4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
46 #include <asm/pgtable.h>
47 #include <asm/pgalloc.h>
48 #include <asm/uaccess.h>
49 #include <asm/mmu_context.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
54 * Protected counters by write_lock_irq(&tasklist_lock)
56 unsigned long total_forks
; /* Handle normal Linux uptimes. */
57 int nr_threads
; /* The idle threads do not count.. */
59 int max_threads
; /* tunable limit on nr_threads */
61 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
63 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
65 EXPORT_SYMBOL(tasklist_lock
);
67 int nr_processes(void)
72 for_each_online_cpu(cpu
)
73 total
+= per_cpu(process_counts
, cpu
);
78 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
79 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
80 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
81 static kmem_cache_t
*task_struct_cachep
;
84 /* SLAB cache for signal_struct structures (tsk->signal) */
85 kmem_cache_t
*signal_cachep
;
87 /* SLAB cache for sighand_struct structures (tsk->sighand) */
88 kmem_cache_t
*sighand_cachep
;
90 /* SLAB cache for files_struct structures (tsk->files) */
91 kmem_cache_t
*files_cachep
;
93 /* SLAB cache for fs_struct structures (tsk->fs) */
94 kmem_cache_t
*fs_cachep
;
96 /* SLAB cache for vm_area_struct structures */
97 kmem_cache_t
*vm_area_cachep
;
99 /* SLAB cache for mm_struct structures (tsk->mm) */
100 static kmem_cache_t
*mm_cachep
;
102 void free_task(struct task_struct
*tsk
)
104 free_thread_info(tsk
->thread_info
);
105 free_task_struct(tsk
);
107 EXPORT_SYMBOL(free_task
);
109 void __put_task_struct(struct task_struct
*tsk
)
111 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
112 WARN_ON(atomic_read(&tsk
->usage
));
113 WARN_ON(tsk
== current
);
115 if (unlikely(tsk
->audit_context
))
117 security_task_free(tsk
);
119 put_group_info(tsk
->group_info
);
121 if (!profile_handoff_task(tsk
))
125 void __init
fork_init(unsigned long mempages
)
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 /* create a slab on which task_structs can be allocated */
133 kmem_cache_create("task_struct", sizeof(struct task_struct
),
134 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
138 * The default maximum number of threads is set to a safe
139 * value: the thread structures can take up at most half
142 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
145 * we need to allow at least 20 threads to boot a system
150 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
151 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
152 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
153 init_task
.signal
->rlim
[RLIMIT_NPROC
];
156 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
158 struct task_struct
*tsk
;
159 struct thread_info
*ti
;
161 prepare_to_copy(orig
);
163 tsk
= alloc_task_struct();
167 ti
= alloc_thread_info(tsk
);
169 free_task_struct(tsk
);
173 *ti
= *orig
->thread_info
;
175 tsk
->thread_info
= ti
;
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk
->usage
,2);
180 atomic_set(&tsk
->fs_excl
, 0);
185 static inline int dup_mmap(struct mm_struct
* mm
, struct mm_struct
* oldmm
)
187 struct vm_area_struct
* mpnt
, *tmp
, **pprev
;
188 struct rb_node
**rb_link
, *rb_parent
;
190 unsigned long charge
;
191 struct mempolicy
*pol
;
193 down_write(&oldmm
->mmap_sem
);
194 flush_cache_mm(current
->mm
);
197 mm
->mmap_cache
= NULL
;
198 mm
->free_area_cache
= oldmm
->mmap_base
;
199 mm
->cached_hole_size
= ~0UL;
201 set_mm_counter(mm
, rss
, 0);
202 set_mm_counter(mm
, anon_rss
, 0);
203 cpus_clear(mm
->cpu_vm_mask
);
205 rb_link
= &mm
->mm_rb
.rb_node
;
209 for (mpnt
= current
->mm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
212 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
213 long pages
= vma_pages(mpnt
);
214 mm
->total_vm
-= pages
;
215 __vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
220 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
221 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
222 if (security_vm_enough_memory(len
))
226 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
230 pol
= mpol_copy(vma_policy(mpnt
));
231 retval
= PTR_ERR(pol
);
233 goto fail_nomem_policy
;
234 vma_set_policy(tmp
, pol
);
235 tmp
->vm_flags
&= ~VM_LOCKED
;
241 struct inode
*inode
= file
->f_dentry
->d_inode
;
243 if (tmp
->vm_flags
& VM_DENYWRITE
)
244 atomic_dec(&inode
->i_writecount
);
246 /* insert tmp into the share list, just after mpnt */
247 spin_lock(&file
->f_mapping
->i_mmap_lock
);
248 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
249 flush_dcache_mmap_lock(file
->f_mapping
);
250 vma_prio_tree_add(tmp
, mpnt
);
251 flush_dcache_mmap_unlock(file
->f_mapping
);
252 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
256 * Link in the new vma and copy the page table entries:
257 * link in first so that swapoff can see swap entries.
258 * Note that, exceptionally, here the vma is inserted
259 * without holding mm->mmap_sem.
261 spin_lock(&mm
->page_table_lock
);
263 pprev
= &tmp
->vm_next
;
265 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
266 rb_link
= &tmp
->vm_rb
.rb_right
;
267 rb_parent
= &tmp
->vm_rb
;
270 retval
= copy_page_range(mm
, current
->mm
, tmp
);
271 spin_unlock(&mm
->page_table_lock
);
273 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
274 tmp
->vm_ops
->open(tmp
);
282 flush_tlb_mm(current
->mm
);
283 up_write(&oldmm
->mmap_sem
);
286 kmem_cache_free(vm_area_cachep
, tmp
);
289 vm_unacct_memory(charge
);
293 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
295 mm
->pgd
= pgd_alloc(mm
);
296 if (unlikely(!mm
->pgd
))
301 static inline void mm_free_pgd(struct mm_struct
* mm
)
306 #define dup_mmap(mm, oldmm) (0)
307 #define mm_alloc_pgd(mm) (0)
308 #define mm_free_pgd(mm)
309 #endif /* CONFIG_MMU */
311 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
313 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
314 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
316 #include <linux/init_task.h>
318 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
320 atomic_set(&mm
->mm_users
, 1);
321 atomic_set(&mm
->mm_count
, 1);
322 init_rwsem(&mm
->mmap_sem
);
323 INIT_LIST_HEAD(&mm
->mmlist
);
324 mm
->core_waiters
= 0;
326 spin_lock_init(&mm
->page_table_lock
);
327 rwlock_init(&mm
->ioctx_list_lock
);
328 mm
->ioctx_list
= NULL
;
329 mm
->default_kioctx
= (struct kioctx
)INIT_KIOCTX(mm
->default_kioctx
, *mm
);
330 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
331 mm
->cached_hole_size
= ~0UL;
333 if (likely(!mm_alloc_pgd(mm
))) {
342 * Allocate and initialize an mm_struct.
344 struct mm_struct
* mm_alloc(void)
346 struct mm_struct
* mm
;
350 memset(mm
, 0, sizeof(*mm
));
357 * Called when the last reference to the mm
358 * is dropped: either by a lazy thread or by
359 * mmput. Free the page directory and the mm.
361 void fastcall
__mmdrop(struct mm_struct
*mm
)
363 BUG_ON(mm
== &init_mm
);
370 * Decrement the use count and release all resources for an mm.
372 void mmput(struct mm_struct
*mm
)
374 if (atomic_dec_and_test(&mm
->mm_users
)) {
377 if (!list_empty(&mm
->mmlist
)) {
378 spin_lock(&mmlist_lock
);
379 list_del(&mm
->mmlist
);
380 spin_unlock(&mmlist_lock
);
386 EXPORT_SYMBOL_GPL(mmput
);
389 * get_task_mm - acquire a reference to the task's mm
391 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
392 * this kernel workthread has transiently adopted a user mm with use_mm,
393 * to do its AIO) is not set and if so returns a reference to it, after
394 * bumping up the use count. User must release the mm via mmput()
395 * after use. Typically used by /proc and ptrace.
397 struct mm_struct
*get_task_mm(struct task_struct
*task
)
399 struct mm_struct
*mm
;
404 if (task
->flags
& PF_BORROWED_MM
)
407 atomic_inc(&mm
->mm_users
);
412 EXPORT_SYMBOL_GPL(get_task_mm
);
414 /* Please note the differences between mmput and mm_release.
415 * mmput is called whenever we stop holding onto a mm_struct,
416 * error success whatever.
418 * mm_release is called after a mm_struct has been removed
419 * from the current process.
421 * This difference is important for error handling, when we
422 * only half set up a mm_struct for a new process and need to restore
423 * the old one. Because we mmput the new mm_struct before
424 * restoring the old one. . .
425 * Eric Biederman 10 January 1998
427 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
429 struct completion
*vfork_done
= tsk
->vfork_done
;
431 /* Get rid of any cached register state */
432 deactivate_mm(tsk
, mm
);
434 /* notify parent sleeping on vfork() */
436 tsk
->vfork_done
= NULL
;
437 complete(vfork_done
);
439 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
440 u32 __user
* tidptr
= tsk
->clear_child_tid
;
441 tsk
->clear_child_tid
= NULL
;
444 * We don't check the error code - if userspace has
445 * not set up a proper pointer then tough luck.
448 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
452 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
454 struct mm_struct
* mm
, *oldmm
;
457 tsk
->min_flt
= tsk
->maj_flt
= 0;
458 tsk
->nvcsw
= tsk
->nivcsw
= 0;
461 tsk
->active_mm
= NULL
;
464 * Are we cloning a kernel thread?
466 * We need to steal a active VM for that..
472 if (clone_flags
& CLONE_VM
) {
473 atomic_inc(&oldmm
->mm_users
);
476 * There are cases where the PTL is held to ensure no
477 * new threads start up in user mode using an mm, which
478 * allows optimizing out ipis; the tlb_gather_mmu code
481 spin_unlock_wait(&oldmm
->page_table_lock
);
490 /* Copy the current MM stuff.. */
491 memcpy(mm
, oldmm
, sizeof(*mm
));
495 if (init_new_context(tsk
,mm
))
498 retval
= dup_mmap(mm
, oldmm
);
502 mm
->hiwater_rss
= get_mm_counter(mm
,rss
);
503 mm
->hiwater_vm
= mm
->total_vm
;
517 * If init_new_context() failed, we cannot use mmput() to free the mm
518 * because it calls destroy_context()
525 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
527 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
528 /* We don't need to lock fs - think why ;-) */
530 atomic_set(&fs
->count
, 1);
531 rwlock_init(&fs
->lock
);
532 fs
->umask
= old
->umask
;
533 read_lock(&old
->lock
);
534 fs
->rootmnt
= mntget(old
->rootmnt
);
535 fs
->root
= dget(old
->root
);
536 fs
->pwdmnt
= mntget(old
->pwdmnt
);
537 fs
->pwd
= dget(old
->pwd
);
539 fs
->altrootmnt
= mntget(old
->altrootmnt
);
540 fs
->altroot
= dget(old
->altroot
);
542 fs
->altrootmnt
= NULL
;
545 read_unlock(&old
->lock
);
550 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
552 return __copy_fs_struct(old
);
555 EXPORT_SYMBOL_GPL(copy_fs_struct
);
557 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
559 if (clone_flags
& CLONE_FS
) {
560 atomic_inc(¤t
->fs
->count
);
563 tsk
->fs
= __copy_fs_struct(current
->fs
);
569 static int count_open_files(struct fdtable
*fdt
)
571 int size
= fdt
->max_fdset
;
574 /* Find the last open fd */
575 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
576 if (fdt
->open_fds
->fds_bits
[--i
])
579 i
= (i
+1) * 8 * sizeof(long);
583 static struct files_struct
*alloc_files(void)
585 struct files_struct
*newf
;
588 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
592 atomic_set(&newf
->count
, 1);
594 spin_lock_init(&newf
->file_lock
);
597 fdt
->max_fds
= NR_OPEN_DEFAULT
;
598 fdt
->max_fdset
= __FD_SETSIZE
;
599 fdt
->close_on_exec
= &newf
->close_on_exec_init
;
600 fdt
->open_fds
= &newf
->open_fds_init
;
601 fdt
->fd
= &newf
->fd_array
[0];
602 INIT_RCU_HEAD(&fdt
->rcu
);
603 fdt
->free_files
= NULL
;
605 rcu_assign_pointer(newf
->fdt
, fdt
);
610 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
612 struct files_struct
*oldf
, *newf
;
613 struct file
**old_fds
, **new_fds
;
614 int open_files
, size
, i
, error
= 0, expand
;
615 struct fdtable
*old_fdt
, *new_fdt
;
618 * A background process may not have any files ...
620 oldf
= current
->files
;
624 if (clone_flags
& CLONE_FILES
) {
625 atomic_inc(&oldf
->count
);
630 * Note: we may be using current for both targets (See exec.c)
631 * This works because we cache current->files (old) as oldf. Don't
636 newf
= alloc_files();
640 spin_lock(&oldf
->file_lock
);
641 old_fdt
= files_fdtable(oldf
);
642 new_fdt
= files_fdtable(newf
);
643 size
= old_fdt
->max_fdset
;
644 open_files
= count_open_files(old_fdt
);
648 * Check whether we need to allocate a larger fd array or fd set.
649 * Note: we're not a clone task, so the open count won't change.
651 if (open_files
> new_fdt
->max_fdset
) {
652 new_fdt
->max_fdset
= 0;
655 if (open_files
> new_fdt
->max_fds
) {
656 new_fdt
->max_fds
= 0;
660 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
662 spin_unlock(&oldf
->file_lock
);
663 spin_lock(&newf
->file_lock
);
664 error
= expand_files(newf
, open_files
-1);
665 spin_unlock(&newf
->file_lock
);
668 new_fdt
= files_fdtable(newf
);
670 * Reacquire the oldf lock and a pointer to its fd table
671 * who knows it may have a new bigger fd table. We need
672 * the latest pointer.
674 spin_lock(&oldf
->file_lock
);
675 old_fdt
= files_fdtable(oldf
);
678 old_fds
= old_fdt
->fd
;
679 new_fds
= new_fdt
->fd
;
681 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
682 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
684 for (i
= open_files
; i
!= 0; i
--) {
685 struct file
*f
= *old_fds
++;
690 * The fd may be claimed in the fd bitmap but not yet
691 * instantiated in the files array if a sibling thread
692 * is partway through open(). So make sure that this
693 * fd is available to the new process.
695 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
697 rcu_assign_pointer(*new_fds
++, f
);
699 spin_unlock(&oldf
->file_lock
);
701 /* compute the remainder to be cleared */
702 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
704 /* This is long word aligned thus could use a optimized version */
705 memset(new_fds
, 0, size
);
707 if (new_fdt
->max_fdset
> open_files
) {
708 int left
= (new_fdt
->max_fdset
-open_files
)/8;
709 int start
= open_files
/ (8 * sizeof(unsigned long));
711 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
712 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
721 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
722 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
723 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
724 kmem_cache_free(files_cachep
, newf
);
729 * Helper to unshare the files of the current task.
730 * We don't want to expose copy_files internals to
731 * the exec layer of the kernel.
734 int unshare_files(void)
736 struct files_struct
*files
= current
->files
;
742 /* This can race but the race causes us to copy when we don't
743 need to and drop the copy */
744 if(atomic_read(&files
->count
) == 1)
746 atomic_inc(&files
->count
);
749 rc
= copy_files(0, current
);
751 current
->files
= files
;
755 EXPORT_SYMBOL(unshare_files
);
757 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
759 struct sighand_struct
*sig
;
761 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
762 atomic_inc(¤t
->sighand
->count
);
765 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
769 spin_lock_init(&sig
->siglock
);
770 atomic_set(&sig
->count
, 1);
771 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
775 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
777 struct signal_struct
*sig
;
780 if (clone_flags
& CLONE_THREAD
) {
781 atomic_inc(¤t
->signal
->count
);
782 atomic_inc(¤t
->signal
->live
);
785 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
790 ret
= copy_thread_group_keys(tsk
);
792 kmem_cache_free(signal_cachep
, sig
);
796 atomic_set(&sig
->count
, 1);
797 atomic_set(&sig
->live
, 1);
798 init_waitqueue_head(&sig
->wait_chldexit
);
800 sig
->group_exit_code
= 0;
801 sig
->group_exit_task
= NULL
;
802 sig
->group_stop_count
= 0;
803 sig
->curr_target
= NULL
;
804 init_sigpending(&sig
->shared_pending
);
805 INIT_LIST_HEAD(&sig
->posix_timers
);
807 sig
->it_real_value
= sig
->it_real_incr
= 0;
808 sig
->real_timer
.function
= it_real_fn
;
809 sig
->real_timer
.data
= (unsigned long) tsk
;
810 init_timer(&sig
->real_timer
);
812 sig
->it_virt_expires
= cputime_zero
;
813 sig
->it_virt_incr
= cputime_zero
;
814 sig
->it_prof_expires
= cputime_zero
;
815 sig
->it_prof_incr
= cputime_zero
;
817 sig
->tty
= current
->signal
->tty
;
818 sig
->pgrp
= process_group(current
);
819 sig
->session
= current
->signal
->session
;
820 sig
->leader
= 0; /* session leadership doesn't inherit */
821 sig
->tty_old_pgrp
= 0;
823 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
824 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
825 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
827 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
828 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
829 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
831 task_lock(current
->group_leader
);
832 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
833 task_unlock(current
->group_leader
);
835 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
837 * New sole thread in the process gets an expiry time
838 * of the whole CPU time limit.
840 tsk
->it_prof_expires
=
841 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
847 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
849 unsigned long new_flags
= p
->flags
;
851 new_flags
&= ~PF_SUPERPRIV
;
852 new_flags
|= PF_FORKNOEXEC
;
853 if (!(clone_flags
& CLONE_PTRACE
))
855 p
->flags
= new_flags
;
858 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
860 current
->clear_child_tid
= tidptr
;
866 * This creates a new process as a copy of the old one,
867 * but does not actually start it yet.
869 * It copies the registers, and all the appropriate
870 * parts of the process environment (as per the clone
871 * flags). The actual kick-off is left to the caller.
873 static task_t
*copy_process(unsigned long clone_flags
,
874 unsigned long stack_start
,
875 struct pt_regs
*regs
,
876 unsigned long stack_size
,
877 int __user
*parent_tidptr
,
878 int __user
*child_tidptr
,
882 struct task_struct
*p
= NULL
;
884 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
885 return ERR_PTR(-EINVAL
);
888 * Thread groups must share signals as well, and detached threads
889 * can only be started up within the thread group.
891 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
892 return ERR_PTR(-EINVAL
);
895 * Shared signal handlers imply shared VM. By way of the above,
896 * thread groups also imply shared VM. Blocking this case allows
897 * for various simplifications in other code.
899 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
900 return ERR_PTR(-EINVAL
);
902 retval
= security_task_create(clone_flags
);
907 p
= dup_task_struct(current
);
912 if (atomic_read(&p
->user
->processes
) >=
913 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
914 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
915 p
->user
!= &root_user
)
919 atomic_inc(&p
->user
->__count
);
920 atomic_inc(&p
->user
->processes
);
921 get_group_info(p
->group_info
);
924 * If multiple threads are within copy_process(), then this check
925 * triggers too late. This doesn't hurt, the check is only there
926 * to stop root fork bombs.
928 if (nr_threads
>= max_threads
)
929 goto bad_fork_cleanup_count
;
931 if (!try_module_get(p
->thread_info
->exec_domain
->module
))
932 goto bad_fork_cleanup_count
;
934 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
935 goto bad_fork_cleanup_put_domain
;
938 copy_flags(clone_flags
, p
);
941 if (clone_flags
& CLONE_PARENT_SETTID
)
942 if (put_user(p
->pid
, parent_tidptr
))
943 goto bad_fork_cleanup
;
945 p
->proc_dentry
= NULL
;
947 INIT_LIST_HEAD(&p
->children
);
948 INIT_LIST_HEAD(&p
->sibling
);
949 p
->vfork_done
= NULL
;
950 spin_lock_init(&p
->alloc_lock
);
951 spin_lock_init(&p
->proc_lock
);
953 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
954 init_sigpending(&p
->pending
);
956 p
->utime
= cputime_zero
;
957 p
->stime
= cputime_zero
;
959 p
->rchar
= 0; /* I/O counter: bytes read */
960 p
->wchar
= 0; /* I/O counter: bytes written */
961 p
->syscr
= 0; /* I/O counter: read syscalls */
962 p
->syscw
= 0; /* I/O counter: write syscalls */
963 acct_clear_integrals(p
);
965 p
->it_virt_expires
= cputime_zero
;
966 p
->it_prof_expires
= cputime_zero
;
967 p
->it_sched_expires
= 0;
968 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
969 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
970 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
972 p
->lock_depth
= -1; /* -1 = no lock */
973 do_posix_clock_monotonic_gettime(&p
->start_time
);
975 p
->io_context
= NULL
;
977 p
->audit_context
= NULL
;
979 p
->mempolicy
= mpol_copy(p
->mempolicy
);
980 if (IS_ERR(p
->mempolicy
)) {
981 retval
= PTR_ERR(p
->mempolicy
);
983 goto bad_fork_cleanup
;
988 if (clone_flags
& CLONE_THREAD
)
989 p
->tgid
= current
->tgid
;
991 if ((retval
= security_task_alloc(p
)))
992 goto bad_fork_cleanup_policy
;
993 if ((retval
= audit_alloc(p
)))
994 goto bad_fork_cleanup_security
;
995 /* copy all the process information */
996 if ((retval
= copy_semundo(clone_flags
, p
)))
997 goto bad_fork_cleanup_audit
;
998 if ((retval
= copy_files(clone_flags
, p
)))
999 goto bad_fork_cleanup_semundo
;
1000 if ((retval
= copy_fs(clone_flags
, p
)))
1001 goto bad_fork_cleanup_files
;
1002 if ((retval
= copy_sighand(clone_flags
, p
)))
1003 goto bad_fork_cleanup_fs
;
1004 if ((retval
= copy_signal(clone_flags
, p
)))
1005 goto bad_fork_cleanup_sighand
;
1006 if ((retval
= copy_mm(clone_flags
, p
)))
1007 goto bad_fork_cleanup_signal
;
1008 if ((retval
= copy_keys(clone_flags
, p
)))
1009 goto bad_fork_cleanup_mm
;
1010 if ((retval
= copy_namespace(clone_flags
, p
)))
1011 goto bad_fork_cleanup_keys
;
1012 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1014 goto bad_fork_cleanup_namespace
;
1016 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1018 * Clear TID on mm_release()?
1020 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1023 * Syscall tracing should be turned off in the child regardless
1026 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1027 #ifdef TIF_SYSCALL_EMU
1028 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1031 /* Our parent execution domain becomes current domain
1032 These must match for thread signalling to apply */
1034 p
->parent_exec_id
= p
->self_exec_id
;
1036 /* ok, now we should be set up.. */
1037 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1038 p
->pdeath_signal
= 0;
1042 * Ok, make it visible to the rest of the system.
1043 * We dont wake it up yet.
1045 p
->group_leader
= p
;
1046 INIT_LIST_HEAD(&p
->ptrace_children
);
1047 INIT_LIST_HEAD(&p
->ptrace_list
);
1049 /* Perform scheduler related setup. Assign this task to a CPU. */
1050 sched_fork(p
, clone_flags
);
1052 /* Need tasklist lock for parent etc handling! */
1053 write_lock_irq(&tasklist_lock
);
1056 * The task hasn't been attached yet, so its cpus_allowed mask will
1057 * not be changed, nor will its assigned CPU.
1059 * The cpus_allowed mask of the parent may have changed after it was
1060 * copied first time - so re-copy it here, then check the child's CPU
1061 * to ensure it is on a valid CPU (and if not, just force it back to
1062 * parent's CPU). This avoids alot of nasty races.
1064 p
->cpus_allowed
= current
->cpus_allowed
;
1065 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
)))
1066 set_task_cpu(p
, smp_processor_id());
1069 * Check for pending SIGKILL! The new thread should not be allowed
1070 * to slip out of an OOM kill. (or normal SIGKILL.)
1072 if (sigismember(¤t
->pending
.signal
, SIGKILL
)) {
1073 write_unlock_irq(&tasklist_lock
);
1075 goto bad_fork_cleanup_namespace
;
1078 /* CLONE_PARENT re-uses the old parent */
1079 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1080 p
->real_parent
= current
->real_parent
;
1082 p
->real_parent
= current
;
1083 p
->parent
= p
->real_parent
;
1085 if (clone_flags
& CLONE_THREAD
) {
1086 spin_lock(¤t
->sighand
->siglock
);
1088 * Important: if an exit-all has been started then
1089 * do not create this new thread - the whole thread
1090 * group is supposed to exit anyway.
1092 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
) {
1093 spin_unlock(¤t
->sighand
->siglock
);
1094 write_unlock_irq(&tasklist_lock
);
1096 goto bad_fork_cleanup_namespace
;
1098 p
->group_leader
= current
->group_leader
;
1100 if (current
->signal
->group_stop_count
> 0) {
1102 * There is an all-stop in progress for the group.
1103 * We ourselves will stop as soon as we check signals.
1104 * Make the new thread part of that group stop too.
1106 current
->signal
->group_stop_count
++;
1107 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1110 if (!cputime_eq(current
->signal
->it_virt_expires
,
1112 !cputime_eq(current
->signal
->it_prof_expires
,
1114 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1115 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1116 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1117 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1119 * Have child wake up on its first tick to check
1120 * for process CPU timers.
1122 p
->it_prof_expires
= jiffies_to_cputime(1);
1125 spin_unlock(¤t
->sighand
->siglock
);
1131 p
->ioprio
= current
->ioprio
;
1134 if (unlikely(p
->ptrace
& PT_PTRACED
))
1135 __ptrace_link(p
, current
->parent
);
1139 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1140 attach_pid(p
, PIDTYPE_TGID
, p
->tgid
);
1141 if (thread_group_leader(p
)) {
1142 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1143 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1145 __get_cpu_var(process_counts
)++;
1148 if (!current
->signal
->tty
&& p
->signal
->tty
)
1149 p
->signal
->tty
= NULL
;
1153 write_unlock_irq(&tasklist_lock
);
1158 return ERR_PTR(retval
);
1161 bad_fork_cleanup_namespace
:
1163 bad_fork_cleanup_keys
:
1165 bad_fork_cleanup_mm
:
1168 bad_fork_cleanup_signal
:
1170 bad_fork_cleanup_sighand
:
1172 bad_fork_cleanup_fs
:
1173 exit_fs(p
); /* blocking */
1174 bad_fork_cleanup_files
:
1175 exit_files(p
); /* blocking */
1176 bad_fork_cleanup_semundo
:
1178 bad_fork_cleanup_audit
:
1180 bad_fork_cleanup_security
:
1181 security_task_free(p
);
1182 bad_fork_cleanup_policy
:
1184 mpol_free(p
->mempolicy
);
1188 module_put(p
->binfmt
->module
);
1189 bad_fork_cleanup_put_domain
:
1190 module_put(p
->thread_info
->exec_domain
->module
);
1191 bad_fork_cleanup_count
:
1192 put_group_info(p
->group_info
);
1193 atomic_dec(&p
->user
->processes
);
1200 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1202 memset(regs
, 0, sizeof(struct pt_regs
));
1206 task_t
* __devinit
fork_idle(int cpu
)
1209 struct pt_regs regs
;
1211 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1213 return ERR_PTR(-ENOMEM
);
1214 init_idle(task
, cpu
);
1215 unhash_process(task
);
1219 static inline int fork_traceflag (unsigned clone_flags
)
1221 if (clone_flags
& CLONE_UNTRACED
)
1223 else if (clone_flags
& CLONE_VFORK
) {
1224 if (current
->ptrace
& PT_TRACE_VFORK
)
1225 return PTRACE_EVENT_VFORK
;
1226 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1227 if (current
->ptrace
& PT_TRACE_CLONE
)
1228 return PTRACE_EVENT_CLONE
;
1229 } else if (current
->ptrace
& PT_TRACE_FORK
)
1230 return PTRACE_EVENT_FORK
;
1236 * Ok, this is the main fork-routine.
1238 * It copies the process, and if successful kick-starts
1239 * it and waits for it to finish using the VM if required.
1241 long do_fork(unsigned long clone_flags
,
1242 unsigned long stack_start
,
1243 struct pt_regs
*regs
,
1244 unsigned long stack_size
,
1245 int __user
*parent_tidptr
,
1246 int __user
*child_tidptr
)
1248 struct task_struct
*p
;
1250 long pid
= alloc_pidmap();
1254 if (unlikely(current
->ptrace
)) {
1255 trace
= fork_traceflag (clone_flags
);
1257 clone_flags
|= CLONE_PTRACE
;
1260 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, pid
);
1262 * Do this prior waking up the new thread - the thread pointer
1263 * might get invalid after that point, if the thread exits quickly.
1266 struct completion vfork
;
1268 if (clone_flags
& CLONE_VFORK
) {
1269 p
->vfork_done
= &vfork
;
1270 init_completion(&vfork
);
1273 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1275 * We'll start up with an immediate SIGSTOP.
1277 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1278 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1281 if (!(clone_flags
& CLONE_STOPPED
))
1282 wake_up_new_task(p
, clone_flags
);
1284 p
->state
= TASK_STOPPED
;
1286 if (unlikely (trace
)) {
1287 current
->ptrace_message
= pid
;
1288 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1291 if (clone_flags
& CLONE_VFORK
) {
1292 wait_for_completion(&vfork
);
1293 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
))
1294 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1303 void __init
proc_caches_init(void)
1305 sighand_cachep
= kmem_cache_create("sighand_cache",
1306 sizeof(struct sighand_struct
), 0,
1307 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1308 signal_cachep
= kmem_cache_create("signal_cache",
1309 sizeof(struct signal_struct
), 0,
1310 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1311 files_cachep
= kmem_cache_create("files_cache",
1312 sizeof(struct files_struct
), 0,
1313 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1314 fs_cachep
= kmem_cache_create("fs_cache",
1315 sizeof(struct fs_struct
), 0,
1316 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1317 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1318 sizeof(struct vm_area_struct
), 0,
1319 SLAB_PANIC
, NULL
, NULL
);
1320 mm_cachep
= kmem_cache_create("mm_struct",
1321 sizeof(struct mm_struct
), 0,
1322 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);