kbuild: fix silentoldconfig with make O=
[linux-2.6/verdex.git] / kernel / cpuset.c
blob407b5f0a8c8eeed2aea648b08748771dd284b3d7
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/namei.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/slab.h>
44 #include <linux/smp_lock.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <asm/semaphore.h>
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
58 struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
63 atomic_t count; /* count tasks using this cpuset */
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
79 int mems_generation;
82 /* bits in struct cpuset flags field */
83 typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88 } cpuset_flagbits_t;
90 /* convenient tests for these bits */
91 static inline int is_cpu_exclusive(const struct cpuset *cs)
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
96 static inline int is_mem_exclusive(const struct cpuset *cs)
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
101 static inline int is_removed(const struct cpuset *cs)
103 return !!test_bit(CS_REMOVED, &cs->flags);
106 static inline int notify_on_release(const struct cpuset *cs)
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
127 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
129 static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
141 static struct vfsmount *cpuset_mount;
142 static struct super_block *cpuset_sb = NULL;
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
182 static DECLARE_MUTEX(cpuset_sem);
185 * The global cpuset semaphore cpuset_sem can be needed by the
186 * memory allocator to update a tasks mems_allowed (see the calls
187 * to cpuset_update_current_mems_allowed()) or to walk up the
188 * cpuset hierarchy to find a mem_exclusive cpuset see the calls
189 * to cpuset_excl_nodes_overlap()).
191 * But if the memory allocation is being done by cpuset.c code, it
192 * usually already holds cpuset_sem. Double tripping on a kernel
193 * semaphore deadlocks the current task, and any other task that
194 * subsequently tries to obtain the lock.
196 * Run all up's and down's on cpuset_sem through the following
197 * wrappers, which will detect this nested locking, and avoid
198 * deadlocking.
201 static inline void cpuset_down(struct semaphore *psem)
203 if (current->cpuset_sem_nest_depth == 0)
204 down(psem);
205 current->cpuset_sem_nest_depth++;
208 static inline void cpuset_up(struct semaphore *psem)
210 current->cpuset_sem_nest_depth--;
211 if (current->cpuset_sem_nest_depth == 0)
212 up(psem);
216 * A couple of forward declarations required, due to cyclic reference loop:
217 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
218 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
221 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
222 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
224 static struct backing_dev_info cpuset_backing_dev_info = {
225 .ra_pages = 0, /* No readahead */
226 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
229 static struct inode *cpuset_new_inode(mode_t mode)
231 struct inode *inode = new_inode(cpuset_sb);
233 if (inode) {
234 inode->i_mode = mode;
235 inode->i_uid = current->fsuid;
236 inode->i_gid = current->fsgid;
237 inode->i_blksize = PAGE_CACHE_SIZE;
238 inode->i_blocks = 0;
239 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
240 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
242 return inode;
245 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
247 /* is dentry a directory ? if so, kfree() associated cpuset */
248 if (S_ISDIR(inode->i_mode)) {
249 struct cpuset *cs = dentry->d_fsdata;
250 BUG_ON(!(is_removed(cs)));
251 kfree(cs);
253 iput(inode);
256 static struct dentry_operations cpuset_dops = {
257 .d_iput = cpuset_diput,
260 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
262 struct dentry *d = lookup_one_len(name, parent, strlen(name));
263 if (!IS_ERR(d))
264 d->d_op = &cpuset_dops;
265 return d;
268 static void remove_dir(struct dentry *d)
270 struct dentry *parent = dget(d->d_parent);
272 d_delete(d);
273 simple_rmdir(parent->d_inode, d);
274 dput(parent);
278 * NOTE : the dentry must have been dget()'ed
280 static void cpuset_d_remove_dir(struct dentry *dentry)
282 struct list_head *node;
284 spin_lock(&dcache_lock);
285 node = dentry->d_subdirs.next;
286 while (node != &dentry->d_subdirs) {
287 struct dentry *d = list_entry(node, struct dentry, d_child);
288 list_del_init(node);
289 if (d->d_inode) {
290 d = dget_locked(d);
291 spin_unlock(&dcache_lock);
292 d_delete(d);
293 simple_unlink(dentry->d_inode, d);
294 dput(d);
295 spin_lock(&dcache_lock);
297 node = dentry->d_subdirs.next;
299 list_del_init(&dentry->d_child);
300 spin_unlock(&dcache_lock);
301 remove_dir(dentry);
304 static struct super_operations cpuset_ops = {
305 .statfs = simple_statfs,
306 .drop_inode = generic_delete_inode,
309 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
310 int unused_silent)
312 struct inode *inode;
313 struct dentry *root;
315 sb->s_blocksize = PAGE_CACHE_SIZE;
316 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
317 sb->s_magic = CPUSET_SUPER_MAGIC;
318 sb->s_op = &cpuset_ops;
319 cpuset_sb = sb;
321 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
322 if (inode) {
323 inode->i_op = &simple_dir_inode_operations;
324 inode->i_fop = &simple_dir_operations;
325 /* directories start off with i_nlink == 2 (for "." entry) */
326 inode->i_nlink++;
327 } else {
328 return -ENOMEM;
331 root = d_alloc_root(inode);
332 if (!root) {
333 iput(inode);
334 return -ENOMEM;
336 sb->s_root = root;
337 return 0;
340 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
341 int flags, const char *unused_dev_name,
342 void *data)
344 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
347 static struct file_system_type cpuset_fs_type = {
348 .name = "cpuset",
349 .get_sb = cpuset_get_sb,
350 .kill_sb = kill_litter_super,
353 /* struct cftype:
355 * The files in the cpuset filesystem mostly have a very simple read/write
356 * handling, some common function will take care of it. Nevertheless some cases
357 * (read tasks) are special and therefore I define this structure for every
358 * kind of file.
361 * When reading/writing to a file:
362 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
363 * - the 'cftype' of the file is file->f_dentry->d_fsdata
366 struct cftype {
367 char *name;
368 int private;
369 int (*open) (struct inode *inode, struct file *file);
370 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
371 loff_t *ppos);
372 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
373 loff_t *ppos);
374 int (*release) (struct inode *inode, struct file *file);
377 static inline struct cpuset *__d_cs(struct dentry *dentry)
379 return dentry->d_fsdata;
382 static inline struct cftype *__d_cft(struct dentry *dentry)
384 return dentry->d_fsdata;
388 * Call with cpuset_sem held. Writes path of cpuset into buf.
389 * Returns 0 on success, -errno on error.
392 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
394 char *start;
396 start = buf + buflen;
398 *--start = '\0';
399 for (;;) {
400 int len = cs->dentry->d_name.len;
401 if ((start -= len) < buf)
402 return -ENAMETOOLONG;
403 memcpy(start, cs->dentry->d_name.name, len);
404 cs = cs->parent;
405 if (!cs)
406 break;
407 if (!cs->parent)
408 continue;
409 if (--start < buf)
410 return -ENAMETOOLONG;
411 *start = '/';
413 memmove(buf, start, buf + buflen - start);
414 return 0;
418 * Notify userspace when a cpuset is released, by running
419 * /sbin/cpuset_release_agent with the name of the cpuset (path
420 * relative to the root of cpuset file system) as the argument.
422 * Most likely, this user command will try to rmdir this cpuset.
424 * This races with the possibility that some other task will be
425 * attached to this cpuset before it is removed, or that some other
426 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
427 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
428 * unused, and this cpuset will be reprieved from its death sentence,
429 * to continue to serve a useful existence. Next time it's released,
430 * we will get notified again, if it still has 'notify_on_release' set.
432 * The final arg to call_usermodehelper() is 0, which means don't
433 * wait. The separate /sbin/cpuset_release_agent task is forked by
434 * call_usermodehelper(), then control in this thread returns here,
435 * without waiting for the release agent task. We don't bother to
436 * wait because the caller of this routine has no use for the exit
437 * status of the /sbin/cpuset_release_agent task, so no sense holding
438 * our caller up for that.
440 * The simple act of forking that task might require more memory,
441 * which might need cpuset_sem. So this routine must be called while
442 * cpuset_sem is not held, to avoid a possible deadlock. See also
443 * comments for check_for_release(), below.
446 static void cpuset_release_agent(const char *pathbuf)
448 char *argv[3], *envp[3];
449 int i;
451 if (!pathbuf)
452 return;
454 i = 0;
455 argv[i++] = "/sbin/cpuset_release_agent";
456 argv[i++] = (char *)pathbuf;
457 argv[i] = NULL;
459 i = 0;
460 /* minimal command environment */
461 envp[i++] = "HOME=/";
462 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
463 envp[i] = NULL;
465 call_usermodehelper(argv[0], argv, envp, 0);
466 kfree(pathbuf);
470 * Either cs->count of using tasks transitioned to zero, or the
471 * cs->children list of child cpusets just became empty. If this
472 * cs is notify_on_release() and now both the user count is zero and
473 * the list of children is empty, prepare cpuset path in a kmalloc'd
474 * buffer, to be returned via ppathbuf, so that the caller can invoke
475 * cpuset_release_agent() with it later on, once cpuset_sem is dropped.
476 * Call here with cpuset_sem held.
478 * This check_for_release() routine is responsible for kmalloc'ing
479 * pathbuf. The above cpuset_release_agent() is responsible for
480 * kfree'ing pathbuf. The caller of these routines is responsible
481 * for providing a pathbuf pointer, initialized to NULL, then
482 * calling check_for_release() with cpuset_sem held and the address
483 * of the pathbuf pointer, then dropping cpuset_sem, then calling
484 * cpuset_release_agent() with pathbuf, as set by check_for_release().
487 static void check_for_release(struct cpuset *cs, char **ppathbuf)
489 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
490 list_empty(&cs->children)) {
491 char *buf;
493 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
494 if (!buf)
495 return;
496 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
497 kfree(buf);
498 else
499 *ppathbuf = buf;
504 * Return in *pmask the portion of a cpusets's cpus_allowed that
505 * are online. If none are online, walk up the cpuset hierarchy
506 * until we find one that does have some online cpus. If we get
507 * all the way to the top and still haven't found any online cpus,
508 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
509 * task, return cpu_online_map.
511 * One way or another, we guarantee to return some non-empty subset
512 * of cpu_online_map.
514 * Call with cpuset_sem held.
517 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
519 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
520 cs = cs->parent;
521 if (cs)
522 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
523 else
524 *pmask = cpu_online_map;
525 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
529 * Return in *pmask the portion of a cpusets's mems_allowed that
530 * are online. If none are online, walk up the cpuset hierarchy
531 * until we find one that does have some online mems. If we get
532 * all the way to the top and still haven't found any online mems,
533 * return node_online_map.
535 * One way or another, we guarantee to return some non-empty subset
536 * of node_online_map.
538 * Call with cpuset_sem held.
541 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
543 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
544 cs = cs->parent;
545 if (cs)
546 nodes_and(*pmask, cs->mems_allowed, node_online_map);
547 else
548 *pmask = node_online_map;
549 BUG_ON(!nodes_intersects(*pmask, node_online_map));
553 * Refresh current tasks mems_allowed and mems_generation from
554 * current tasks cpuset. Call with cpuset_sem held.
556 * This routine is needed to update the per-task mems_allowed
557 * data, within the tasks context, when it is trying to allocate
558 * memory (in various mm/mempolicy.c routines) and notices
559 * that some other task has been modifying its cpuset.
562 static void refresh_mems(void)
564 struct cpuset *cs = current->cpuset;
566 if (current->cpuset_mems_generation != cs->mems_generation) {
567 guarantee_online_mems(cs, &current->mems_allowed);
568 current->cpuset_mems_generation = cs->mems_generation;
573 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575 * One cpuset is a subset of another if all its allowed CPUs and
576 * Memory Nodes are a subset of the other, and its exclusive flags
577 * are only set if the other's are set.
580 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
583 nodes_subset(p->mems_allowed, q->mems_allowed) &&
584 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
585 is_mem_exclusive(p) <= is_mem_exclusive(q);
589 * validate_change() - Used to validate that any proposed cpuset change
590 * follows the structural rules for cpusets.
592 * If we replaced the flag and mask values of the current cpuset
593 * (cur) with those values in the trial cpuset (trial), would
594 * our various subset and exclusive rules still be valid? Presumes
595 * cpuset_sem held.
597 * 'cur' is the address of an actual, in-use cpuset. Operations
598 * such as list traversal that depend on the actual address of the
599 * cpuset in the list must use cur below, not trial.
601 * 'trial' is the address of bulk structure copy of cur, with
602 * perhaps one or more of the fields cpus_allowed, mems_allowed,
603 * or flags changed to new, trial values.
605 * Return 0 if valid, -errno if not.
608 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
610 struct cpuset *c, *par;
612 /* Each of our child cpusets must be a subset of us */
613 list_for_each_entry(c, &cur->children, sibling) {
614 if (!is_cpuset_subset(c, trial))
615 return -EBUSY;
618 /* Remaining checks don't apply to root cpuset */
619 if ((par = cur->parent) == NULL)
620 return 0;
622 /* We must be a subset of our parent cpuset */
623 if (!is_cpuset_subset(trial, par))
624 return -EACCES;
626 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
627 list_for_each_entry(c, &par->children, sibling) {
628 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
629 c != cur &&
630 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
631 return -EINVAL;
632 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
633 c != cur &&
634 nodes_intersects(trial->mems_allowed, c->mems_allowed))
635 return -EINVAL;
638 return 0;
642 * For a given cpuset cur, partition the system as follows
643 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
644 * exclusive child cpusets
645 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
646 * exclusive child cpusets
647 * Build these two partitions by calling partition_sched_domains
649 * Call with cpuset_sem held. May nest a call to the
650 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
653 static void update_cpu_domains(struct cpuset *cur)
655 struct cpuset *c, *par = cur->parent;
656 cpumask_t pspan, cspan;
658 if (par == NULL || cpus_empty(cur->cpus_allowed))
659 return;
662 * Get all cpus from parent's cpus_allowed not part of exclusive
663 * children
665 pspan = par->cpus_allowed;
666 list_for_each_entry(c, &par->children, sibling) {
667 if (is_cpu_exclusive(c))
668 cpus_andnot(pspan, pspan, c->cpus_allowed);
670 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
671 cpus_or(pspan, pspan, cur->cpus_allowed);
672 if (cpus_equal(pspan, cur->cpus_allowed))
673 return;
674 cspan = CPU_MASK_NONE;
675 } else {
676 if (cpus_empty(pspan))
677 return;
678 cspan = cur->cpus_allowed;
680 * Get all cpus from current cpuset's cpus_allowed not part
681 * of exclusive children
683 list_for_each_entry(c, &cur->children, sibling) {
684 if (is_cpu_exclusive(c))
685 cpus_andnot(cspan, cspan, c->cpus_allowed);
689 lock_cpu_hotplug();
690 partition_sched_domains(&pspan, &cspan);
691 unlock_cpu_hotplug();
694 static int update_cpumask(struct cpuset *cs, char *buf)
696 struct cpuset trialcs;
697 int retval, cpus_unchanged;
699 trialcs = *cs;
700 retval = cpulist_parse(buf, trialcs.cpus_allowed);
701 if (retval < 0)
702 return retval;
703 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
704 if (cpus_empty(trialcs.cpus_allowed))
705 return -ENOSPC;
706 retval = validate_change(cs, &trialcs);
707 if (retval < 0)
708 return retval;
709 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
710 cs->cpus_allowed = trialcs.cpus_allowed;
711 if (is_cpu_exclusive(cs) && !cpus_unchanged)
712 update_cpu_domains(cs);
713 return 0;
716 static int update_nodemask(struct cpuset *cs, char *buf)
718 struct cpuset trialcs;
719 int retval;
721 trialcs = *cs;
722 retval = nodelist_parse(buf, trialcs.mems_allowed);
723 if (retval < 0)
724 return retval;
725 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
726 if (nodes_empty(trialcs.mems_allowed))
727 return -ENOSPC;
728 retval = validate_change(cs, &trialcs);
729 if (retval == 0) {
730 cs->mems_allowed = trialcs.mems_allowed;
731 atomic_inc(&cpuset_mems_generation);
732 cs->mems_generation = atomic_read(&cpuset_mems_generation);
734 return retval;
738 * update_flag - read a 0 or a 1 in a file and update associated flag
739 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
740 * CS_NOTIFY_ON_RELEASE)
741 * cs: the cpuset to update
742 * buf: the buffer where we read the 0 or 1
745 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
747 int turning_on;
748 struct cpuset trialcs;
749 int err, cpu_exclusive_changed;
751 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
753 trialcs = *cs;
754 if (turning_on)
755 set_bit(bit, &trialcs.flags);
756 else
757 clear_bit(bit, &trialcs.flags);
759 err = validate_change(cs, &trialcs);
760 if (err < 0)
761 return err;
762 cpu_exclusive_changed =
763 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
764 if (turning_on)
765 set_bit(bit, &cs->flags);
766 else
767 clear_bit(bit, &cs->flags);
769 if (cpu_exclusive_changed)
770 update_cpu_domains(cs);
771 return 0;
774 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
776 pid_t pid;
777 struct task_struct *tsk;
778 struct cpuset *oldcs;
779 cpumask_t cpus;
781 if (sscanf(pidbuf, "%d", &pid) != 1)
782 return -EIO;
783 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
784 return -ENOSPC;
786 if (pid) {
787 read_lock(&tasklist_lock);
789 tsk = find_task_by_pid(pid);
790 if (!tsk) {
791 read_unlock(&tasklist_lock);
792 return -ESRCH;
795 get_task_struct(tsk);
796 read_unlock(&tasklist_lock);
798 if ((current->euid) && (current->euid != tsk->uid)
799 && (current->euid != tsk->suid)) {
800 put_task_struct(tsk);
801 return -EACCES;
803 } else {
804 tsk = current;
805 get_task_struct(tsk);
808 task_lock(tsk);
809 oldcs = tsk->cpuset;
810 if (!oldcs) {
811 task_unlock(tsk);
812 put_task_struct(tsk);
813 return -ESRCH;
815 atomic_inc(&cs->count);
816 tsk->cpuset = cs;
817 task_unlock(tsk);
819 guarantee_online_cpus(cs, &cpus);
820 set_cpus_allowed(tsk, cpus);
822 put_task_struct(tsk);
823 if (atomic_dec_and_test(&oldcs->count))
824 check_for_release(oldcs, ppathbuf);
825 return 0;
828 /* The various types of files and directories in a cpuset file system */
830 typedef enum {
831 FILE_ROOT,
832 FILE_DIR,
833 FILE_CPULIST,
834 FILE_MEMLIST,
835 FILE_CPU_EXCLUSIVE,
836 FILE_MEM_EXCLUSIVE,
837 FILE_NOTIFY_ON_RELEASE,
838 FILE_TASKLIST,
839 } cpuset_filetype_t;
841 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
842 size_t nbytes, loff_t *unused_ppos)
844 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
845 struct cftype *cft = __d_cft(file->f_dentry);
846 cpuset_filetype_t type = cft->private;
847 char *buffer;
848 char *pathbuf = NULL;
849 int retval = 0;
851 /* Crude upper limit on largest legitimate cpulist user might write. */
852 if (nbytes > 100 + 6 * NR_CPUS)
853 return -E2BIG;
855 /* +1 for nul-terminator */
856 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
857 return -ENOMEM;
859 if (copy_from_user(buffer, userbuf, nbytes)) {
860 retval = -EFAULT;
861 goto out1;
863 buffer[nbytes] = 0; /* nul-terminate */
865 cpuset_down(&cpuset_sem);
867 if (is_removed(cs)) {
868 retval = -ENODEV;
869 goto out2;
872 switch (type) {
873 case FILE_CPULIST:
874 retval = update_cpumask(cs, buffer);
875 break;
876 case FILE_MEMLIST:
877 retval = update_nodemask(cs, buffer);
878 break;
879 case FILE_CPU_EXCLUSIVE:
880 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
881 break;
882 case FILE_MEM_EXCLUSIVE:
883 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
884 break;
885 case FILE_NOTIFY_ON_RELEASE:
886 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
887 break;
888 case FILE_TASKLIST:
889 retval = attach_task(cs, buffer, &pathbuf);
890 break;
891 default:
892 retval = -EINVAL;
893 goto out2;
896 if (retval == 0)
897 retval = nbytes;
898 out2:
899 cpuset_up(&cpuset_sem);
900 cpuset_release_agent(pathbuf);
901 out1:
902 kfree(buffer);
903 return retval;
906 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
907 size_t nbytes, loff_t *ppos)
909 ssize_t retval = 0;
910 struct cftype *cft = __d_cft(file->f_dentry);
911 if (!cft)
912 return -ENODEV;
914 /* special function ? */
915 if (cft->write)
916 retval = cft->write(file, buf, nbytes, ppos);
917 else
918 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
920 return retval;
924 * These ascii lists should be read in a single call, by using a user
925 * buffer large enough to hold the entire map. If read in smaller
926 * chunks, there is no guarantee of atomicity. Since the display format
927 * used, list of ranges of sequential numbers, is variable length,
928 * and since these maps can change value dynamically, one could read
929 * gibberish by doing partial reads while a list was changing.
930 * A single large read to a buffer that crosses a page boundary is
931 * ok, because the result being copied to user land is not recomputed
932 * across a page fault.
935 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
937 cpumask_t mask;
939 cpuset_down(&cpuset_sem);
940 mask = cs->cpus_allowed;
941 cpuset_up(&cpuset_sem);
943 return cpulist_scnprintf(page, PAGE_SIZE, mask);
946 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
948 nodemask_t mask;
950 cpuset_down(&cpuset_sem);
951 mask = cs->mems_allowed;
952 cpuset_up(&cpuset_sem);
954 return nodelist_scnprintf(page, PAGE_SIZE, mask);
957 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
958 size_t nbytes, loff_t *ppos)
960 struct cftype *cft = __d_cft(file->f_dentry);
961 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
962 cpuset_filetype_t type = cft->private;
963 char *page;
964 ssize_t retval = 0;
965 char *s;
966 char *start;
967 size_t n;
969 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
970 return -ENOMEM;
972 s = page;
974 switch (type) {
975 case FILE_CPULIST:
976 s += cpuset_sprintf_cpulist(s, cs);
977 break;
978 case FILE_MEMLIST:
979 s += cpuset_sprintf_memlist(s, cs);
980 break;
981 case FILE_CPU_EXCLUSIVE:
982 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
983 break;
984 case FILE_MEM_EXCLUSIVE:
985 *s++ = is_mem_exclusive(cs) ? '1' : '0';
986 break;
987 case FILE_NOTIFY_ON_RELEASE:
988 *s++ = notify_on_release(cs) ? '1' : '0';
989 break;
990 default:
991 retval = -EINVAL;
992 goto out;
994 *s++ = '\n';
995 *s = '\0';
997 /* Do nothing if *ppos is at the eof or beyond the eof. */
998 if (s - page <= *ppos)
999 return 0;
1001 start = page + *ppos;
1002 n = s - start;
1003 retval = n - copy_to_user(buf, start, min(n, nbytes));
1004 *ppos += retval;
1005 out:
1006 free_page((unsigned long)page);
1007 return retval;
1010 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1011 loff_t *ppos)
1013 ssize_t retval = 0;
1014 struct cftype *cft = __d_cft(file->f_dentry);
1015 if (!cft)
1016 return -ENODEV;
1018 /* special function ? */
1019 if (cft->read)
1020 retval = cft->read(file, buf, nbytes, ppos);
1021 else
1022 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1024 return retval;
1027 static int cpuset_file_open(struct inode *inode, struct file *file)
1029 int err;
1030 struct cftype *cft;
1032 err = generic_file_open(inode, file);
1033 if (err)
1034 return err;
1036 cft = __d_cft(file->f_dentry);
1037 if (!cft)
1038 return -ENODEV;
1039 if (cft->open)
1040 err = cft->open(inode, file);
1041 else
1042 err = 0;
1044 return err;
1047 static int cpuset_file_release(struct inode *inode, struct file *file)
1049 struct cftype *cft = __d_cft(file->f_dentry);
1050 if (cft->release)
1051 return cft->release(inode, file);
1052 return 0;
1055 static struct file_operations cpuset_file_operations = {
1056 .read = cpuset_file_read,
1057 .write = cpuset_file_write,
1058 .llseek = generic_file_llseek,
1059 .open = cpuset_file_open,
1060 .release = cpuset_file_release,
1063 static struct inode_operations cpuset_dir_inode_operations = {
1064 .lookup = simple_lookup,
1065 .mkdir = cpuset_mkdir,
1066 .rmdir = cpuset_rmdir,
1069 static int cpuset_create_file(struct dentry *dentry, int mode)
1071 struct inode *inode;
1073 if (!dentry)
1074 return -ENOENT;
1075 if (dentry->d_inode)
1076 return -EEXIST;
1078 inode = cpuset_new_inode(mode);
1079 if (!inode)
1080 return -ENOMEM;
1082 if (S_ISDIR(mode)) {
1083 inode->i_op = &cpuset_dir_inode_operations;
1084 inode->i_fop = &simple_dir_operations;
1086 /* start off with i_nlink == 2 (for "." entry) */
1087 inode->i_nlink++;
1088 } else if (S_ISREG(mode)) {
1089 inode->i_size = 0;
1090 inode->i_fop = &cpuset_file_operations;
1093 d_instantiate(dentry, inode);
1094 dget(dentry); /* Extra count - pin the dentry in core */
1095 return 0;
1099 * cpuset_create_dir - create a directory for an object.
1100 * cs: the cpuset we create the directory for.
1101 * It must have a valid ->parent field
1102 * And we are going to fill its ->dentry field.
1103 * name: The name to give to the cpuset directory. Will be copied.
1104 * mode: mode to set on new directory.
1107 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1109 struct dentry *dentry = NULL;
1110 struct dentry *parent;
1111 int error = 0;
1113 parent = cs->parent->dentry;
1114 dentry = cpuset_get_dentry(parent, name);
1115 if (IS_ERR(dentry))
1116 return PTR_ERR(dentry);
1117 error = cpuset_create_file(dentry, S_IFDIR | mode);
1118 if (!error) {
1119 dentry->d_fsdata = cs;
1120 parent->d_inode->i_nlink++;
1121 cs->dentry = dentry;
1123 dput(dentry);
1125 return error;
1128 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1130 struct dentry *dentry;
1131 int error;
1133 down(&dir->d_inode->i_sem);
1134 dentry = cpuset_get_dentry(dir, cft->name);
1135 if (!IS_ERR(dentry)) {
1136 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1137 if (!error)
1138 dentry->d_fsdata = (void *)cft;
1139 dput(dentry);
1140 } else
1141 error = PTR_ERR(dentry);
1142 up(&dir->d_inode->i_sem);
1143 return error;
1147 * Stuff for reading the 'tasks' file.
1149 * Reading this file can return large amounts of data if a cpuset has
1150 * *lots* of attached tasks. So it may need several calls to read(),
1151 * but we cannot guarantee that the information we produce is correct
1152 * unless we produce it entirely atomically.
1154 * Upon tasks file open(), a struct ctr_struct is allocated, that
1155 * will have a pointer to an array (also allocated here). The struct
1156 * ctr_struct * is stored in file->private_data. Its resources will
1157 * be freed by release() when the file is closed. The array is used
1158 * to sprintf the PIDs and then used by read().
1161 /* cpusets_tasks_read array */
1163 struct ctr_struct {
1164 char *buf;
1165 int bufsz;
1169 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1170 * Return actual number of pids loaded.
1172 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1174 int n = 0;
1175 struct task_struct *g, *p;
1177 read_lock(&tasklist_lock);
1179 do_each_thread(g, p) {
1180 if (p->cpuset == cs) {
1181 pidarray[n++] = p->pid;
1182 if (unlikely(n == npids))
1183 goto array_full;
1185 } while_each_thread(g, p);
1187 array_full:
1188 read_unlock(&tasklist_lock);
1189 return n;
1192 static int cmppid(const void *a, const void *b)
1194 return *(pid_t *)a - *(pid_t *)b;
1198 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1199 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1200 * count 'cnt' of how many chars would be written if buf were large enough.
1202 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1204 int cnt = 0;
1205 int i;
1207 for (i = 0; i < npids; i++)
1208 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1209 return cnt;
1212 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1214 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1215 struct ctr_struct *ctr;
1216 pid_t *pidarray;
1217 int npids;
1218 char c;
1220 if (!(file->f_mode & FMODE_READ))
1221 return 0;
1223 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1224 if (!ctr)
1225 goto err0;
1228 * If cpuset gets more users after we read count, we won't have
1229 * enough space - tough. This race is indistinguishable to the
1230 * caller from the case that the additional cpuset users didn't
1231 * show up until sometime later on.
1233 npids = atomic_read(&cs->count);
1234 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1235 if (!pidarray)
1236 goto err1;
1238 npids = pid_array_load(pidarray, npids, cs);
1239 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1241 /* Call pid_array_to_buf() twice, first just to get bufsz */
1242 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1243 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1244 if (!ctr->buf)
1245 goto err2;
1246 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1248 kfree(pidarray);
1249 file->private_data = ctr;
1250 return 0;
1252 err2:
1253 kfree(pidarray);
1254 err1:
1255 kfree(ctr);
1256 err0:
1257 return -ENOMEM;
1260 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1261 size_t nbytes, loff_t *ppos)
1263 struct ctr_struct *ctr = file->private_data;
1265 if (*ppos + nbytes > ctr->bufsz)
1266 nbytes = ctr->bufsz - *ppos;
1267 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1268 return -EFAULT;
1269 *ppos += nbytes;
1270 return nbytes;
1273 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1275 struct ctr_struct *ctr;
1277 if (file->f_mode & FMODE_READ) {
1278 ctr = file->private_data;
1279 kfree(ctr->buf);
1280 kfree(ctr);
1282 return 0;
1286 * for the common functions, 'private' gives the type of file
1289 static struct cftype cft_tasks = {
1290 .name = "tasks",
1291 .open = cpuset_tasks_open,
1292 .read = cpuset_tasks_read,
1293 .release = cpuset_tasks_release,
1294 .private = FILE_TASKLIST,
1297 static struct cftype cft_cpus = {
1298 .name = "cpus",
1299 .private = FILE_CPULIST,
1302 static struct cftype cft_mems = {
1303 .name = "mems",
1304 .private = FILE_MEMLIST,
1307 static struct cftype cft_cpu_exclusive = {
1308 .name = "cpu_exclusive",
1309 .private = FILE_CPU_EXCLUSIVE,
1312 static struct cftype cft_mem_exclusive = {
1313 .name = "mem_exclusive",
1314 .private = FILE_MEM_EXCLUSIVE,
1317 static struct cftype cft_notify_on_release = {
1318 .name = "notify_on_release",
1319 .private = FILE_NOTIFY_ON_RELEASE,
1322 static int cpuset_populate_dir(struct dentry *cs_dentry)
1324 int err;
1326 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1327 return err;
1328 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1329 return err;
1330 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1331 return err;
1332 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1333 return err;
1334 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1335 return err;
1336 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1337 return err;
1338 return 0;
1342 * cpuset_create - create a cpuset
1343 * parent: cpuset that will be parent of the new cpuset.
1344 * name: name of the new cpuset. Will be strcpy'ed.
1345 * mode: mode to set on new inode
1347 * Must be called with the semaphore on the parent inode held
1350 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1352 struct cpuset *cs;
1353 int err;
1355 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1356 if (!cs)
1357 return -ENOMEM;
1359 cpuset_down(&cpuset_sem);
1360 cs->flags = 0;
1361 if (notify_on_release(parent))
1362 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1363 cs->cpus_allowed = CPU_MASK_NONE;
1364 cs->mems_allowed = NODE_MASK_NONE;
1365 atomic_set(&cs->count, 0);
1366 INIT_LIST_HEAD(&cs->sibling);
1367 INIT_LIST_HEAD(&cs->children);
1368 atomic_inc(&cpuset_mems_generation);
1369 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1371 cs->parent = parent;
1373 list_add(&cs->sibling, &cs->parent->children);
1375 err = cpuset_create_dir(cs, name, mode);
1376 if (err < 0)
1377 goto err;
1380 * Release cpuset_sem before cpuset_populate_dir() because it
1381 * will down() this new directory's i_sem and if we race with
1382 * another mkdir, we might deadlock.
1384 cpuset_up(&cpuset_sem);
1386 err = cpuset_populate_dir(cs->dentry);
1387 /* If err < 0, we have a half-filled directory - oh well ;) */
1388 return 0;
1389 err:
1390 list_del(&cs->sibling);
1391 cpuset_up(&cpuset_sem);
1392 kfree(cs);
1393 return err;
1396 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1398 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1400 /* the vfs holds inode->i_sem already */
1401 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1404 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1406 struct cpuset *cs = dentry->d_fsdata;
1407 struct dentry *d;
1408 struct cpuset *parent;
1409 char *pathbuf = NULL;
1411 /* the vfs holds both inode->i_sem already */
1413 cpuset_down(&cpuset_sem);
1414 if (atomic_read(&cs->count) > 0) {
1415 cpuset_up(&cpuset_sem);
1416 return -EBUSY;
1418 if (!list_empty(&cs->children)) {
1419 cpuset_up(&cpuset_sem);
1420 return -EBUSY;
1422 parent = cs->parent;
1423 set_bit(CS_REMOVED, &cs->flags);
1424 if (is_cpu_exclusive(cs))
1425 update_cpu_domains(cs);
1426 list_del(&cs->sibling); /* delete my sibling from parent->children */
1427 if (list_empty(&parent->children))
1428 check_for_release(parent, &pathbuf);
1429 spin_lock(&cs->dentry->d_lock);
1430 d = dget(cs->dentry);
1431 cs->dentry = NULL;
1432 spin_unlock(&d->d_lock);
1433 cpuset_d_remove_dir(d);
1434 dput(d);
1435 cpuset_up(&cpuset_sem);
1436 cpuset_release_agent(pathbuf);
1437 return 0;
1441 * cpuset_init - initialize cpusets at system boot
1443 * Description: Initialize top_cpuset and the cpuset internal file system,
1446 int __init cpuset_init(void)
1448 struct dentry *root;
1449 int err;
1451 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1452 top_cpuset.mems_allowed = NODE_MASK_ALL;
1454 atomic_inc(&cpuset_mems_generation);
1455 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1457 init_task.cpuset = &top_cpuset;
1459 err = register_filesystem(&cpuset_fs_type);
1460 if (err < 0)
1461 goto out;
1462 cpuset_mount = kern_mount(&cpuset_fs_type);
1463 if (IS_ERR(cpuset_mount)) {
1464 printk(KERN_ERR "cpuset: could not mount!\n");
1465 err = PTR_ERR(cpuset_mount);
1466 cpuset_mount = NULL;
1467 goto out;
1469 root = cpuset_mount->mnt_sb->s_root;
1470 root->d_fsdata = &top_cpuset;
1471 root->d_inode->i_nlink++;
1472 top_cpuset.dentry = root;
1473 root->d_inode->i_op = &cpuset_dir_inode_operations;
1474 err = cpuset_populate_dir(root);
1475 out:
1476 return err;
1480 * cpuset_init_smp - initialize cpus_allowed
1482 * Description: Finish top cpuset after cpu, node maps are initialized
1485 void __init cpuset_init_smp(void)
1487 top_cpuset.cpus_allowed = cpu_online_map;
1488 top_cpuset.mems_allowed = node_online_map;
1492 * cpuset_fork - attach newly forked task to its parents cpuset.
1493 * @tsk: pointer to task_struct of forking parent process.
1495 * Description: By default, on fork, a task inherits its
1496 * parent's cpuset. The pointer to the shared cpuset is
1497 * automatically copied in fork.c by dup_task_struct().
1498 * This cpuset_fork() routine need only increment the usage
1499 * counter in that cpuset.
1502 void cpuset_fork(struct task_struct *tsk)
1504 atomic_inc(&tsk->cpuset->count);
1508 * cpuset_exit - detach cpuset from exiting task
1509 * @tsk: pointer to task_struct of exiting process
1511 * Description: Detach cpuset from @tsk and release it.
1513 * Note that cpusets marked notify_on_release force every task
1514 * in them to take the global cpuset_sem semaphore when exiting.
1515 * This could impact scaling on very large systems. Be reluctant
1516 * to use notify_on_release cpusets where very high task exit
1517 * scaling is required on large systems.
1519 * Don't even think about derefencing 'cs' after the cpuset use
1520 * count goes to zero, except inside a critical section guarded
1521 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1522 * then a zero cpuset use count is a license to any other task to
1523 * nuke the cpuset immediately.
1526 void cpuset_exit(struct task_struct *tsk)
1528 struct cpuset *cs;
1530 task_lock(tsk);
1531 cs = tsk->cpuset;
1532 tsk->cpuset = NULL;
1533 task_unlock(tsk);
1535 if (notify_on_release(cs)) {
1536 char *pathbuf = NULL;
1538 cpuset_down(&cpuset_sem);
1539 if (atomic_dec_and_test(&cs->count))
1540 check_for_release(cs, &pathbuf);
1541 cpuset_up(&cpuset_sem);
1542 cpuset_release_agent(pathbuf);
1543 } else {
1544 atomic_dec(&cs->count);
1549 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1550 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1552 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1553 * attached to the specified @tsk. Guaranteed to return some non-empty
1554 * subset of cpu_online_map, even if this means going outside the
1555 * tasks cpuset.
1558 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1560 cpumask_t mask;
1562 cpuset_down(&cpuset_sem);
1563 task_lock((struct task_struct *)tsk);
1564 guarantee_online_cpus(tsk->cpuset, &mask);
1565 task_unlock((struct task_struct *)tsk);
1566 cpuset_up(&cpuset_sem);
1568 return mask;
1571 void cpuset_init_current_mems_allowed(void)
1573 current->mems_allowed = NODE_MASK_ALL;
1577 * cpuset_update_current_mems_allowed - update mems parameters to new values
1579 * If the current tasks cpusets mems_allowed changed behind our backs,
1580 * update current->mems_allowed and mems_generation to the new value.
1581 * Do not call this routine if in_interrupt().
1584 void cpuset_update_current_mems_allowed(void)
1586 struct cpuset *cs = current->cpuset;
1588 if (!cs)
1589 return; /* task is exiting */
1590 if (current->cpuset_mems_generation != cs->mems_generation) {
1591 cpuset_down(&cpuset_sem);
1592 refresh_mems();
1593 cpuset_up(&cpuset_sem);
1598 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1599 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1601 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1603 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1604 MAX_NUMNODES);
1608 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1609 * @zl: the zonelist to be checked
1611 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1613 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1615 int i;
1617 for (i = 0; zl->zones[i]; i++) {
1618 int nid = zl->zones[i]->zone_pgdat->node_id;
1620 if (node_isset(nid, current->mems_allowed))
1621 return 1;
1623 return 0;
1627 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1628 * ancestor to the specified cpuset. Call while holding cpuset_sem.
1629 * If no ancestor is mem_exclusive (an unusual configuration), then
1630 * returns the root cpuset.
1632 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1634 while (!is_mem_exclusive(cs) && cs->parent)
1635 cs = cs->parent;
1636 return cs;
1640 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1641 * @z: is this zone on an allowed node?
1642 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
1644 * If we're in interrupt, yes, we can always allocate. If zone
1645 * z's node is in our tasks mems_allowed, yes. If it's not a
1646 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1647 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1648 * Otherwise, no.
1650 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1651 * and do not allow allocations outside the current tasks cpuset.
1652 * GFP_KERNEL allocations are not so marked, so can escape to the
1653 * nearest mem_exclusive ancestor cpuset.
1655 * Scanning up parent cpusets requires cpuset_sem. The __alloc_pages()
1656 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1657 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1658 * mems_allowed came up empty on the first pass over the zonelist.
1659 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1660 * short of memory, might require taking the cpuset_sem semaphore.
1662 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1663 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1664 * hardwall cpusets - no allocation on a node outside the cpuset is
1665 * allowed (unless in interrupt, of course).
1667 * The second loop doesn't even call here for GFP_ATOMIC requests
1668 * (if the __alloc_pages() local variable 'wait' is set). That check
1669 * and the checks below have the combined affect in the second loop of
1670 * the __alloc_pages() routine that:
1671 * in_interrupt - any node ok (current task context irrelevant)
1672 * GFP_ATOMIC - any node ok
1673 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1674 * GFP_USER - only nodes in current tasks mems allowed ok.
1677 int cpuset_zone_allowed(struct zone *z, unsigned int __nocast gfp_mask)
1679 int node; /* node that zone z is on */
1680 const struct cpuset *cs; /* current cpuset ancestors */
1681 int allowed = 1; /* is allocation in zone z allowed? */
1683 if (in_interrupt())
1684 return 1;
1685 node = z->zone_pgdat->node_id;
1686 if (node_isset(node, current->mems_allowed))
1687 return 1;
1688 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1689 return 0;
1691 /* Not hardwall and node outside mems_allowed: scan up cpusets */
1692 cpuset_down(&cpuset_sem);
1693 cs = current->cpuset;
1694 if (!cs)
1695 goto done; /* current task exiting */
1696 cs = nearest_exclusive_ancestor(cs);
1697 allowed = node_isset(node, cs->mems_allowed);
1698 done:
1699 cpuset_up(&cpuset_sem);
1700 return allowed;
1704 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
1705 * @p: pointer to task_struct of some other task.
1707 * Description: Return true if the nearest mem_exclusive ancestor
1708 * cpusets of tasks @p and current overlap. Used by oom killer to
1709 * determine if task @p's memory usage might impact the memory
1710 * available to the current task.
1712 * Acquires cpuset_sem - not suitable for calling from a fast path.
1715 int cpuset_excl_nodes_overlap(const struct task_struct *p)
1717 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1718 int overlap = 0; /* do cpusets overlap? */
1720 cpuset_down(&cpuset_sem);
1721 cs1 = current->cpuset;
1722 if (!cs1)
1723 goto done; /* current task exiting */
1724 cs2 = p->cpuset;
1725 if (!cs2)
1726 goto done; /* task p is exiting */
1727 cs1 = nearest_exclusive_ancestor(cs1);
1728 cs2 = nearest_exclusive_ancestor(cs2);
1729 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1730 done:
1731 cpuset_up(&cpuset_sem);
1733 return overlap;
1737 * proc_cpuset_show()
1738 * - Print tasks cpuset path into seq_file.
1739 * - Used for /proc/<pid>/cpuset.
1742 static int proc_cpuset_show(struct seq_file *m, void *v)
1744 struct cpuset *cs;
1745 struct task_struct *tsk;
1746 char *buf;
1747 int retval = 0;
1749 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1750 if (!buf)
1751 return -ENOMEM;
1753 tsk = m->private;
1754 cpuset_down(&cpuset_sem);
1755 task_lock(tsk);
1756 cs = tsk->cpuset;
1757 task_unlock(tsk);
1758 if (!cs) {
1759 retval = -EINVAL;
1760 goto out;
1763 retval = cpuset_path(cs, buf, PAGE_SIZE);
1764 if (retval < 0)
1765 goto out;
1766 seq_puts(m, buf);
1767 seq_putc(m, '\n');
1768 out:
1769 cpuset_up(&cpuset_sem);
1770 kfree(buf);
1771 return retval;
1774 static int cpuset_open(struct inode *inode, struct file *file)
1776 struct task_struct *tsk = PROC_I(inode)->task;
1777 return single_open(file, proc_cpuset_show, tsk);
1780 struct file_operations proc_cpuset_operations = {
1781 .open = cpuset_open,
1782 .read = seq_read,
1783 .llseek = seq_lseek,
1784 .release = single_release,
1787 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1788 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1790 buffer += sprintf(buffer, "Cpus_allowed:\t");
1791 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1792 buffer += sprintf(buffer, "\n");
1793 buffer += sprintf(buffer, "Mems_allowed:\t");
1794 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1795 buffer += sprintf(buffer, "\n");
1796 return buffer;