2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
35 #include <net/checksum.h>
37 #include <net/tcp_states.h>
38 #include <asm/uaccess.h>
39 #include <asm/ioctls.h>
41 #include <linux/sunrpc/types.h>
42 #include <linux/sunrpc/xdr.h>
43 #include <linux/sunrpc/svcsock.h>
44 #include <linux/sunrpc/stats.h>
46 /* SMP locking strategy:
48 * svc_serv->sv_lock protects most stuff for that service.
50 * Some flags can be set to certain values at any time
51 * providing that certain rules are followed:
53 * SK_BUSY can be set to 0 at any time.
54 * svc_sock_enqueue must be called afterwards
55 * SK_CONN, SK_DATA, can be set or cleared at any time.
56 * after a set, svc_sock_enqueue must be called.
57 * after a clear, the socket must be read/accepted
58 * if this succeeds, it must be set again.
59 * SK_CLOSE can set at any time. It is never cleared.
63 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
66 static struct svc_sock
*svc_setup_socket(struct svc_serv
*, struct socket
*,
67 int *errp
, int pmap_reg
);
68 static void svc_udp_data_ready(struct sock
*, int);
69 static int svc_udp_recvfrom(struct svc_rqst
*);
70 static int svc_udp_sendto(struct svc_rqst
*);
72 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_sock
*svsk
);
73 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
74 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
77 * Queue up an idle server thread. Must have serv->sv_lock held.
78 * Note: this is really a stack rather than a queue, so that we only
79 * use as many different threads as we need, and the rest don't polute
83 svc_serv_enqueue(struct svc_serv
*serv
, struct svc_rqst
*rqstp
)
85 list_add(&rqstp
->rq_list
, &serv
->sv_threads
);
89 * Dequeue an nfsd thread. Must have serv->sv_lock held.
92 svc_serv_dequeue(struct svc_serv
*serv
, struct svc_rqst
*rqstp
)
94 list_del(&rqstp
->rq_list
);
98 * Release an skbuff after use
101 svc_release_skb(struct svc_rqst
*rqstp
)
103 struct sk_buff
*skb
= rqstp
->rq_skbuff
;
104 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
107 rqstp
->rq_skbuff
= NULL
;
109 dprintk("svc: service %p, releasing skb %p\n", rqstp
, skb
);
110 skb_free_datagram(rqstp
->rq_sock
->sk_sk
, skb
);
113 rqstp
->rq_deferred
= NULL
;
119 * Any space to write?
121 static inline unsigned long
122 svc_sock_wspace(struct svc_sock
*svsk
)
126 if (svsk
->sk_sock
->type
== SOCK_STREAM
)
127 wspace
= sk_stream_wspace(svsk
->sk_sk
);
129 wspace
= sock_wspace(svsk
->sk_sk
);
135 * Queue up a socket with data pending. If there are idle nfsd
136 * processes, wake 'em up.
140 svc_sock_enqueue(struct svc_sock
*svsk
)
142 struct svc_serv
*serv
= svsk
->sk_server
;
143 struct svc_rqst
*rqstp
;
145 if (!(svsk
->sk_flags
&
146 ( (1<<SK_CONN
)|(1<<SK_DATA
)|(1<<SK_CLOSE
)|(1<<SK_DEFERRED
)) ))
148 if (test_bit(SK_DEAD
, &svsk
->sk_flags
))
151 spin_lock_bh(&serv
->sv_lock
);
153 if (!list_empty(&serv
->sv_threads
) &&
154 !list_empty(&serv
->sv_sockets
))
156 "svc_sock_enqueue: threads and sockets both waiting??\n");
158 if (test_bit(SK_DEAD
, &svsk
->sk_flags
)) {
159 /* Don't enqueue dead sockets */
160 dprintk("svc: socket %p is dead, not enqueued\n", svsk
->sk_sk
);
164 if (test_bit(SK_BUSY
, &svsk
->sk_flags
)) {
165 /* Don't enqueue socket while daemon is receiving */
166 dprintk("svc: socket %p busy, not enqueued\n", svsk
->sk_sk
);
170 set_bit(SOCK_NOSPACE
, &svsk
->sk_sock
->flags
);
171 if (((svsk
->sk_reserved
+ serv
->sv_bufsz
)*2
172 > svc_sock_wspace(svsk
))
173 && !test_bit(SK_CLOSE
, &svsk
->sk_flags
)
174 && !test_bit(SK_CONN
, &svsk
->sk_flags
)) {
175 /* Don't enqueue while not enough space for reply */
176 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
177 svsk
->sk_sk
, svsk
->sk_reserved
+serv
->sv_bufsz
,
178 svc_sock_wspace(svsk
));
181 clear_bit(SOCK_NOSPACE
, &svsk
->sk_sock
->flags
);
183 /* Mark socket as busy. It will remain in this state until the
184 * server has processed all pending data and put the socket back
187 set_bit(SK_BUSY
, &svsk
->sk_flags
);
189 if (!list_empty(&serv
->sv_threads
)) {
190 rqstp
= list_entry(serv
->sv_threads
.next
,
193 dprintk("svc: socket %p served by daemon %p\n",
195 svc_serv_dequeue(serv
, rqstp
);
198 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
199 rqstp
, rqstp
->rq_sock
);
200 rqstp
->rq_sock
= svsk
;
202 rqstp
->rq_reserved
= serv
->sv_bufsz
;
203 svsk
->sk_reserved
+= rqstp
->rq_reserved
;
204 wake_up(&rqstp
->rq_wait
);
206 dprintk("svc: socket %p put into queue\n", svsk
->sk_sk
);
207 list_add_tail(&svsk
->sk_ready
, &serv
->sv_sockets
);
211 spin_unlock_bh(&serv
->sv_lock
);
215 * Dequeue the first socket. Must be called with the serv->sv_lock held.
217 static inline struct svc_sock
*
218 svc_sock_dequeue(struct svc_serv
*serv
)
220 struct svc_sock
*svsk
;
222 if (list_empty(&serv
->sv_sockets
))
225 svsk
= list_entry(serv
->sv_sockets
.next
,
226 struct svc_sock
, sk_ready
);
227 list_del_init(&svsk
->sk_ready
);
229 dprintk("svc: socket %p dequeued, inuse=%d\n",
230 svsk
->sk_sk
, svsk
->sk_inuse
);
236 * Having read something from a socket, check whether it
237 * needs to be re-enqueued.
238 * Note: SK_DATA only gets cleared when a read-attempt finds
239 * no (or insufficient) data.
242 svc_sock_received(struct svc_sock
*svsk
)
244 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
245 svc_sock_enqueue(svsk
);
250 * svc_reserve - change the space reserved for the reply to a request.
251 * @rqstp: The request in question
252 * @space: new max space to reserve
254 * Each request reserves some space on the output queue of the socket
255 * to make sure the reply fits. This function reduces that reserved
256 * space to be the amount of space used already, plus @space.
259 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
261 space
+= rqstp
->rq_res
.head
[0].iov_len
;
263 if (space
< rqstp
->rq_reserved
) {
264 struct svc_sock
*svsk
= rqstp
->rq_sock
;
265 spin_lock_bh(&svsk
->sk_server
->sv_lock
);
266 svsk
->sk_reserved
-= (rqstp
->rq_reserved
- space
);
267 rqstp
->rq_reserved
= space
;
268 spin_unlock_bh(&svsk
->sk_server
->sv_lock
);
270 svc_sock_enqueue(svsk
);
275 * Release a socket after use.
278 svc_sock_put(struct svc_sock
*svsk
)
280 struct svc_serv
*serv
= svsk
->sk_server
;
282 spin_lock_bh(&serv
->sv_lock
);
283 if (!--(svsk
->sk_inuse
) && test_bit(SK_DEAD
, &svsk
->sk_flags
)) {
284 spin_unlock_bh(&serv
->sv_lock
);
285 dprintk("svc: releasing dead socket\n");
286 sock_release(svsk
->sk_sock
);
290 spin_unlock_bh(&serv
->sv_lock
);
294 svc_sock_release(struct svc_rqst
*rqstp
)
296 struct svc_sock
*svsk
= rqstp
->rq_sock
;
298 svc_release_skb(rqstp
);
300 svc_free_allpages(rqstp
);
301 rqstp
->rq_res
.page_len
= 0;
302 rqstp
->rq_res
.page_base
= 0;
305 /* Reset response buffer and release
307 * But first, check that enough space was reserved
308 * for the reply, otherwise we have a bug!
310 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
311 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
315 rqstp
->rq_res
.head
[0].iov_len
= 0;
316 svc_reserve(rqstp
, 0);
317 rqstp
->rq_sock
= NULL
;
323 * External function to wake up a server waiting for data
326 svc_wake_up(struct svc_serv
*serv
)
328 struct svc_rqst
*rqstp
;
330 spin_lock_bh(&serv
->sv_lock
);
331 if (!list_empty(&serv
->sv_threads
)) {
332 rqstp
= list_entry(serv
->sv_threads
.next
,
335 dprintk("svc: daemon %p woken up.\n", rqstp
);
337 svc_serv_dequeue(serv, rqstp);
338 rqstp->rq_sock = NULL;
340 wake_up(&rqstp
->rq_wait
);
342 spin_unlock_bh(&serv
->sv_lock
);
346 * Generic sendto routine
349 svc_sendto(struct svc_rqst
*rqstp
, struct xdr_buf
*xdr
)
351 struct svc_sock
*svsk
= rqstp
->rq_sock
;
352 struct socket
*sock
= svsk
->sk_sock
;
354 char buffer
[CMSG_SPACE(sizeof(struct in_pktinfo
))];
355 struct cmsghdr
*cmh
= (struct cmsghdr
*)buffer
;
356 struct in_pktinfo
*pki
= (struct in_pktinfo
*)CMSG_DATA(cmh
);
360 struct page
**ppage
= xdr
->pages
;
361 size_t base
= xdr
->page_base
;
362 unsigned int pglen
= xdr
->page_len
;
363 unsigned int flags
= MSG_MORE
;
367 if (rqstp
->rq_prot
== IPPROTO_UDP
) {
368 /* set the source and destination */
370 msg
.msg_name
= &rqstp
->rq_addr
;
371 msg
.msg_namelen
= sizeof(rqstp
->rq_addr
);
374 msg
.msg_flags
= MSG_MORE
;
376 msg
.msg_control
= cmh
;
377 msg
.msg_controllen
= sizeof(buffer
);
378 cmh
->cmsg_len
= CMSG_LEN(sizeof(*pki
));
379 cmh
->cmsg_level
= SOL_IP
;
380 cmh
->cmsg_type
= IP_PKTINFO
;
381 pki
->ipi_ifindex
= 0;
382 pki
->ipi_spec_dst
.s_addr
= rqstp
->rq_daddr
;
384 if (sock_sendmsg(sock
, &msg
, 0) < 0)
389 if (slen
== xdr
->head
[0].iov_len
)
391 len
= sock
->ops
->sendpage(sock
, rqstp
->rq_respages
[0], 0, xdr
->head
[0].iov_len
, flags
);
392 if (len
!= xdr
->head
[0].iov_len
)
394 slen
-= xdr
->head
[0].iov_len
;
399 size
= PAGE_SIZE
- base
< pglen
? PAGE_SIZE
- base
: pglen
;
403 result
= sock
->ops
->sendpage(sock
, *ppage
, base
, size
, flags
);
410 size
= PAGE_SIZE
< pglen
? PAGE_SIZE
: pglen
;
415 if (xdr
->tail
[0].iov_len
) {
416 result
= sock
->ops
->sendpage(sock
, rqstp
->rq_respages
[rqstp
->rq_restailpage
],
417 ((unsigned long)xdr
->tail
[0].iov_base
)& (PAGE_SIZE
-1),
418 xdr
->tail
[0].iov_len
, 0);
424 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
425 rqstp
->rq_sock
, xdr
->head
[0].iov_base
, xdr
->head
[0].iov_len
, xdr
->len
, len
,
426 rqstp
->rq_addr
.sin_addr
.s_addr
);
432 * Check input queue length
435 svc_recv_available(struct svc_sock
*svsk
)
438 struct socket
*sock
= svsk
->sk_sock
;
441 oldfs
= get_fs(); set_fs(KERNEL_DS
);
442 err
= sock
->ops
->ioctl(sock
, TIOCINQ
, (unsigned long) &avail
);
445 return (err
>= 0)? avail
: err
;
449 * Generic recvfrom routine.
452 svc_recvfrom(struct svc_rqst
*rqstp
, struct kvec
*iov
, int nr
, int buflen
)
458 rqstp
->rq_addrlen
= sizeof(rqstp
->rq_addr
);
459 sock
= rqstp
->rq_sock
->sk_sock
;
461 msg
.msg_name
= &rqstp
->rq_addr
;
462 msg
.msg_namelen
= sizeof(rqstp
->rq_addr
);
463 msg
.msg_control
= NULL
;
464 msg
.msg_controllen
= 0;
466 msg
.msg_flags
= MSG_DONTWAIT
;
468 len
= kernel_recvmsg(sock
, &msg
, iov
, nr
, buflen
, MSG_DONTWAIT
);
470 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
471 * possibly we should cache this in the svc_sock structure
472 * at accept time. FIXME
474 alen
= sizeof(rqstp
->rq_addr
);
475 sock
->ops
->getname(sock
, (struct sockaddr
*)&rqstp
->rq_addr
, &alen
, 1);
477 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
478 rqstp
->rq_sock
, iov
[0].iov_base
, iov
[0].iov_len
, len
);
484 * Set socket snd and rcv buffer lengths
487 svc_sock_setbufsize(struct socket
*sock
, unsigned int snd
, unsigned int rcv
)
491 oldfs
= get_fs(); set_fs(KERNEL_DS
);
492 sock_setsockopt(sock
, SOL_SOCKET
, SO_SNDBUF
,
493 (char*)&snd
, sizeof(snd
));
494 sock_setsockopt(sock
, SOL_SOCKET
, SO_RCVBUF
,
495 (char*)&rcv
, sizeof(rcv
));
497 /* sock_setsockopt limits use to sysctl_?mem_max,
498 * which isn't acceptable. Until that is made conditional
499 * on not having CAP_SYS_RESOURCE or similar, we go direct...
500 * DaveM said I could!
503 sock
->sk
->sk_sndbuf
= snd
* 2;
504 sock
->sk
->sk_rcvbuf
= rcv
* 2;
505 sock
->sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
|SOCK_RCVBUF_LOCK
;
506 release_sock(sock
->sk
);
510 * INET callback when data has been received on the socket.
513 svc_udp_data_ready(struct sock
*sk
, int count
)
515 struct svc_sock
*svsk
= (struct svc_sock
*)(sk
->sk_user_data
);
519 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
520 svsk
, sk
, count
, test_bit(SK_BUSY
, &svsk
->sk_flags
));
521 set_bit(SK_DATA
, &svsk
->sk_flags
);
522 svc_sock_enqueue(svsk
);
524 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
525 wake_up_interruptible(sk
->sk_sleep
);
529 * INET callback when space is newly available on the socket.
532 svc_write_space(struct sock
*sk
)
534 struct svc_sock
*svsk
= (struct svc_sock
*)(sk
->sk_user_data
);
537 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
538 svsk
, sk
, test_bit(SK_BUSY
, &svsk
->sk_flags
));
539 svc_sock_enqueue(svsk
);
542 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
)) {
543 printk(KERN_WARNING
"RPC svc_write_space: some sleeping on %p\n",
545 wake_up_interruptible(sk
->sk_sleep
);
550 * Receive a datagram from a UDP socket.
553 csum_partial_copy_to_xdr(struct xdr_buf
*xdr
, struct sk_buff
*skb
);
556 svc_udp_recvfrom(struct svc_rqst
*rqstp
)
558 struct svc_sock
*svsk
= rqstp
->rq_sock
;
559 struct svc_serv
*serv
= svsk
->sk_server
;
563 if (test_and_clear_bit(SK_CHNGBUF
, &svsk
->sk_flags
))
564 /* udp sockets need large rcvbuf as all pending
565 * requests are still in that buffer. sndbuf must
566 * also be large enough that there is enough space
567 * for one reply per thread.
569 svc_sock_setbufsize(svsk
->sk_sock
,
570 (serv
->sv_nrthreads
+3) * serv
->sv_bufsz
,
571 (serv
->sv_nrthreads
+3) * serv
->sv_bufsz
);
573 if ((rqstp
->rq_deferred
= svc_deferred_dequeue(svsk
))) {
574 svc_sock_received(svsk
);
575 return svc_deferred_recv(rqstp
);
578 clear_bit(SK_DATA
, &svsk
->sk_flags
);
579 while ((skb
= skb_recv_datagram(svsk
->sk_sk
, 0, 1, &err
)) == NULL
) {
580 if (err
== -EAGAIN
) {
581 svc_sock_received(svsk
);
584 /* possibly an icmp error */
585 dprintk("svc: recvfrom returned error %d\n", -err
);
587 if (skb
->tstamp
.off_sec
== 0) {
590 tv
.tv_sec
= xtime
.tv_sec
;
591 tv
.tv_usec
= xtime
.tv_nsec
* 1000;
592 skb_set_timestamp(skb
, &tv
);
593 /* Don't enable netstamp, sunrpc doesn't
594 need that much accuracy */
596 skb_get_timestamp(skb
, &svsk
->sk_sk
->sk_stamp
);
597 set_bit(SK_DATA
, &svsk
->sk_flags
); /* there may be more data... */
600 * Maybe more packets - kick another thread ASAP.
602 svc_sock_received(svsk
);
604 len
= skb
->len
- sizeof(struct udphdr
);
605 rqstp
->rq_arg
.len
= len
;
607 rqstp
->rq_prot
= IPPROTO_UDP
;
609 /* Get sender address */
610 rqstp
->rq_addr
.sin_family
= AF_INET
;
611 rqstp
->rq_addr
.sin_port
= skb
->h
.uh
->source
;
612 rqstp
->rq_addr
.sin_addr
.s_addr
= skb
->nh
.iph
->saddr
;
613 rqstp
->rq_daddr
= skb
->nh
.iph
->daddr
;
615 if (skb_is_nonlinear(skb
)) {
616 /* we have to copy */
618 if (csum_partial_copy_to_xdr(&rqstp
->rq_arg
, skb
)) {
621 skb_free_datagram(svsk
->sk_sk
, skb
);
625 skb_free_datagram(svsk
->sk_sk
, skb
);
627 /* we can use it in-place */
628 rqstp
->rq_arg
.head
[0].iov_base
= skb
->data
+ sizeof(struct udphdr
);
629 rqstp
->rq_arg
.head
[0].iov_len
= len
;
630 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
) {
631 if ((unsigned short)csum_fold(skb_checksum(skb
, 0, skb
->len
, skb
->csum
))) {
632 skb_free_datagram(svsk
->sk_sk
, skb
);
635 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
637 rqstp
->rq_skbuff
= skb
;
640 rqstp
->rq_arg
.page_base
= 0;
641 if (len
<= rqstp
->rq_arg
.head
[0].iov_len
) {
642 rqstp
->rq_arg
.head
[0].iov_len
= len
;
643 rqstp
->rq_arg
.page_len
= 0;
645 rqstp
->rq_arg
.page_len
= len
- rqstp
->rq_arg
.head
[0].iov_len
;
646 rqstp
->rq_argused
+= (rqstp
->rq_arg
.page_len
+ PAGE_SIZE
- 1)/ PAGE_SIZE
;
650 serv
->sv_stats
->netudpcnt
++;
656 svc_udp_sendto(struct svc_rqst
*rqstp
)
660 error
= svc_sendto(rqstp
, &rqstp
->rq_res
);
661 if (error
== -ECONNREFUSED
)
662 /* ICMP error on earlier request. */
663 error
= svc_sendto(rqstp
, &rqstp
->rq_res
);
669 svc_udp_init(struct svc_sock
*svsk
)
671 svsk
->sk_sk
->sk_data_ready
= svc_udp_data_ready
;
672 svsk
->sk_sk
->sk_write_space
= svc_write_space
;
673 svsk
->sk_recvfrom
= svc_udp_recvfrom
;
674 svsk
->sk_sendto
= svc_udp_sendto
;
676 /* initialise setting must have enough space to
677 * receive and respond to one request.
678 * svc_udp_recvfrom will re-adjust if necessary
680 svc_sock_setbufsize(svsk
->sk_sock
,
681 3 * svsk
->sk_server
->sv_bufsz
,
682 3 * svsk
->sk_server
->sv_bufsz
);
684 set_bit(SK_DATA
, &svsk
->sk_flags
); /* might have come in before data_ready set up */
685 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
689 * A data_ready event on a listening socket means there's a connection
690 * pending. Do not use state_change as a substitute for it.
693 svc_tcp_listen_data_ready(struct sock
*sk
, int count_unused
)
695 struct svc_sock
*svsk
;
697 dprintk("svc: socket %p TCP (listen) state change %d\n",
700 if (sk
->sk_state
!= TCP_LISTEN
) {
702 * This callback may called twice when a new connection
703 * is established as a child socket inherits everything
704 * from a parent LISTEN socket.
705 * 1) data_ready method of the parent socket will be called
706 * when one of child sockets become ESTABLISHED.
707 * 2) data_ready method of the child socket may be called
708 * when it receives data before the socket is accepted.
709 * In case of 2, we should ignore it silently.
713 if (!(svsk
= (struct svc_sock
*) sk
->sk_user_data
)) {
714 printk("svc: socket %p: no user data\n", sk
);
717 set_bit(SK_CONN
, &svsk
->sk_flags
);
718 svc_sock_enqueue(svsk
);
720 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
721 wake_up_interruptible_all(sk
->sk_sleep
);
725 * A state change on a connected socket means it's dying or dead.
728 svc_tcp_state_change(struct sock
*sk
)
730 struct svc_sock
*svsk
;
732 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
733 sk
, sk
->sk_state
, sk
->sk_user_data
);
735 if (!(svsk
= (struct svc_sock
*) sk
->sk_user_data
)) {
736 printk("svc: socket %p: no user data\n", sk
);
739 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
740 svc_sock_enqueue(svsk
);
742 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
743 wake_up_interruptible_all(sk
->sk_sleep
);
747 svc_tcp_data_ready(struct sock
*sk
, int count
)
749 struct svc_sock
* svsk
;
751 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
752 sk
, sk
->sk_user_data
);
753 if (!(svsk
= (struct svc_sock
*)(sk
->sk_user_data
)))
755 set_bit(SK_DATA
, &svsk
->sk_flags
);
756 svc_sock_enqueue(svsk
);
758 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
759 wake_up_interruptible(sk
->sk_sleep
);
763 * Accept a TCP connection
766 svc_tcp_accept(struct svc_sock
*svsk
)
768 struct sockaddr_in sin
;
769 struct svc_serv
*serv
= svsk
->sk_server
;
770 struct socket
*sock
= svsk
->sk_sock
;
771 struct socket
*newsock
;
772 struct proto_ops
*ops
;
773 struct svc_sock
*newsvsk
;
776 dprintk("svc: tcp_accept %p sock %p\n", svsk
, sock
);
780 err
= sock_create_lite(PF_INET
, SOCK_STREAM
, IPPROTO_TCP
, &newsock
);
783 printk(KERN_WARNING
"%s: no more sockets!\n",
788 dprintk("svc: tcp_accept %p allocated\n", newsock
);
789 newsock
->ops
= ops
= sock
->ops
;
791 clear_bit(SK_CONN
, &svsk
->sk_flags
);
792 if ((err
= ops
->accept(sock
, newsock
, O_NONBLOCK
)) < 0) {
793 if (err
!= -EAGAIN
&& net_ratelimit())
794 printk(KERN_WARNING
"%s: accept failed (err %d)!\n",
795 serv
->sv_name
, -err
);
796 goto failed
; /* aborted connection or whatever */
798 set_bit(SK_CONN
, &svsk
->sk_flags
);
799 svc_sock_enqueue(svsk
);
802 err
= ops
->getname(newsock
, (struct sockaddr
*) &sin
, &slen
, 1);
805 printk(KERN_WARNING
"%s: peername failed (err %d)!\n",
806 serv
->sv_name
, -err
);
807 goto failed
; /* aborted connection or whatever */
810 /* Ideally, we would want to reject connections from unauthorized
811 * hosts here, but when we get encription, the IP of the host won't
812 * tell us anything. For now just warn about unpriv connections.
814 if (ntohs(sin
.sin_port
) >= 1024) {
816 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
818 NIPQUAD(sin
.sin_addr
.s_addr
), ntohs(sin
.sin_port
));
821 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv
->sv_name
,
822 NIPQUAD(sin
.sin_addr
.s_addr
), ntohs(sin
.sin_port
));
824 /* make sure that a write doesn't block forever when
827 newsock
->sk
->sk_sndtimeo
= HZ
*30;
829 if (!(newsvsk
= svc_setup_socket(serv
, newsock
, &err
, 0)))
833 /* make sure that we don't have too many active connections.
834 * If we have, something must be dropped.
836 * There's no point in trying to do random drop here for
837 * DoS prevention. The NFS clients does 1 reconnect in 15
838 * seconds. An attacker can easily beat that.
840 * The only somewhat efficient mechanism would be if drop
841 * old connections from the same IP first. But right now
842 * we don't even record the client IP in svc_sock.
844 if (serv
->sv_tmpcnt
> (serv
->sv_nrthreads
+3)*20) {
845 struct svc_sock
*svsk
= NULL
;
846 spin_lock_bh(&serv
->sv_lock
);
847 if (!list_empty(&serv
->sv_tempsocks
)) {
848 if (net_ratelimit()) {
849 /* Try to help the admin */
850 printk(KERN_NOTICE
"%s: too many open TCP "
851 "sockets, consider increasing the "
852 "number of nfsd threads\n",
854 printk(KERN_NOTICE
"%s: last TCP connect from "
857 NIPQUAD(sin
.sin_addr
.s_addr
),
858 ntohs(sin
.sin_port
));
861 * Always select the oldest socket. It's not fair,
864 svsk
= list_entry(serv
->sv_tempsocks
.prev
,
867 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
870 spin_unlock_bh(&serv
->sv_lock
);
873 svc_sock_enqueue(svsk
);
880 serv
->sv_stats
->nettcpconn
++;
885 sock_release(newsock
);
890 * Receive data from a TCP socket.
893 svc_tcp_recvfrom(struct svc_rqst
*rqstp
)
895 struct svc_sock
*svsk
= rqstp
->rq_sock
;
896 struct svc_serv
*serv
= svsk
->sk_server
;
898 struct kvec vec
[RPCSVC_MAXPAGES
];
901 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
902 svsk
, test_bit(SK_DATA
, &svsk
->sk_flags
),
903 test_bit(SK_CONN
, &svsk
->sk_flags
),
904 test_bit(SK_CLOSE
, &svsk
->sk_flags
));
906 if ((rqstp
->rq_deferred
= svc_deferred_dequeue(svsk
))) {
907 svc_sock_received(svsk
);
908 return svc_deferred_recv(rqstp
);
911 if (test_bit(SK_CLOSE
, &svsk
->sk_flags
)) {
912 svc_delete_socket(svsk
);
916 if (test_bit(SK_CONN
, &svsk
->sk_flags
)) {
917 svc_tcp_accept(svsk
);
918 svc_sock_received(svsk
);
922 if (test_and_clear_bit(SK_CHNGBUF
, &svsk
->sk_flags
))
923 /* sndbuf needs to have room for one request
924 * per thread, otherwise we can stall even when the
925 * network isn't a bottleneck.
926 * rcvbuf just needs to be able to hold a few requests.
927 * Normally they will be removed from the queue
928 * as soon a a complete request arrives.
930 svc_sock_setbufsize(svsk
->sk_sock
,
931 (serv
->sv_nrthreads
+3) * serv
->sv_bufsz
,
934 clear_bit(SK_DATA
, &svsk
->sk_flags
);
936 /* Receive data. If we haven't got the record length yet, get
937 * the next four bytes. Otherwise try to gobble up as much as
938 * possible up to the complete record length.
940 if (svsk
->sk_tcplen
< 4) {
941 unsigned long want
= 4 - svsk
->sk_tcplen
;
944 iov
.iov_base
= ((char *) &svsk
->sk_reclen
) + svsk
->sk_tcplen
;
946 if ((len
= svc_recvfrom(rqstp
, &iov
, 1, want
)) < 0)
948 svsk
->sk_tcplen
+= len
;
951 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
953 svc_sock_received(svsk
);
954 return -EAGAIN
; /* record header not complete */
957 svsk
->sk_reclen
= ntohl(svsk
->sk_reclen
);
958 if (!(svsk
->sk_reclen
& 0x80000000)) {
959 /* FIXME: technically, a record can be fragmented,
960 * and non-terminal fragments will not have the top
961 * bit set in the fragment length header.
962 * But apparently no known nfs clients send fragmented
964 printk(KERN_NOTICE
"RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
965 (unsigned long) svsk
->sk_reclen
);
968 svsk
->sk_reclen
&= 0x7fffffff;
969 dprintk("svc: TCP record, %d bytes\n", svsk
->sk_reclen
);
970 if (svsk
->sk_reclen
> serv
->sv_bufsz
) {
971 printk(KERN_NOTICE
"RPC: bad TCP reclen 0x%08lx (large)\n",
972 (unsigned long) svsk
->sk_reclen
);
977 /* Check whether enough data is available */
978 len
= svc_recv_available(svsk
);
982 if (len
< svsk
->sk_reclen
) {
983 dprintk("svc: incomplete TCP record (%d of %d)\n",
984 len
, svsk
->sk_reclen
);
985 svc_sock_received(svsk
);
986 return -EAGAIN
; /* record not complete */
988 len
= svsk
->sk_reclen
;
989 set_bit(SK_DATA
, &svsk
->sk_flags
);
991 vec
[0] = rqstp
->rq_arg
.head
[0];
995 vec
[pnum
].iov_base
= page_address(rqstp
->rq_argpages
[rqstp
->rq_argused
++]);
996 vec
[pnum
].iov_len
= PAGE_SIZE
;
1001 /* Now receive data */
1002 len
= svc_recvfrom(rqstp
, vec
, pnum
, len
);
1006 dprintk("svc: TCP complete record (%d bytes)\n", len
);
1007 rqstp
->rq_arg
.len
= len
;
1008 rqstp
->rq_arg
.page_base
= 0;
1009 if (len
<= rqstp
->rq_arg
.head
[0].iov_len
) {
1010 rqstp
->rq_arg
.head
[0].iov_len
= len
;
1011 rqstp
->rq_arg
.page_len
= 0;
1013 rqstp
->rq_arg
.page_len
= len
- rqstp
->rq_arg
.head
[0].iov_len
;
1016 rqstp
->rq_skbuff
= NULL
;
1017 rqstp
->rq_prot
= IPPROTO_TCP
;
1019 /* Reset TCP read info */
1020 svsk
->sk_reclen
= 0;
1021 svsk
->sk_tcplen
= 0;
1023 svc_sock_received(svsk
);
1025 serv
->sv_stats
->nettcpcnt
++;
1030 svc_delete_socket(svsk
);
1034 if (len
== -EAGAIN
) {
1035 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1036 svc_sock_received(svsk
);
1038 printk(KERN_NOTICE
"%s: recvfrom returned errno %d\n",
1039 svsk
->sk_server
->sv_name
, -len
);
1040 svc_sock_received(svsk
);
1047 * Send out data on TCP socket.
1050 svc_tcp_sendto(struct svc_rqst
*rqstp
)
1052 struct xdr_buf
*xbufp
= &rqstp
->rq_res
;
1056 /* Set up the first element of the reply kvec.
1057 * Any other kvecs that may be in use have been taken
1058 * care of by the server implementation itself.
1060 reclen
= htonl(0x80000000|((xbufp
->len
) - 4));
1061 memcpy(xbufp
->head
[0].iov_base
, &reclen
, 4);
1063 if (test_bit(SK_DEAD
, &rqstp
->rq_sock
->sk_flags
))
1066 sent
= svc_sendto(rqstp
, &rqstp
->rq_res
);
1067 if (sent
!= xbufp
->len
) {
1068 printk(KERN_NOTICE
"rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1069 rqstp
->rq_sock
->sk_server
->sv_name
,
1070 (sent
<0)?"got error":"sent only",
1072 svc_delete_socket(rqstp
->rq_sock
);
1079 svc_tcp_init(struct svc_sock
*svsk
)
1081 struct sock
*sk
= svsk
->sk_sk
;
1082 struct tcp_sock
*tp
= tcp_sk(sk
);
1084 svsk
->sk_recvfrom
= svc_tcp_recvfrom
;
1085 svsk
->sk_sendto
= svc_tcp_sendto
;
1087 if (sk
->sk_state
== TCP_LISTEN
) {
1088 dprintk("setting up TCP socket for listening\n");
1089 sk
->sk_data_ready
= svc_tcp_listen_data_ready
;
1090 set_bit(SK_CONN
, &svsk
->sk_flags
);
1092 dprintk("setting up TCP socket for reading\n");
1093 sk
->sk_state_change
= svc_tcp_state_change
;
1094 sk
->sk_data_ready
= svc_tcp_data_ready
;
1095 sk
->sk_write_space
= svc_write_space
;
1097 svsk
->sk_reclen
= 0;
1098 svsk
->sk_tcplen
= 0;
1100 tp
->nonagle
= 1; /* disable Nagle's algorithm */
1102 /* initialise setting must have enough space to
1103 * receive and respond to one request.
1104 * svc_tcp_recvfrom will re-adjust if necessary
1106 svc_sock_setbufsize(svsk
->sk_sock
,
1107 3 * svsk
->sk_server
->sv_bufsz
,
1108 3 * svsk
->sk_server
->sv_bufsz
);
1110 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1111 set_bit(SK_DATA
, &svsk
->sk_flags
);
1112 if (sk
->sk_state
!= TCP_ESTABLISHED
)
1113 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1118 svc_sock_update_bufs(struct svc_serv
*serv
)
1121 * The number of server threads has changed. Update
1122 * rcvbuf and sndbuf accordingly on all sockets
1124 struct list_head
*le
;
1126 spin_lock_bh(&serv
->sv_lock
);
1127 list_for_each(le
, &serv
->sv_permsocks
) {
1128 struct svc_sock
*svsk
=
1129 list_entry(le
, struct svc_sock
, sk_list
);
1130 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1132 list_for_each(le
, &serv
->sv_tempsocks
) {
1133 struct svc_sock
*svsk
=
1134 list_entry(le
, struct svc_sock
, sk_list
);
1135 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1137 spin_unlock_bh(&serv
->sv_lock
);
1141 * Receive the next request on any socket.
1144 svc_recv(struct svc_serv
*serv
, struct svc_rqst
*rqstp
, long timeout
)
1146 struct svc_sock
*svsk
=NULL
;
1149 struct xdr_buf
*arg
;
1150 DECLARE_WAITQUEUE(wait
, current
);
1152 dprintk("svc: server %p waiting for data (to = %ld)\n",
1157 "svc_recv: service %p, socket not NULL!\n",
1159 if (waitqueue_active(&rqstp
->rq_wait
))
1161 "svc_recv: service %p, wait queue active!\n",
1164 /* Initialize the buffers */
1165 /* first reclaim pages that were moved to response list */
1166 svc_pushback_allpages(rqstp
);
1168 /* now allocate needed pages. If we get a failure, sleep briefly */
1169 pages
= 2 + (serv
->sv_bufsz
+ PAGE_SIZE
-1) / PAGE_SIZE
;
1170 while (rqstp
->rq_arghi
< pages
) {
1171 struct page
*p
= alloc_page(GFP_KERNEL
);
1173 set_current_state(TASK_UNINTERRUPTIBLE
);
1174 schedule_timeout(HZ
/2);
1177 rqstp
->rq_argpages
[rqstp
->rq_arghi
++] = p
;
1180 /* Make arg->head point to first page and arg->pages point to rest */
1181 arg
= &rqstp
->rq_arg
;
1182 arg
->head
[0].iov_base
= page_address(rqstp
->rq_argpages
[0]);
1183 arg
->head
[0].iov_len
= PAGE_SIZE
;
1184 rqstp
->rq_argused
= 1;
1185 arg
->pages
= rqstp
->rq_argpages
+ 1;
1187 /* save at least one page for response */
1188 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
1189 arg
->len
= (pages
-1)*PAGE_SIZE
;
1190 arg
->tail
[0].iov_len
= 0;
1196 spin_lock_bh(&serv
->sv_lock
);
1197 if (!list_empty(&serv
->sv_tempsocks
)) {
1198 svsk
= list_entry(serv
->sv_tempsocks
.next
,
1199 struct svc_sock
, sk_list
);
1200 /* apparently the "standard" is that clients close
1201 * idle connections after 5 minutes, servers after
1203 * http://www.connectathon.org/talks96/nfstcp.pdf
1205 if (get_seconds() - svsk
->sk_lastrecv
< 6*60
1206 || test_bit(SK_BUSY
, &svsk
->sk_flags
))
1210 set_bit(SK_BUSY
, &svsk
->sk_flags
);
1211 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1212 rqstp
->rq_sock
= svsk
;
1214 } else if ((svsk
= svc_sock_dequeue(serv
)) != NULL
) {
1215 rqstp
->rq_sock
= svsk
;
1217 rqstp
->rq_reserved
= serv
->sv_bufsz
;
1218 svsk
->sk_reserved
+= rqstp
->rq_reserved
;
1220 /* No data pending. Go to sleep */
1221 svc_serv_enqueue(serv
, rqstp
);
1224 * We have to be able to interrupt this wait
1225 * to bring down the daemons ...
1227 set_current_state(TASK_INTERRUPTIBLE
);
1228 add_wait_queue(&rqstp
->rq_wait
, &wait
);
1229 spin_unlock_bh(&serv
->sv_lock
);
1231 schedule_timeout(timeout
);
1235 spin_lock_bh(&serv
->sv_lock
);
1236 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
1238 if (!(svsk
= rqstp
->rq_sock
)) {
1239 svc_serv_dequeue(serv
, rqstp
);
1240 spin_unlock_bh(&serv
->sv_lock
);
1241 dprintk("svc: server %p, no data yet\n", rqstp
);
1242 return signalled()? -EINTR
: -EAGAIN
;
1245 spin_unlock_bh(&serv
->sv_lock
);
1247 dprintk("svc: server %p, socket %p, inuse=%d\n",
1248 rqstp
, svsk
, svsk
->sk_inuse
);
1249 len
= svsk
->sk_recvfrom(rqstp
);
1250 dprintk("svc: got len=%d\n", len
);
1252 /* No data, incomplete (TCP) read, or accept() */
1253 if (len
== 0 || len
== -EAGAIN
) {
1254 rqstp
->rq_res
.len
= 0;
1255 svc_sock_release(rqstp
);
1258 svsk
->sk_lastrecv
= get_seconds();
1259 if (test_bit(SK_TEMP
, &svsk
->sk_flags
)) {
1260 /* push active sockets to end of list */
1261 spin_lock_bh(&serv
->sv_lock
);
1262 if (!list_empty(&svsk
->sk_list
))
1263 list_move_tail(&svsk
->sk_list
, &serv
->sv_tempsocks
);
1264 spin_unlock_bh(&serv
->sv_lock
);
1267 rqstp
->rq_secure
= ntohs(rqstp
->rq_addr
.sin_port
) < 1024;
1268 rqstp
->rq_chandle
.defer
= svc_defer
;
1271 serv
->sv_stats
->netcnt
++;
1279 svc_drop(struct svc_rqst
*rqstp
)
1281 dprintk("svc: socket %p dropped request\n", rqstp
->rq_sock
);
1282 svc_sock_release(rqstp
);
1286 * Return reply to client.
1289 svc_send(struct svc_rqst
*rqstp
)
1291 struct svc_sock
*svsk
;
1295 if ((svsk
= rqstp
->rq_sock
) == NULL
) {
1296 printk(KERN_WARNING
"NULL socket pointer in %s:%d\n",
1297 __FILE__
, __LINE__
);
1301 /* release the receive skb before sending the reply */
1302 svc_release_skb(rqstp
);
1304 /* calculate over-all length */
1305 xb
= & rqstp
->rq_res
;
1306 xb
->len
= xb
->head
[0].iov_len
+
1308 xb
->tail
[0].iov_len
;
1310 /* Grab svsk->sk_sem to serialize outgoing data. */
1311 down(&svsk
->sk_sem
);
1312 if (test_bit(SK_DEAD
, &svsk
->sk_flags
))
1315 len
= svsk
->sk_sendto(rqstp
);
1317 svc_sock_release(rqstp
);
1319 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
1325 * Initialize socket for RPC use and create svc_sock struct
1326 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1328 static struct svc_sock
*
1329 svc_setup_socket(struct svc_serv
*serv
, struct socket
*sock
,
1330 int *errp
, int pmap_register
)
1332 struct svc_sock
*svsk
;
1335 dprintk("svc: svc_setup_socket %p\n", sock
);
1336 if (!(svsk
= kmalloc(sizeof(*svsk
), GFP_KERNEL
))) {
1340 memset(svsk
, 0, sizeof(*svsk
));
1344 /* Register socket with portmapper */
1345 if (*errp
>= 0 && pmap_register
)
1346 *errp
= svc_register(serv
, inet
->sk_protocol
,
1347 ntohs(inet_sk(inet
)->sport
));
1354 set_bit(SK_BUSY
, &svsk
->sk_flags
);
1355 inet
->sk_user_data
= svsk
;
1356 svsk
->sk_sock
= sock
;
1358 svsk
->sk_ostate
= inet
->sk_state_change
;
1359 svsk
->sk_odata
= inet
->sk_data_ready
;
1360 svsk
->sk_owspace
= inet
->sk_write_space
;
1361 svsk
->sk_server
= serv
;
1362 svsk
->sk_lastrecv
= get_seconds();
1363 INIT_LIST_HEAD(&svsk
->sk_deferred
);
1364 INIT_LIST_HEAD(&svsk
->sk_ready
);
1365 sema_init(&svsk
->sk_sem
, 1);
1367 /* Initialize the socket */
1368 if (sock
->type
== SOCK_DGRAM
)
1373 spin_lock_bh(&serv
->sv_lock
);
1374 if (!pmap_register
) {
1375 set_bit(SK_TEMP
, &svsk
->sk_flags
);
1376 list_add(&svsk
->sk_list
, &serv
->sv_tempsocks
);
1379 clear_bit(SK_TEMP
, &svsk
->sk_flags
);
1380 list_add(&svsk
->sk_list
, &serv
->sv_permsocks
);
1382 spin_unlock_bh(&serv
->sv_lock
);
1384 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1387 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
1388 svc_sock_enqueue(svsk
);
1393 * Create socket for RPC service.
1396 svc_create_socket(struct svc_serv
*serv
, int protocol
, struct sockaddr_in
*sin
)
1398 struct svc_sock
*svsk
;
1399 struct socket
*sock
;
1403 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1404 serv
->sv_program
->pg_name
, protocol
,
1405 NIPQUAD(sin
->sin_addr
.s_addr
),
1406 ntohs(sin
->sin_port
));
1408 if (protocol
!= IPPROTO_UDP
&& protocol
!= IPPROTO_TCP
) {
1409 printk(KERN_WARNING
"svc: only UDP and TCP "
1410 "sockets supported\n");
1413 type
= (protocol
== IPPROTO_UDP
)? SOCK_DGRAM
: SOCK_STREAM
;
1415 if ((error
= sock_create_kern(PF_INET
, type
, protocol
, &sock
)) < 0)
1419 if (type
== SOCK_STREAM
)
1420 sock
->sk
->sk_reuse
= 1; /* allow address reuse */
1421 error
= sock
->ops
->bind(sock
, (struct sockaddr
*) sin
,
1427 if (protocol
== IPPROTO_TCP
) {
1428 if ((error
= sock
->ops
->listen(sock
, 64)) < 0)
1432 if ((svsk
= svc_setup_socket(serv
, sock
, &error
, 1)) != NULL
)
1436 dprintk("svc: svc_create_socket error = %d\n", -error
);
1442 * Remove a dead socket
1445 svc_delete_socket(struct svc_sock
*svsk
)
1447 struct svc_serv
*serv
;
1450 dprintk("svc: svc_delete_socket(%p)\n", svsk
);
1452 serv
= svsk
->sk_server
;
1455 sk
->sk_state_change
= svsk
->sk_ostate
;
1456 sk
->sk_data_ready
= svsk
->sk_odata
;
1457 sk
->sk_write_space
= svsk
->sk_owspace
;
1459 spin_lock_bh(&serv
->sv_lock
);
1461 list_del_init(&svsk
->sk_list
);
1462 list_del_init(&svsk
->sk_ready
);
1463 if (!test_and_set_bit(SK_DEAD
, &svsk
->sk_flags
))
1464 if (test_bit(SK_TEMP
, &svsk
->sk_flags
))
1467 if (!svsk
->sk_inuse
) {
1468 spin_unlock_bh(&serv
->sv_lock
);
1469 sock_release(svsk
->sk_sock
);
1472 spin_unlock_bh(&serv
->sv_lock
);
1473 dprintk(KERN_NOTICE
"svc: server socket destroy delayed\n");
1474 /* svsk->sk_server = NULL; */
1479 * Make a socket for nfsd and lockd
1482 svc_makesock(struct svc_serv
*serv
, int protocol
, unsigned short port
)
1484 struct sockaddr_in sin
;
1486 dprintk("svc: creating socket proto = %d\n", protocol
);
1487 sin
.sin_family
= AF_INET
;
1488 sin
.sin_addr
.s_addr
= INADDR_ANY
;
1489 sin
.sin_port
= htons(port
);
1490 return svc_create_socket(serv
, protocol
, &sin
);
1494 * Handle defer and revisit of requests
1497 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
1499 struct svc_deferred_req
*dr
= container_of(dreq
, struct svc_deferred_req
, handle
);
1500 struct svc_serv
*serv
= dreq
->owner
;
1501 struct svc_sock
*svsk
;
1504 svc_sock_put(dr
->svsk
);
1508 dprintk("revisit queued\n");
1511 spin_lock_bh(&serv
->sv_lock
);
1512 list_add(&dr
->handle
.recent
, &svsk
->sk_deferred
);
1513 spin_unlock_bh(&serv
->sv_lock
);
1514 set_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1515 svc_sock_enqueue(svsk
);
1519 static struct cache_deferred_req
*
1520 svc_defer(struct cache_req
*req
)
1522 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
1523 int size
= sizeof(struct svc_deferred_req
) + (rqstp
->rq_arg
.len
);
1524 struct svc_deferred_req
*dr
;
1526 if (rqstp
->rq_arg
.page_len
)
1527 return NULL
; /* if more than a page, give up FIXME */
1528 if (rqstp
->rq_deferred
) {
1529 dr
= rqstp
->rq_deferred
;
1530 rqstp
->rq_deferred
= NULL
;
1532 int skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1533 /* FIXME maybe discard if size too large */
1534 dr
= kmalloc(size
, GFP_KERNEL
);
1538 dr
->handle
.owner
= rqstp
->rq_server
;
1539 dr
->prot
= rqstp
->rq_prot
;
1540 dr
->addr
= rqstp
->rq_addr
;
1541 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
1542 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
-skip
, dr
->argslen
<<2);
1544 spin_lock_bh(&rqstp
->rq_server
->sv_lock
);
1545 rqstp
->rq_sock
->sk_inuse
++;
1546 dr
->svsk
= rqstp
->rq_sock
;
1547 spin_unlock_bh(&rqstp
->rq_server
->sv_lock
);
1549 dr
->handle
.revisit
= svc_revisit
;
1554 * recv data from a deferred request into an active one
1556 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1558 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1560 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
;
1561 rqstp
->rq_arg
.head
[0].iov_len
= dr
->argslen
<<2;
1562 rqstp
->rq_arg
.page_len
= 0;
1563 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1564 rqstp
->rq_prot
= dr
->prot
;
1565 rqstp
->rq_addr
= dr
->addr
;
1566 return dr
->argslen
<<2;
1570 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_sock
*svsk
)
1572 struct svc_deferred_req
*dr
= NULL
;
1573 struct svc_serv
*serv
= svsk
->sk_server
;
1575 if (!test_bit(SK_DEFERRED
, &svsk
->sk_flags
))
1577 spin_lock_bh(&serv
->sv_lock
);
1578 clear_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1579 if (!list_empty(&svsk
->sk_deferred
)) {
1580 dr
= list_entry(svsk
->sk_deferred
.next
,
1581 struct svc_deferred_req
,
1583 list_del_init(&dr
->handle
.recent
);
1584 set_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1586 spin_unlock_bh(&serv
->sv_lock
);