni
->size_lock
, flags
);
460 kaddr
= kmap_atomic(page
, KM_USER0
);
461 /* Copy the data to the page. */
462 memcpy(kaddr
, (u8
*)ctx
->attr
+
463 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
),
465 /* Zero the remainder of the page. */
466 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
467 flush_dcache_page(page
);
468 kunmap_atomic(kaddr
, KM_USER0
);
470 ntfs_attr_put_search_ctx(ctx
);
472 unmap_mft_record(base_ni
);
474 SetPageUptodate(page
);
483 * ntfs_write_block - write a @page to the backing store
484 * @page: page cache page to write out
485 * @wbc: writeback control structure
487 * This function is for writing pages belonging to non-resident, non-mst
488 * protected attributes to their backing store.
490 * For a page with buffers, map and write the dirty buffers asynchronously
491 * under page writeback. For a page without buffers, create buffers for the
492 * page, then proceed as above.
494 * If a page doesn't have buffers the page dirty state is definitive. If a page
495 * does have buffers, the page dirty state is just a hint, and the buffer dirty
496 * state is definitive. (A hint which has rules: dirty buffers against a clean
497 * page is illegal. Other combinations are legal and need to be handled. In
498 * particular a dirty page containing clean buffers for example.)
500 * Return 0 on success and -errno on error.
502 * Based on ntfs_read_block() and __block_write_full_page().
504 static int ntfs_write_block(struct page
*page
, struct writeback_control
*wbc
)
508 s64 initialized_size
;
510 sector_t block
, dblock
, iblock
;
515 struct buffer_head
*bh
, *head
;
517 unsigned int blocksize
, vcn_ofs
;
519 BOOL need_end_writeback
;
520 unsigned char blocksize_bits
;
522 vi
= page
->mapping
->host
;
526 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
527 "0x%lx.", ni
->mft_no
, ni
->type
, page
->index
);
529 BUG_ON(!NInoNonResident(ni
));
530 BUG_ON(NInoMstProtected(ni
));
532 blocksize_bits
= vi
->i_blkbits
;
533 blocksize
= 1 << blocksize_bits
;
535 if (!page_has_buffers(page
)) {
536 BUG_ON(!PageUptodate(page
));
537 create_empty_buffers(page
, blocksize
,
538 (1 << BH_Uptodate
) | (1 << BH_Dirty
));
539 if (unlikely(!page_has_buffers(page
))) {
540 ntfs_warning(vol
->sb
, "Error allocating page "
541 "buffers. Redirtying page so we try "
544 * Put the page back on mapping->dirty_pages, but leave
545 * its buffers' dirty state as-is.
547 redirty_page_for_writepage(wbc
, page
);
552 bh
= head
= page_buffers(page
);
555 /* NOTE: Different naming scheme to ntfs_read_block()! */
557 /* The first block in the page. */
558 block
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
560 read_lock_irqsave(&ni
->size_lock
, flags
);
561 i_size
= i_size_read(vi
);
562 initialized_size
= ni
->initialized_size
;
563 read_unlock_irqrestore(&ni
->size_lock
, flags
);
565 /* The first out of bounds block for the data size. */
566 dblock
= (i_size
+ blocksize
- 1) >> blocksize_bits
;
568 /* The last (fully or partially) initialized block. */
569 iblock
= initialized_size
>> blocksize_bits
;
572 * Be very careful. We have no exclusion from __set_page_dirty_buffers
573 * here, and the (potentially unmapped) buffers may become dirty at
574 * any time. If a buffer becomes dirty here after we've inspected it
575 * then we just miss that fact, and the page stays dirty.
577 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
578 * handle that here by just cleaning them.
582 * Loop through all the buffers in the page, mapping all the dirty
583 * buffers to disk addresses and handling any aliases from the
584 * underlying block device's mapping.
589 BOOL is_retry
= FALSE
;
591 if (unlikely(block
>= dblock
)) {
593 * Mapped buffers outside i_size will occur, because
594 * this page can be outside i_size when there is a
595 * truncate in progress. The contents of such buffers
596 * were zeroed by ntfs_writepage().
598 * FIXME: What about the small race window where
599 * ntfs_writepage() has not done any clearing because
600 * the page was within i_size but before we get here,
601 * vmtruncate() modifies i_size?
603 clear_buffer_dirty(bh
);
604 set_buffer_uptodate(bh
);
608 /* Clean buffers are not written out, so no need to map them. */
609 if (!buffer_dirty(bh
))
612 /* Make sure we have enough initialized size. */
613 if (unlikely((block
>= iblock
) &&
614 (initialized_size
< i_size
))) {
616 * If this page is fully outside initialized size, zero
617 * out all pages between the current initialized size
618 * and the current page. Just use ntfs_readpage() to do
619 * the zeroing transparently.
621 if (block
> iblock
) {
624 // - read_cache_page()
625 // Again for each page do:
626 // - wait_on_page_locked()
627 // - Check (PageUptodate(page) &&
629 // Update initialized size in the attribute and
631 // Again, for each page do:
632 // __set_page_dirty_buffers();
633 // page_cache_release()
634 // We don't need to wait on the writes.
638 * The current page straddles initialized size. Zero
639 * all non-uptodate buffers and set them uptodate (and
640 * dirty?). Note, there aren't any non-uptodate buffers
641 * if the page is uptodate.
642 * FIXME: For an uptodate page, the buffers may need to
643 * be written out because they were not initialized on
646 if (!PageUptodate(page
)) {
648 // Zero any non-uptodate buffers up to i_size.
649 // Set them uptodate and dirty.
652 // Update initialized size in the attribute and in the
653 // inode (up to i_size).
655 // FIXME: This is inefficient. Try to batch the two
656 // size changes to happen in one go.
657 ntfs_error(vol
->sb
, "Writing beyond initialized size "
658 "is not supported yet. Sorry.");
661 // Do NOT set_buffer_new() BUT DO clear buffer range
662 // outside write request range.
663 // set_buffer_uptodate() on complete buffers as well as
664 // set_buffer_dirty().
667 /* No need to map buffers that are already mapped. */
668 if (buffer_mapped(bh
))
671 /* Unmapped, dirty buffer. Need to map it. */
672 bh
->b_bdev
= vol
->sb
->s_bdev
;
674 /* Convert block into corresponding vcn and offset. */
675 vcn
= (VCN
)block
<< blocksize_bits
;
676 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
677 vcn
>>= vol
->cluster_size_bits
;
680 down_read(&ni
->runlist
.lock
);
683 if (likely(rl
!= NULL
)) {
684 /* Seek to element containing target vcn. */
685 while (rl
->length
&& rl
[1].vcn
<= vcn
)
687 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
689 lcn
= LCN_RL_NOT_MAPPED
;
690 /* Successful remap. */
692 /* Setup buffer head to point to correct block. */
693 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
) +
694 vcn_ofs
) >> blocksize_bits
;
695 set_buffer_mapped(bh
);
698 /* It is a hole, need to instantiate it. */
699 if (lcn
== LCN_HOLE
) {
701 unsigned long *bpos
, *bend
;
703 /* Check if the buffer is zero. */
704 kaddr
= kmap_atomic(page
, KM_USER0
);
705 bpos
= (unsigned long *)(kaddr
+ bh_offset(bh
));
706 bend
= (unsigned long *)((u8
*)bpos
+ blocksize
);
710 } while (likely(++bpos
< bend
));
711 kunmap_atomic(kaddr
, KM_USER0
);
714 * Buffer is zero and sparse, no need to write
718 clear_buffer_dirty(bh
);
721 // TODO: Instantiate the hole.
722 // clear_buffer_new(bh);
723 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
724 ntfs_error(vol
->sb
, "Writing into sparse regions is "
725 "not supported yet. Sorry.");
729 /* If first try and runlist unmapped, map and retry. */
730 if (!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
) {
733 * Attempt to map runlist, dropping lock for
736 up_read(&ni
->runlist
.lock
);
737 err
= ntfs_map_runlist(ni
, vcn
);
739 goto lock_retry_remap
;
742 up_read(&ni
->runlist
.lock
);
744 * If buffer is outside the runlist, truncate has cut it out
745 * of the runlist. Just clean and clear the buffer and set it
746 * uptodate so it can get discarded by the VM.
748 if (err
== -ENOENT
|| lcn
== LCN_ENOENT
) {
752 clear_buffer_dirty(bh
);
753 kaddr
= kmap_atomic(page
, KM_USER0
);
754 memset(kaddr
+ bh_offset(bh
), 0, blocksize
);
755 kunmap_atomic(kaddr
, KM_USER0
);
756 flush_dcache_page(page
);
757 set_buffer_uptodate(bh
);
761 /* Failed to map the buffer, even after retrying. */
765 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
766 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
767 "because its location on disk could not be "
768 "determined%s (error code %i).", ni
->mft_no
,
769 ni
->type
, (unsigned long long)vcn
,
770 vcn_ofs
, is_retry
? " even after "
771 "retrying" : "", err
);
773 } while (block
++, (bh
= bh
->b_this_page
) != head
);
775 /* Release the lock if we took it. */
777 up_read(&ni
->runlist
.lock
);
779 /* For the error case, need to reset bh to the beginning. */
782 /* Just an optimization, so ->readpage() is not called later. */
783 if (unlikely(!PageUptodate(page
))) {
786 if (!buffer_uptodate(bh
)) {
791 } while ((bh
= bh
->b_this_page
) != head
);
793 SetPageUptodate(page
);
796 /* Setup all mapped, dirty buffers for async write i/o. */
798 if (buffer_mapped(bh
) && buffer_dirty(bh
)) {
800 if (test_clear_buffer_dirty(bh
)) {
801 BUG_ON(!buffer_uptodate(bh
));
802 mark_buffer_async_write(bh
);
805 } else if (unlikely(err
)) {
807 * For the error case. The buffer may have been set
808 * dirty during attachment to a dirty page.
811 clear_buffer_dirty(bh
);
813 } while ((bh
= bh
->b_this_page
) != head
);
816 // TODO: Remove the -EOPNOTSUPP check later on...
817 if (unlikely(err
== -EOPNOTSUPP
))
819 else if (err
== -ENOMEM
) {
820 ntfs_warning(vol
->sb
, "Error allocating memory. "
821 "Redirtying page so we try again "
824 * Put the page back on mapping->dirty_pages, but
825 * leave its buffer's dirty state as-is.
827 redirty_page_for_writepage(wbc
, page
);
833 BUG_ON(PageWriteback(page
));
834 set_page_writeback(page
); /* Keeps try_to_free_buffers() away. */
836 /* Submit the prepared buffers for i/o. */
837 need_end_writeback
= TRUE
;
839 struct buffer_head
*next
= bh
->b_this_page
;
840 if (buffer_async_write(bh
)) {
841 submit_bh(WRITE
, bh
);
842 need_end_writeback
= FALSE
;
845 } while (bh
!= head
);
848 /* If no i/o was started, need to end_page_writeback(). */
849 if (unlikely(need_end_writeback
))
850 end_page_writeback(page
);
857 * ntfs_write_mst_block - write a @page to the backing store
858 * @page: page cache page to write out
859 * @wbc: writeback control structure
861 * This function is for writing pages belonging to non-resident, mst protected
862 * attributes to their backing store. The only supported attributes are index
863 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
864 * supported for the index allocation case.
866 * The page must remain locked for the duration of the write because we apply
867 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
868 * page before undoing the fixups, any other user of the page will see the
869 * page contents as corrupt.
871 * We clear the page uptodate flag for the duration of the function to ensure
872 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
873 * are about to apply the mst fixups to.
875 * Return 0 on success and -errno on error.
877 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
878 * write_mft_record_nolock().
880 static int ntfs_write_mst_block(struct page
*page
,
881 struct writeback_control
*wbc
)
883 sector_t block
, dblock
, rec_block
;
884 struct inode
*vi
= page
->mapping
->host
;
885 ntfs_inode
*ni
= NTFS_I(vi
);
886 ntfs_volume
*vol
= ni
->vol
;
888 unsigned int rec_size
= ni
->itype
.index
.block_size
;
889 ntfs_inode
*locked_nis
[PAGE_CACHE_SIZE
/ rec_size
];
890 struct buffer_head
*bh
, *head
, *tbh
, *rec_start_bh
;
891 struct buffer_head
*bhs
[MAX_BUF_PER_PAGE
];
893 int i
, nr_locked_nis
, nr_recs
, nr_bhs
, max_bhs
, bhs_per_rec
, err
, err2
;
894 unsigned bh_size
, rec_size_bits
;
895 BOOL sync
, is_mft
, page_is_dirty
, rec_is_dirty
;
896 unsigned char bh_size_bits
;
898 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
899 "0x%lx.", vi
->i_ino
, ni
->type
, page
->index
);
900 BUG_ON(!NInoNonResident(ni
));
901 BUG_ON(!NInoMstProtected(ni
));
902 is_mft
= (S_ISREG(vi
->i_mode
) && !vi
->i_ino
);
904 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
905 * in its page cache were to be marked dirty. However this should
906 * never happen with the current driver and considering we do not
907 * handle this case here we do want to BUG(), at least for now.
909 BUG_ON(!(is_mft
|| S_ISDIR(vi
->i_mode
) ||
910 (NInoAttr(ni
) && ni
->type
== AT_INDEX_ALLOCATION
)));
911 bh_size_bits
= vi
->i_blkbits
;
912 bh_size
= 1 << bh_size_bits
;
913 max_bhs
= PAGE_CACHE_SIZE
/ bh_size
;
915 BUG_ON(max_bhs
> MAX_BUF_PER_PAGE
);
917 /* Were we called for sync purposes? */
918 sync
= (wbc
->sync_mode
== WB_SYNC_ALL
);
920 /* Make sure we have mapped buffers. */
921 bh
= head
= page_buffers(page
);
924 rec_size_bits
= ni
->itype
.index
.block_size_bits
;
925 BUG_ON(!(PAGE_CACHE_SIZE
>> rec_size_bits
));
926 bhs_per_rec
= rec_size
>> bh_size_bits
;
927 BUG_ON(!bhs_per_rec
);
929 /* The first block in the page. */
930 rec_block
= block
= (sector_t
)page
->index
<<
931 (PAGE_CACHE_SHIFT
- bh_size_bits
);
933 /* The first out of bounds block for the data size. */
934 dblock
= (i_size_read(vi
) + bh_size
- 1) >> bh_size_bits
;
937 err
= err2
= nr_bhs
= nr_recs
= nr_locked_nis
= 0;
938 page_is_dirty
= rec_is_dirty
= FALSE
;
941 BOOL is_retry
= FALSE
;
943 if (likely(block
< rec_block
)) {
944 if (unlikely(block
>= dblock
)) {
945 clear_buffer_dirty(bh
);
946 set_buffer_uptodate(bh
);
950 * This block is not the first one in the record. We
951 * ignore the buffer's dirty state because we could
952 * have raced with a parallel mark_ntfs_record_dirty().
956 if (unlikely(err2
)) {
958 clear_buffer_dirty(bh
);
961 } else /* if (block == rec_block) */ {
962 BUG_ON(block
> rec_block
);
963 /* This block is the first one in the record. */
964 rec_block
+= bhs_per_rec
;
966 if (unlikely(block
>= dblock
)) {
967 clear_buffer_dirty(bh
);
970 if (!buffer_dirty(bh
)) {
971 /* Clean records are not written out. */
972 rec_is_dirty
= FALSE
;
978 /* Need to map the buffer if it is not mapped already. */
979 if (unlikely(!buffer_mapped(bh
))) {
982 unsigned int vcn_ofs
;
984 bh
->b_bdev
= vol
->sb
->s_bdev
;
985 /* Obtain the vcn and offset of the current block. */
986 vcn
= (VCN
)block
<< bh_size_bits
;
987 vcn_ofs
= vcn
& vol
->cluster_size_mask
;
988 vcn
>>= vol
->cluster_size_bits
;
991 down_read(&ni
->runlist
.lock
);
994 if (likely(rl
!= NULL
)) {
995 /* Seek to element containing target vcn. */
996 while (rl
->length
&& rl
[1].vcn
<= vcn
)
998 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
1000 lcn
= LCN_RL_NOT_MAPPED
;
1001 /* Successful remap. */
1002 if (likely(lcn
>= 0)) {
1003 /* Setup buffer head to correct block. */
1004 bh
->b_blocknr
= ((lcn
<<
1005 vol
->cluster_size_bits
) +
1006 vcn_ofs
) >> bh_size_bits
;
1007 set_buffer_mapped(bh
);
1010 * Remap failed. Retry to map the runlist once
1011 * unless we are working on $MFT which always
1012 * has the whole of its runlist in memory.
1014 if (!is_mft
&& !is_retry
&&
1015 lcn
== LCN_RL_NOT_MAPPED
) {
1018 * Attempt to map runlist, dropping
1019 * lock for the duration.
1021 up_read(&ni
->runlist
.lock
);
1022 err2
= ntfs_map_runlist(ni
, vcn
);
1024 goto lock_retry_remap
;
1025 if (err2
== -ENOMEM
)
1026 page_is_dirty
= TRUE
;
1031 up_read(&ni
->runlist
.lock
);
1033 /* Hard error. Abort writing this record. */
1034 if (!err
|| err
== -ENOMEM
)
1037 ntfs_error(vol
->sb
, "Cannot write ntfs record "
1038 "0x%llx (inode 0x%lx, "
1039 "attribute type 0x%x) because "
1040 "its location on disk could "
1041 "not be determined (error "
1045 vol
->mft_record_size_bits
,
1046 ni
->mft_no
, ni
->type
,
1049 * If this is not the first buffer, remove the
1050 * buffers in this record from the list of
1051 * buffers to write and clear their dirty bit
1052 * if not error -ENOMEM.
1054 if (rec_start_bh
!= bh
) {
1055 while (bhs
[--nr_bhs
] != rec_start_bh
)
1057 if (err2
!= -ENOMEM
) {
1061 } while ((rec_start_bh
=
1070 BUG_ON(!buffer_uptodate(bh
));
1071 BUG_ON(nr_bhs
>= max_bhs
);
1073 } while (block
++, (bh
= bh
->b_this_page
) != head
);
1075 up_read(&ni
->runlist
.lock
);
1076 /* If there were no dirty buffers, we are done. */
1079 /* Map the page so we can access its contents. */
1081 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1082 BUG_ON(!PageUptodate(page
));
1083 ClearPageUptodate(page
);
1084 for (i
= 0; i
< nr_bhs
; i
++) {
1087 /* Skip buffers which are not at the beginning of records. */
1088 if (i
% bhs_per_rec
)
1091 ofs
= bh_offset(tbh
);
1094 unsigned long mft_no
;
1096 /* Get the mft record number. */
1097 mft_no
= (((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + ofs
)
1099 /* Check whether to write this mft record. */
1101 if (!ntfs_may_write_mft_record(vol
, mft_no
,
1102 (MFT_RECORD
*)(kaddr
+ ofs
), &tni
)) {
1104 * The record should not be written. This
1105 * means we need to redirty the page before
1108 page_is_dirty
= TRUE
;
1110 * Remove the buffers in this mft record from
1111 * the list of buffers to write.
1115 } while (++i
% bhs_per_rec
);
1119 * The record should be written. If a locked ntfs
1120 * inode was returned, add it to the array of locked
1124 locked_nis
[nr_locked_nis
++] = tni
;
1126 /* Apply the mst protection fixups. */
1127 err2
= pre_write_mst_fixup((NTFS_RECORD
*)(kaddr
+ ofs
),
1129 if (unlikely(err2
)) {
1130 if (!err
|| err
== -ENOMEM
)
1132 ntfs_error(vol
->sb
, "Failed to apply mst fixups "
1133 "(inode 0x%lx, attribute type 0x%x, "
1134 "page index 0x%lx, page offset 0x%x)!"
1135 " Unmount and run chkdsk.", vi
->i_ino
,
1136 ni
->type
, page
->index
, ofs
);
1138 * Mark all the buffers in this record clean as we do
1139 * not want to write corrupt data to disk.
1142 clear_buffer_dirty(bhs
[i
]);
1144 } while (++i
% bhs_per_rec
);
1149 /* If no records are to be written out, we are done. */
1152 flush_dcache_page(page
);
1153 /* Lock buffers and start synchronous write i/o on them. */
1154 for (i
= 0; i
< nr_bhs
; i
++) {
1158 if (unlikely(test_set_buffer_locked(tbh
)))
1160 /* The buffer dirty state is now irrelevant, just clean it. */
1161 clear_buffer_dirty(tbh
);
1162 BUG_ON(!buffer_uptodate(tbh
));
1163 BUG_ON(!buffer_mapped(tbh
));
1165 tbh
->b_end_io
= end_buffer_write_sync
;
1166 submit_bh(WRITE
, tbh
);
1168 /* Synchronize the mft mirror now if not @sync. */
1169 if (is_mft
&& !sync
)
1172 /* Wait on i/o completion of buffers. */
1173 for (i
= 0; i
< nr_bhs
; i
++) {
1177 wait_on_buffer(tbh
);
1178 if (unlikely(!buffer_uptodate(tbh
))) {
1179 ntfs_error(vol
->sb
, "I/O error while writing ntfs "
1180 "record buffer (inode 0x%lx, "
1181 "attribute type 0x%x, page index "
1182 "0x%lx, page offset 0x%lx)! Unmount "
1183 "and run chkdsk.", vi
->i_ino
, ni
->type
,
1184 page
->index
, bh_offset(tbh
));
1185 if (!err
|| err
== -ENOMEM
)
1188 * Set the buffer uptodate so the page and buffer
1189 * states do not become out of sync.
1191 set_buffer_uptodate(tbh
);
1194 /* If @sync, now synchronize the mft mirror. */
1195 if (is_mft
&& sync
) {
1197 for (i
= 0; i
< nr_bhs
; i
++) {
1198 unsigned long mft_no
;
1202 * Skip buffers which are not at the beginning of
1205 if (i
% bhs_per_rec
)
1208 /* Skip removed buffers (and hence records). */
1211 ofs
= bh_offset(tbh
);
1212 /* Get the mft record number. */
1213 mft_no
= (((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + ofs
)
1215 if (mft_no
< vol
->mftmirr_size
)
1216 ntfs_sync_mft_mirror(vol
, mft_no
,
1217 (MFT_RECORD
*)(kaddr
+ ofs
),
1223 /* Remove the mst protection fixups again. */
1224 for (i
= 0; i
< nr_bhs
; i
++) {
1225 if (!(i
% bhs_per_rec
)) {
1229 post_write_mst_fixup((NTFS_RECORD
*)(kaddr
+
1233 flush_dcache_page(page
);
1235 /* Unlock any locked inodes. */
1236 while (nr_locked_nis
-- > 0) {
1237 ntfs_inode
*tni
, *base_tni
;
1239 tni
= locked_nis
[nr_locked_nis
];
1240 /* Get the base inode. */
1241 down(&tni
->extent_lock
);
1242 if (tni
->nr_extents
>= 0)
1245 base_tni
= tni
->ext
.base_ntfs_ino
;
1248 up(&tni
->extent_lock
);
1249 ntfs_debug("Unlocking %s inode 0x%lx.",
1250 tni
== base_tni
? "base" : "extent",
1252 up(&tni
->mrec_lock
);
1253 atomic_dec(&tni
->count
);
1254 iput(VFS_I(base_tni
));
1256 SetPageUptodate(page
);
1259 if (unlikely(err
&& err
!= -ENOMEM
)) {
1261 * Set page error if there is only one ntfs record in the page.
1262 * Otherwise we would loose per-record granularity.
1264 if (ni
->itype
.index
.block_size
== PAGE_CACHE_SIZE
)
1268 if (page_is_dirty
) {
1269 ntfs_debug("Page still contains one or more dirty ntfs "
1270 "records. Redirtying the page starting at "
1271 "record 0x%lx.", page
->index
<<
1272 (PAGE_CACHE_SHIFT
- rec_size_bits
));
1273 redirty_page_for_writepage(wbc
, page
);
1277 * Keep the VM happy. This must be done otherwise the
1278 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1279 * the page is clean.
1281 BUG_ON(PageWriteback(page
));
1282 set_page_writeback(page
);
1284 end_page_writeback(page
);
1287 ntfs_debug("Done.");
1292 * ntfs_writepage - write a @page to the backing store
1293 * @page: page cache page to write out
1294 * @wbc: writeback control structure
1296 * This is called from the VM when it wants to have a dirty ntfs page cache
1297 * page cleaned. The VM has already locked the page and marked it clean.
1299 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1300 * the ntfs version of the generic block_write_full_page() function,
1301 * ntfs_write_block(), which in turn if necessary creates and writes the
1302 * buffers associated with the page asynchronously.
1304 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1305 * the data to the mft record (which at this stage is most likely in memory).
1306 * The mft record is then marked dirty and written out asynchronously via the
1307 * vfs inode dirty code path for the inode the mft record belongs to or via the
1308 * vm page dirty code path for the page the mft record is in.
1310 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1312 * Return 0 on success and -errno on error.
1314 static int ntfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1317 struct inode
*vi
= page
->mapping
->host
;
1318 ntfs_inode
*base_ni
= NULL
, *ni
= NTFS_I(vi
);
1320 ntfs_attr_search_ctx
*ctx
= NULL
;
1321 MFT_RECORD
*m
= NULL
;
1326 BUG_ON(!PageLocked(page
));
1327 i_size
= i_size_read(vi
);
1328 /* Is the page fully outside i_size? (truncate in progress) */
1329 if (unlikely(page
->index
>= (i_size
+ PAGE_CACHE_SIZE
- 1) >>
1330 PAGE_CACHE_SHIFT
)) {
1332 * The page may have dirty, unmapped buffers. Make them
1333 * freeable here, so the page does not leak.
1335 block_invalidatepage(page
, 0);
1337 ntfs_debug("Write outside i_size - truncated?");
1341 * Only $DATA attributes can be encrypted and only unnamed $DATA
1342 * attributes can be compressed. Index root can have the flags set but
1343 * this means to create compressed/encrypted files, not that the
1344 * attribute is compressed/encrypted.
1346 if (ni
->type
!= AT_INDEX_ROOT
) {
1347 /* If file is encrypted, deny access, just like NT4. */
1348 if (NInoEncrypted(ni
)) {
1350 BUG_ON(ni
->type
!= AT_DATA
);
1351 ntfs_debug("Denying write access to encrypted "
1355 /* Compressed data streams are handled in compress.c. */
1356 if (NInoNonResident(ni
) && NInoCompressed(ni
)) {
1357 BUG_ON(ni
->type
!= AT_DATA
);
1358 BUG_ON(ni
->name_len
);
1359 // TODO: Implement and replace this with
1360 // return ntfs_write_compressed_block(page);
1362 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1363 "not supported yet. Sorry.");
1366 // TODO: Implement and remove this check.
1367 if (NInoNonResident(ni
) && NInoSparse(ni
)) {
1369 ntfs_error(vi
->i_sb
, "Writing to sparse files is not "
1370 "supported yet. Sorry.");
1374 /* NInoNonResident() == NInoIndexAllocPresent() */
1375 if (NInoNonResident(ni
)) {
1376 /* We have to zero every time due to mmap-at-end-of-file. */
1377 if (page
->index
>= (i_size
>> PAGE_CACHE_SHIFT
)) {
1378 /* The page straddles i_size. */
1379 unsigned int ofs
= i_size
& ~PAGE_CACHE_MASK
;
1380 kaddr
= kmap_atomic(page
, KM_USER0
);
1381 memset(kaddr
+ ofs
, 0, PAGE_CACHE_SIZE
- ofs
);
1382 flush_dcache_page(page
);
1383 kunmap_atomic(kaddr
, KM_USER0
);
1385 /* Handle mst protected attributes. */
1386 if (NInoMstProtected(ni
))
1387 return ntfs_write_mst_block(page
, wbc
);
1388 /* Normal, non-resident data stream. */
1389 return ntfs_write_block(page
, wbc
);
1392 * Attribute is resident, implying it is not compressed, encrypted, or
1393 * mst protected. This also means the attribute is smaller than an mft
1394 * record and hence smaller than a page, so can simply return error on
1395 * any pages with index above 0. Note the attribute can actually be
1396 * marked compressed but if it is resident the actual data is not
1397 * compressed so we are ok to ignore the compressed flag here.
1399 BUG_ON(page_has_buffers(page
));
1400 BUG_ON(!PageUptodate(page
));
1401 if (unlikely(page
->index
> 0)) {
1402 ntfs_error(vi
->i_sb
, "BUG()! page->index (0x%lx) > 0. "
1403 "Aborting write.", page
->index
);
1404 BUG_ON(PageWriteback(page
));
1405 set_page_writeback(page
);
1407 end_page_writeback(page
);
1413 base_ni
= ni
->ext
.base_ntfs_ino
;
1414 /* Map, pin, and lock the mft record. */
1415 m
= map_mft_record(base_ni
);
1423 * If a parallel write made the attribute non-resident, drop the mft
1424 * record and retry the writepage.
1426 if (unlikely(NInoNonResident(ni
))) {
1427 unmap_mft_record(base_ni
);
1428 goto retry_writepage
;
1430 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1431 if (unlikely(!ctx
)) {
1435 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1436 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1440 * Keep the VM happy. This must be done otherwise the radix-tree tag
1441 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1443 BUG_ON(PageWriteback(page
));
1444 set_page_writeback(page
);
1447 * Here, we do not need to zero the out of bounds area everytime
1448 * because the below memcpy() already takes care of the
1449 * mmap-at-end-of-file requirements. If the file is converted to a
1450 * non-resident one, then the code path use is switched to the
1451 * non-resident one where the zeroing happens on each ntfs_writepage()
1454 attr_len
= le32_to_cpu(ctx
->attr
->data
.resident
.value_length
);
1455 i_size
= i_size_read(vi
);
1456 if (unlikely(attr_len
> i_size
)) {
1458 ctx
->attr
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1460 kaddr
= kmap_atomic(page
, KM_USER0
);
1461 /* Copy the data from the page to the mft record. */
1462 memcpy((u8
*)ctx
->attr
+
1463 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
),
1465 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1466 /* Zero out of bounds area in the page cache page. */
1467 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1468 flush_dcache_page(page
);
1469 kunmap_atomic(kaddr
, KM_USER0
);
1471 end_page_writeback(page
);
1473 /* Mark the mft record dirty, so it gets written back. */
1474 mark_mft_record_dirty(ctx
->ntfs_ino
);
1475 ntfs_attr_put_search_ctx(ctx
);
1476 unmap_mft_record(base_ni
);
1479 if (err
== -ENOMEM
) {
1480 ntfs_warning(vi
->i_sb
, "Error allocating memory. Redirtying "
1481 "page so we try again later.");
1483 * Put the page back on mapping->dirty_pages, but leave its
1484 * buffers' dirty state as-is.
1486 redirty_page_for_writepage(wbc
, page
);
1489 ntfs_error(vi
->i_sb
, "Resident attribute write failed with "
1492 NVolSetErrors(ni
->vol
);
1497 ntfs_attr_put_search_ctx(ctx
);
1499 unmap_mft_record(base_ni
);
1504 * ntfs_prepare_nonresident_write -
1507 static int ntfs_prepare_nonresident_write(struct page
*page
,
1508 unsigned from
, unsigned to
)
1512 s64 initialized_size
;
1514 sector_t block
, ablock
, iblock
;
1518 runlist_element
*rl
;
1519 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
1520 unsigned long flags
;
1521 unsigned int vcn_ofs
, block_start
, block_end
, blocksize
;
1524 unsigned char blocksize_bits
;
1526 vi
= page
->mapping
->host
;
1530 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1531 "0x%lx, from = %u, to = %u.", ni
->mft_no
, ni
->type
,
1532 page
->index
, from
, to
);
1534 BUG_ON(!NInoNonResident(ni
));
1536 blocksize_bits
= vi
->i_blkbits
;
1537 blocksize
= 1 << blocksize_bits
;
1540 * create_empty_buffers() will create uptodate/dirty buffers if the
1541 * page is uptodate/dirty.
1543 if (!page_has_buffers(page
))
1544 create_empty_buffers(page
, blocksize
, 0);
1545 bh
= head
= page_buffers(page
);
1549 /* The first block in the page. */
1550 block
= (s64
)page
->index
<< (PAGE_CACHE_SHIFT
- blocksize_bits
);
1552 read_lock_irqsave(&ni
->size_lock
, flags
);
1554 * The first out of bounds block for the allocated size. No need to
1555 * round up as allocated_size is in multiples of cluster size and the
1556 * minimum cluster size is 512 bytes, which is equal to the smallest
1559 ablock
= ni
->allocated_size
>> blocksize_bits
;
1560 i_size
= i_size_read(vi
);
1561 initialized_size
= ni
->initialized_size
;
1562 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1564 /* The last (fully or partially) initialized block. */
1565 iblock
= initialized_size
>> blocksize_bits
;
1567 /* Loop through all the buffers in the page. */
1572 block_end
= block_start
+ blocksize
;
1574 * If buffer @bh is outside the write, just mark it uptodate
1575 * if the page is uptodate and continue with the next buffer.
1577 if (block_end
<= from
|| block_start
>= to
) {
1578 if (PageUptodate(page
)) {
1579 if (!buffer_uptodate(bh
))
1580 set_buffer_uptodate(bh
);
1585 * @bh is at least partially being written to.
1586 * Make sure it is not marked as new.
1588 //if (buffer_new(bh))
1589 // clear_buffer_new(bh);
1591 if (block
>= ablock
) {
1592 // TODO: block is above allocated_size, need to
1593 // allocate it. Best done in one go to accommodate not
1594 // only block but all above blocks up to and including:
1595 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1596 // - 1) >> blobksize_bits. Obviously will need to round
1597 // up to next cluster boundary, too. This should be
1598 // done with a helper function, so it can be reused.
1599 ntfs_error(vol
->sb
, "Writing beyond allocated size "
1600 "is not supported yet. Sorry.");
1603 // Need to update ablock.
1604 // Need to set_buffer_new() on all block bhs that are
1608 * Now we have enough allocated size to fulfill the whole
1609 * request, i.e. block < ablock is true.
1611 if (unlikely((block
>= iblock
) &&
1612 (initialized_size
< i_size
))) {
1614 * If this page is fully outside initialized size, zero
1615 * out all pages between the current initialized size
1616 * and the current page. Just use ntfs_readpage() to do
1617 * the zeroing transparently.
1619 if (block
> iblock
) {
1621 // For each page do:
1622 // - read_cache_page()
1623 // Again for each page do:
1624 // - wait_on_page_locked()
1625 // - Check (PageUptodate(page) &&
1626 // !PageError(page))
1627 // Update initialized size in the attribute and
1629 // Again, for each page do:
1630 // __set_page_dirty_buffers();
1631 // page_cache_release()
1632 // We don't need to wait on the writes.
1636 * The current page straddles initialized size. Zero
1637 * all non-uptodate buffers and set them uptodate (and
1638 * dirty?). Note, there aren't any non-uptodate buffers
1639 * if the page is uptodate.
1640 * FIXME: For an uptodate page, the buffers may need to
1641 * be written out because they were not initialized on
1644 if (!PageUptodate(page
)) {
1646 // Zero any non-uptodate buffers up to i_size.
1647 // Set them uptodate and dirty.
1650 // Update initialized size in the attribute and in the
1651 // inode (up to i_size).
1653 // FIXME: This is inefficient. Try to batch the two
1654 // size changes to happen in one go.
1655 ntfs_error(vol
->sb
, "Writing beyond initialized size "
1656 "is not supported yet. Sorry.");
1659 // Do NOT set_buffer_new() BUT DO clear buffer range
1660 // outside write request range.
1661 // set_buffer_uptodate() on complete buffers as well as
1662 // set_buffer_dirty().
1665 /* Need to map unmapped buffers. */
1666 if (!buffer_mapped(bh
)) {
1667 /* Unmapped buffer. Need to map it. */
1668 bh
->b_bdev
= vol
->sb
->s_bdev
;
1670 /* Convert block into corresponding vcn and offset. */
1671 vcn
= (VCN
)block
<< blocksize_bits
>>
1672 vol
->cluster_size_bits
;
1673 vcn_ofs
= ((VCN
)block
<< blocksize_bits
) &
1674 vol
->cluster_size_mask
;
1679 down_read(&ni
->runlist
.lock
);
1680 rl
= ni
->runlist
.rl
;
1682 if (likely(rl
!= NULL
)) {
1683 /* Seek to element containing target vcn. */
1684 while (rl
->length
&& rl
[1].vcn
<= vcn
)
1686 lcn
= ntfs_rl_vcn_to_lcn(rl
, vcn
);
1688 lcn
= LCN_RL_NOT_MAPPED
;
1689 if (unlikely(lcn
< 0)) {
1691 * We extended the attribute allocation above.
1692 * If we hit an ENOENT here it means that the
1693 * allocation was insufficient which is a bug.
1695 BUG_ON(lcn
== LCN_ENOENT
);
1697 /* It is a hole, need to instantiate it. */
1698 if (lcn
== LCN_HOLE
) {
1699 // TODO: Instantiate the hole.
1700 // clear_buffer_new(bh);
1701 // unmap_underlying_metadata(bh->b_bdev,
1703 // For non-uptodate buffers, need to
1704 // zero out the region outside the
1705 // request in this bh or all bhs,
1706 // depending on what we implemented
1708 // Need to flush_dcache_page().
1709 // Or could use set_buffer_new()
1711 ntfs_error(vol
->sb
, "Writing into "
1712 "sparse regions is "
1713 "not supported yet. "
1717 up_read(&ni
->runlist
.lock
);
1719 } else if (!is_retry
&&
1720 lcn
== LCN_RL_NOT_MAPPED
) {
1723 * Attempt to map runlist, dropping
1724 * lock for the duration.
1726 up_read(&ni
->runlist
.lock
);
1727 err
= ntfs_map_runlist(ni
, vcn
);
1729 goto lock_retry_remap
;
1732 up_read(&ni
->runlist
.lock
);
1734 * Failed to map the buffer, even after
1740 ntfs_error(vol
->sb
, "Failed to write to inode "
1741 "0x%lx, attribute type 0x%x, "
1742 "vcn 0x%llx, offset 0x%x "
1743 "because its location on disk "
1744 "could not be determined%s "
1746 ni
->mft_no
, ni
->type
,
1747 (unsigned long long)vcn
,
1748 vcn_ofs
, is_retry
? " even "
1749 "after retrying" : "", err
);
1752 /* We now have a successful remap, i.e. lcn >= 0. */
1754 /* Setup buffer head to correct block. */
1755 bh
->b_blocknr
= ((lcn
<< vol
->cluster_size_bits
)
1756 + vcn_ofs
) >> blocksize_bits
;
1757 set_buffer_mapped(bh
);
1759 // FIXME: Something analogous to this is needed for
1760 // each newly allocated block, i.e. BH_New.
1761 // FIXME: Might need to take this out of the
1762 // if (!buffer_mapped(bh)) {}, depending on how we
1763 // implement things during the allocated_size and
1764 // initialized_size extension code above.
1765 if (buffer_new(bh
)) {
1766 clear_buffer_new(bh
);
1767 unmap_underlying_metadata(bh
->b_bdev
,
1769 if (PageUptodate(page
)) {
1770 set_buffer_uptodate(bh
);
1774 * Page is _not_ uptodate, zero surrounding
1775 * region. NOTE: This is how we decide if to
1778 if (block_end
> to
|| block_start
< from
) {
1781 kaddr
= kmap_atomic(page
, KM_USER0
);
1783 memset(kaddr
+ to
, 0,
1785 if (block_start
< from
)
1786 memset(kaddr
+ block_start
, 0,
1789 flush_dcache_page(page
);
1790 kunmap_atomic(kaddr
, KM_USER0
);
1795 /* @bh is mapped, set it uptodate if the page is uptodate. */
1796 if (PageUptodate(page
)) {
1797 if (!buffer_uptodate(bh
))
1798 set_buffer_uptodate(bh
);
1802 * The page is not uptodate. The buffer is mapped. If it is not
1803 * uptodate, and it is only partially being written to, we need
1804 * to read the buffer in before the write, i.e. right now.
1806 if (!buffer_uptodate(bh
) &&
1807 (block_start
< from
|| block_end
> to
)) {
1808 ll_rw_block(READ
, 1, &bh
);
1811 } while (block
++, block_start
= block_end
,
1812 (bh
= bh
->b_this_page
) != head
);
1814 /* Release the lock if we took it. */
1816 up_read(&ni
->runlist
.lock
);
1820 /* If we issued read requests, let them complete. */
1821 while (wait_bh
> wait
) {
1822 wait_on_buffer(*--wait_bh
);
1823 if (!buffer_uptodate(*wait_bh
))
1827 ntfs_debug("Done.");
1831 * Zero out any newly allocated blocks to avoid exposing stale data.
1832 * If BH_New is set, we know that the block was newly allocated in the
1834 * FIXME: What about initialized_size increments? Have we done all the
1835 * required zeroing above? If not this error handling is broken, and
1836 * in particular the if (block_end <= from) check is completely bogus.
1842 block_end
= block_start
+ blocksize
;
1843 if (block_end
<= from
)
1845 if (block_start
>= to
)
1847 if (buffer_new(bh
)) {
1850 clear_buffer_new(bh
);
1851 kaddr
= kmap_atomic(page
, KM_USER0
);
1852 memset(kaddr
+ block_start
, 0, bh
->b_size
);
1853 kunmap_atomic(kaddr
, KM_USER0
);
1854 set_buffer_uptodate(bh
);
1855 mark_buffer_dirty(bh
);
1858 } while (block_start
= block_end
, (bh
= bh
->b_this_page
) != head
);
1860 flush_dcache_page(page
);
1862 up_read(&ni
->runlist
.lock
);
1867 * ntfs_prepare_write - prepare a page for receiving data
1869 * This is called from generic_file_write() with i_sem held on the inode
1870 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1871 * data has not yet been copied into the @page.
1873 * Need to extend the attribute/fill in holes if necessary, create blocks and
1874 * make partially overwritten blocks uptodate,
1876 * i_size is not to be modified yet.
1878 * Return 0 on success or -errno on error.
1880 * Should be using block_prepare_write() [support for sparse files] or
1881 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1882 * ntfs specifics but can look at them for implementation guidance.
1884 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1885 * the first byte in the page that will be written to and @to is the first byte
1886 * after the last byte that will be written to.
1888 static int ntfs_prepare_write(struct file
*file
, struct page
*page
,
1889 unsigned from
, unsigned to
)
1893 struct inode
*vi
= page
->mapping
->host
;
1894 ntfs_inode
*base_ni
= NULL
, *ni
= NTFS_I(vi
);
1895 ntfs_volume
*vol
= ni
->vol
;
1896 ntfs_attr_search_ctx
*ctx
= NULL
;
1897 MFT_RECORD
*m
= NULL
;
1903 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1904 "0x%lx, from = %u, to = %u.", vi
->i_ino
, ni
->type
,
1905 page
->index
, from
, to
);
1906 BUG_ON(!PageLocked(page
));
1907 BUG_ON(from
> PAGE_CACHE_SIZE
);
1908 BUG_ON(to
> PAGE_CACHE_SIZE
);
1910 BUG_ON(NInoMstProtected(ni
));
1912 * If a previous ntfs_truncate() failed, repeat it and abort if it
1915 if (unlikely(NInoTruncateFailed(ni
))) {
1916 down_write(&vi
->i_alloc_sem
);
1917 err
= ntfs_truncate(vi
);
1918 up_write(&vi
->i_alloc_sem
);
1919 if (err
|| NInoTruncateFailed(ni
)) {
1925 /* If the attribute is not resident, deal with it elsewhere. */
1926 if (NInoNonResident(ni
)) {
1928 * Only unnamed $DATA attributes can be compressed, encrypted,
1931 if (ni
->type
== AT_DATA
&& !ni
->name_len
) {
1932 /* If file is encrypted, deny access, just like NT4. */
1933 if (NInoEncrypted(ni
)) {
1934 ntfs_debug("Denying write access to encrypted "
1938 /* Compressed data streams are handled in compress.c. */
1939 if (NInoCompressed(ni
)) {
1940 // TODO: Implement and replace this check with
1941 // return ntfs_write_compressed_block(page);
1942 ntfs_error(vi
->i_sb
, "Writing to compressed "
1943 "files is not supported yet. "
1947 // TODO: Implement and remove this check.
1948 if (NInoSparse(ni
)) {
1949 ntfs_error(vi
->i_sb
, "Writing to sparse files "
1950 "is not supported yet. Sorry.");
1954 /* Normal data stream. */
1955 return ntfs_prepare_nonresident_write(page
, from
, to
);
1958 * Attribute is resident, implying it is not compressed, encrypted, or
1961 BUG_ON(page_has_buffers(page
));
1962 new_size
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
1963 /* If we do not need to resize the attribute allocation we are done. */
1964 if (new_size
<= i_size_read(vi
))
1966 /* Map, pin, and lock the (base) mft record. */
1970 base_ni
= ni
->ext
.base_ntfs_ino
;
1971 m
= map_mft_record(base_ni
);
1978 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1979 if (unlikely(!ctx
)) {
1983 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1984 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1985 if (unlikely(err
)) {
1992 /* The total length of the attribute value. */
1993 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1994 /* Fix an eventual previous failure of ntfs_commit_write(). */
1995 i_size
= i_size_read(vi
);
1996 if (unlikely(attr_len
> i_size
)) {
1998 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
2000 /* If we do not need to resize the attribute allocation we are done. */
2001 if (new_size
<= attr_len
)
2003 /* Check if new size is allowed in $AttrDef. */
2004 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2005 if (unlikely(err
)) {
2006 if (err
== -ERANGE
) {
2007 ntfs_error(vol
->sb
, "Write would cause the inode "
2008 "0x%lx to exceed the maximum size for "
2009 "its attribute type (0x%x). Aborting "
2010 "write.", vi
->i_ino
,
2011 le32_to_cpu(ni
->type
));
2013 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2014 "attribute type 0x%x. Aborting "
2015 "write.", vi
->i_ino
,
2016 le32_to_cpu(ni
->type
));
2022 * Extend the attribute record to be able to store the new attribute
2025 if (new_size
>= vol
->mft_record_size
|| ntfs_attr_record_resize(m
, a
,
2026 le16_to_cpu(a
->data
.resident
.value_offset
) +
2028 /* Not enough space in the mft record. */
2029 ntfs_error(vol
->sb
, "Not enough space in the mft record for "
2030 "the resized attribute value. This is not "
2031 "supported yet. Aborting write.");
2036 * We have enough space in the mft record to fit the write. This
2037 * implies the attribute is smaller than the mft record and hence the
2038 * attribute must be in a single page and hence page->index must be 0.
2040 BUG_ON(page
->index
);
2042 * If the beginning of the write is past the old size, enlarge the
2043 * attribute value up to the beginning of the write and fill it with
2046 if (from
> attr_len
) {
2047 memset((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
) +
2048 attr_len
, 0, from
- attr_len
);
2049 a
->data
.resident
.value_length
= cpu_to_le32(from
);
2050 /* Zero the corresponding area in the page as well. */
2051 if (PageUptodate(page
)) {
2052 kaddr
= kmap_atomic(page
, KM_USER0
);
2053 memset(kaddr
+ attr_len
, 0, from
- attr_len
);
2054 kunmap_atomic(kaddr
, KM_USER0
);
2055 flush_dcache_page(page
);
2058 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2059 mark_mft_record_dirty(ctx
->ntfs_ino
);
2061 ntfs_attr_put_search_ctx(ctx
);
2062 unmap_mft_record(base_ni
);
2064 * Because resident attributes are handled by memcpy() to/from the
2065 * corresponding MFT record, and because this form of i/o is byte
2066 * aligned rather than block aligned, there is no need to bring the
2067 * page uptodate here as in the non-resident case where we need to
2068 * bring the buffers straddled by the write uptodate before
2069 * generic_file_write() does the copying from userspace.
2071 * We thus defer the uptodate bringing of the page region outside the
2072 * region written to to ntfs_commit_write(), which makes the code
2073 * simpler and saves one atomic kmap which is good.
2076 ntfs_debug("Done.");
2080 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
2081 "prepare the write.");
2083 ntfs_error(vi
->i_sb
, "Resident attribute prepare write failed "
2084 "with error %i.", err
);
2090 ntfs_attr_put_search_ctx(ctx
);
2092 unmap_mft_record(base_ni
);
2097 * ntfs_commit_nonresident_write -
2100 static int ntfs_commit_nonresident_write(struct page
*page
,
2101 unsigned from
, unsigned to
)
2103 s64 pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) + to
;
2104 struct inode
*vi
= page
->mapping
->host
;
2105 struct buffer_head
*bh
, *head
;
2106 unsigned int block_start
, block_end
, blocksize
;
2109 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2110 "0x%lx, from = %u, to = %u.", vi
->i_ino
,
2111 NTFS_I(vi
)->type
, page
->index
, from
, to
);
2112 blocksize
= 1 << vi
->i_blkbits
;
2114 // FIXME: We need a whole slew of special cases in here for compressed
2115 // files for example...
2116 // For now, we know ntfs_prepare_write() would have failed so we can't
2117 // get here in any of the cases which we have to special case, so we
2118 // are just a ripped off, unrolled generic_commit_write().
2120 bh
= head
= page_buffers(page
);
2124 block_end
= block_start
+ blocksize
;
2125 if (block_end
<= from
|| block_start
>= to
) {
2126 if (!buffer_uptodate(bh
))
2129 set_buffer_uptodate(bh
);
2130 mark_buffer_dirty(bh
);
2132 } while (block_start
= block_end
, (bh
= bh
->b_this_page
) != head
);
2134 * If this is a partial write which happened to make all buffers
2135 * uptodate then we can optimize away a bogus ->readpage() for the next
2136 * read(). Here we 'discover' whether the page went uptodate as a
2137 * result of this (potentially partial) write.
2140 SetPageUptodate(page
);
2142 * Not convinced about this at all. See disparity comment above. For
2143 * now we know ntfs_prepare_write() would have failed in the write
2144 * exceeds i_size case, so this will never trigger which is fine.
2146 if (pos
> i_size_read(vi
)) {
2147 ntfs_error(vi
->i_sb
, "Writing beyond the existing file size is "
2148 "not supported yet. Sorry.");
2150 // vi->i_size = pos;
2151 // mark_inode_dirty(vi);
2153 ntfs_debug("Done.");
2158 * ntfs_commit_write - commit the received data
2160 * This is called from generic_file_write() with i_sem held on the inode
2161 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2162 * data has already been copied into the @page. ntfs_prepare_write() has been
2163 * called before the data copied and it returned success so we can take the
2164 * results of various BUG checks and some error handling for granted.
2166 * Need to mark modified blocks dirty so they get written out later when
2167 * ntfs_writepage() is invoked by the VM.
2169 * Return 0 on success or -errno on error.
2171 * Should be using generic_commit_write(). This marks buffers uptodate and
2172 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2173 * updates i_size if the end of io is beyond i_size. In that case, it also
2174 * marks the inode dirty.
2176 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2177 * it for implementation guidance.
2179 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2180 * need to do any page content modifications here at all, except in the write
2181 * to resident attribute case, where we need to do the uptodate bringing here
2182 * which we combine with the copying into the mft record which means we save
2185 static int ntfs_commit_write(struct file
*file
, struct page
*page
,
2186 unsigned from
, unsigned to
)
2188 struct inode
*vi
= page
->mapping
->host
;
2189 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2190 char *kaddr
, *kattr
;
2191 ntfs_attr_search_ctx
*ctx
;
2197 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2198 "0x%lx, from = %u, to = %u.", vi
->i_ino
, ni
->type
,
2199 page
->index
, from
, to
);
2200 /* If the attribute is not resident, deal with it elsewhere. */
2201 if (NInoNonResident(ni
)) {
2202 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2203 if (ni
->type
== AT_DATA
&& !ni
->name_len
) {
2204 /* Encrypted files need separate handling. */
2205 if (NInoEncrypted(ni
)) {
2206 // We never get here at present!
2209 /* Compressed data streams are handled in compress.c. */
2210 if (NInoCompressed(ni
)) {
2211 // TODO: Implement this!
2212 // return ntfs_write_compressed_block(page);
2213 // We never get here at present!
2217 /* Normal data stream. */
2218 return ntfs_commit_nonresident_write(page
, from
, to
);
2221 * Attribute is resident, implying it is not compressed, encrypted, or
2227 base_ni
= ni
->ext
.base_ntfs_ino
;
2228 /* Map, pin, and lock the mft record. */
2229 m
= map_mft_record(base_ni
);
2236 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2237 if (unlikely(!ctx
)) {
2241 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2242 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2243 if (unlikely(err
)) {
2249 /* The total length of the attribute value. */
2250 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
2251 BUG_ON(from
> attr_len
);
2252 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
2253 kaddr
= kmap_atomic(page
, KM_USER0
);
2254 /* Copy the received data from the page to the mft record. */
2255 memcpy(kattr
+ from
, kaddr
+ from
, to
- from
);
2256 /* Update the attribute length if necessary. */
2257 if (to
> attr_len
) {
2259 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
2262 * If the page is not uptodate, bring the out of bounds area(s)
2263 * uptodate by copying data from the mft record to the page.
2265 if (!PageUptodate(page
)) {
2267 memcpy(kaddr
, kattr
, from
);
2269 memcpy(kaddr
+ to
, kattr
+ to
, attr_len
- to
);
2270 /* Zero the region outside the end of the attribute value. */
2271 if (attr_len
< PAGE_CACHE_SIZE
)
2272 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
2274 * The probability of not having done any of the above is
2275 * extremely small, so we just flush unconditionally.
2277 flush_dcache_page(page
);
2278 SetPageUptodate(page
);
2280 kunmap_atomic(kaddr
, KM_USER0
);
2281 /* Update i_size if necessary. */
2282 if (i_size_read(vi
) < attr_len
) {
2283 unsigned long flags
;
2285 write_lock_irqsave(&ni
->size_lock
, flags
);
2286 ni
->allocated_size
= ni
->initialized_size
= attr_len
;
2287 i_size_write(vi
, attr_len
);
2288 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2290 /* Mark the mft record dirty, so it gets written back. */
2291 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2292 mark_mft_record_dirty(ctx
->ntfs_ino
);
2293 ntfs_attr_put_search_ctx(ctx
);
2294 unmap_mft_record(base_ni
);
2295 ntfs_debug("Done.");
2298 if (err
== -ENOMEM
) {
2299 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
2300 "commit the write.");
2301 if (PageUptodate(page
)) {
2302 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
2303 "dirty so the write will be retried "
2304 "later on by the VM.");
2306 * Put the page on mapping->dirty_pages, but leave its
2307 * buffers' dirty state as-is.
2309 __set_page_dirty_nobuffers(page
);
2312 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
2313 "data has been lost.");
2315 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
2316 "with error %i.", err
);
2317 NVolSetErrors(ni
->vol
);
2321 ntfs_attr_put_search_ctx(ctx
);
2323 unmap_mft_record(base_ni
);
2327 #endif /* NTFS_RW */
2330 * ntfs_aops - general address space operations for inodes and attributes
2332 struct address_space_operations ntfs_aops
= {
2333 .readpage
= ntfs_readpage
, /* Fill page with data. */
2334 .sync_page
= block_sync_page
, /* Currently, just unplugs the
2335 disk request queue. */
2337 .writepage
= ntfs_writepage
, /* Write dirty page to disk. */
2338 .prepare_write
= ntfs_prepare_write
, /* Prepare page and buffers
2339 ready to receive data. */
2340 .commit_write
= ntfs_commit_write
, /* Commit received data. */
2341 #endif /* NTFS_RW */
2345 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2348 struct address_space_operations ntfs_mst_aops
= {
2349 .readpage
= ntfs_readpage
, /* Fill page with data. */
2350 .sync_page
= block_sync_page
, /* Currently, just unplugs the
2351 disk request queue. */
2353 .writepage
= ntfs_writepage
, /* Write dirty page to disk. */
2354 .set_page_dirty
= __set_page_dirty_nobuffers
, /* Set the page dirty
2355 without touching the buffers
2356 belonging to the page. */
2357 #endif /* NTFS_RW */
2363 * mark_ntfs_record_dirty - mark an ntfs record dirty
2364 * @page: page containing the ntfs record to mark dirty
2365 * @ofs: byte offset within @page at which the ntfs record begins
2367 * Set the buffers and the page in which the ntfs record is located dirty.
2369 * The latter also marks the vfs inode the ntfs record belongs to dirty
2370 * (I_DIRTY_PAGES only).
2372 * If the page does not have buffers, we create them and set them uptodate.
2373 * The page may not be locked which is why we need to handle the buffers under
2374 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2375 * need the lock since try_to_free_buffers() does not free dirty buffers.
2377 void mark_ntfs_record_dirty(struct page
*page
, const unsigned int ofs
) {
2378 struct address_space
*mapping
= page
->mapping
;
2379 ntfs_inode
*ni
= NTFS_I(mapping
->host
);
2380 struct buffer_head
*bh
, *head
, *buffers_to_free
= NULL
;
2381 unsigned int end
, bh_size
, bh_ofs
;
2383 BUG_ON(!PageUptodate(page
));
2384 end
= ofs
+ ni
->itype
.index
.block_size
;
2385 bh_size
= 1 << VFS_I(ni
)->i_blkbits
;
2386 spin_lock(&mapping
->private_lock
);
2387 if (unlikely(!page_has_buffers(page
))) {
2388 spin_unlock(&mapping
->private_lock
);
2389 bh
= head
= alloc_page_buffers(page
, bh_size
, 1);
2390 spin_lock(&mapping
->private_lock
);
2391 if (likely(!page_has_buffers(page
))) {
2392 struct buffer_head
*tail
;
2395 set_buffer_uptodate(bh
);
2397 bh
= bh
->b_this_page
;
2399 tail
->b_this_page
= head
;
2400 attach_page_buffers(page
, head
);
2402 buffers_to_free
= bh
;
2404 bh
= head
= page_buffers(page
);
2407 bh_ofs
= bh_offset(bh
);
2408 if (bh_ofs
+ bh_size
<= ofs
)
2410 if (unlikely(bh_ofs
>= end
))
2412 set_buffer_dirty(bh
);
2413 } while ((bh
= bh
->b_this_page
) != head
);
2414 spin_unlock(&mapping
->private_lock
);
2415 __set_page_dirty_nobuffers(page
);
2416 if (unlikely(buffers_to_free
)) {
2418 bh
= buffers_to_free
->b_this_page
;
2419 free_buffer_head(buffers_to_free
);
2420 buffers_to_free
= bh
;
2421 } while (buffers_to_free
);
2425 #endif /* NTFS_RW */