[TG3]: Refine DMA boundary setting.
[linux-2.6/verdex.git] / drivers / net / tulip / de2104x.c
blobdd357dd8c370282f6533fec7417b89b5f9a9f390
1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
15 See the file COPYING in this distribution for more information.
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
26 Tx descriptor bit
30 #define DRV_NAME "de2104x"
31 #define DRV_VERSION "0.7"
32 #define DRV_RELDATE "Mar 17, 2004"
34 #include <linux/config.h>
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ethtool.h>
43 #include <linux/compiler.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/crc32.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/uaccess.h>
50 #include <asm/unaligned.h>
52 /* These identify the driver base version and may not be removed. */
53 static char version[] =
54 KERN_INFO DRV_NAME " PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
56 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
57 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(DRV_VERSION);
61 static int debug = -1;
62 module_param (debug, int, 0);
63 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
65 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
66 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
67 || defined(__sparc_) || defined(__ia64__) \
68 || defined(__sh__) || defined(__mips__)
69 static int rx_copybreak = 1518;
70 #else
71 static int rx_copybreak = 100;
72 #endif
73 module_param (rx_copybreak, int, 0);
74 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
76 #define PFX DRV_NAME ": "
78 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
79 NETIF_MSG_PROBE | \
80 NETIF_MSG_LINK | \
81 NETIF_MSG_IFDOWN | \
82 NETIF_MSG_IFUP | \
83 NETIF_MSG_RX_ERR | \
84 NETIF_MSG_TX_ERR)
86 #define DE_RX_RING_SIZE 64
87 #define DE_TX_RING_SIZE 64
88 #define DE_RING_BYTES \
89 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
90 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
91 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
92 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
93 #define TX_BUFFS_AVAIL(CP) \
94 (((CP)->tx_tail <= (CP)->tx_head) ? \
95 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
96 (CP)->tx_tail - (CP)->tx_head - 1)
98 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
99 #define RX_OFFSET 2
101 #define DE_SETUP_SKB ((struct sk_buff *) 1)
102 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
103 #define DE_SETUP_FRAME_WORDS 96
104 #define DE_EEPROM_WORDS 256
105 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
106 #define DE_MAX_MEDIA 5
108 #define DE_MEDIA_TP_AUTO 0
109 #define DE_MEDIA_BNC 1
110 #define DE_MEDIA_AUI 2
111 #define DE_MEDIA_TP 3
112 #define DE_MEDIA_TP_FD 4
113 #define DE_MEDIA_INVALID DE_MAX_MEDIA
114 #define DE_MEDIA_FIRST 0
115 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
116 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
118 #define DE_TIMER_LINK (60 * HZ)
119 #define DE_TIMER_NO_LINK (5 * HZ)
121 #define DE_NUM_REGS 16
122 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
123 #define DE_REGS_VER 1
125 /* Time in jiffies before concluding the transmitter is hung. */
126 #define TX_TIMEOUT (6*HZ)
128 #define DE_UNALIGNED_16(a) (u16)(get_unaligned((u16 *)(a)))
130 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
131 to support a pre-NWay full-duplex signaling mechanism using short frames.
132 No one knows what it should be, but if left at its default value some
133 10base2(!) packets trigger a full-duplex-request interrupt. */
134 #define FULL_DUPLEX_MAGIC 0x6969
136 enum {
137 /* NIC registers */
138 BusMode = 0x00,
139 TxPoll = 0x08,
140 RxPoll = 0x10,
141 RxRingAddr = 0x18,
142 TxRingAddr = 0x20,
143 MacStatus = 0x28,
144 MacMode = 0x30,
145 IntrMask = 0x38,
146 RxMissed = 0x40,
147 ROMCmd = 0x48,
148 CSR11 = 0x58,
149 SIAStatus = 0x60,
150 CSR13 = 0x68,
151 CSR14 = 0x70,
152 CSR15 = 0x78,
153 PCIPM = 0x40,
155 /* BusMode bits */
156 CmdReset = (1 << 0),
157 CacheAlign16 = 0x00008000,
158 BurstLen4 = 0x00000400,
160 /* Rx/TxPoll bits */
161 NormalTxPoll = (1 << 0),
162 NormalRxPoll = (1 << 0),
164 /* Tx/Rx descriptor status bits */
165 DescOwn = (1 << 31),
166 RxError = (1 << 15),
167 RxErrLong = (1 << 7),
168 RxErrCRC = (1 << 1),
169 RxErrFIFO = (1 << 0),
170 RxErrRunt = (1 << 11),
171 RxErrFrame = (1 << 14),
172 RingEnd = (1 << 25),
173 FirstFrag = (1 << 29),
174 LastFrag = (1 << 30),
175 TxError = (1 << 15),
176 TxFIFOUnder = (1 << 1),
177 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
178 TxMaxCol = (1 << 8),
179 TxOWC = (1 << 9),
180 TxJabber = (1 << 14),
181 SetupFrame = (1 << 27),
182 TxSwInt = (1 << 31),
184 /* MacStatus bits */
185 IntrOK = (1 << 16),
186 IntrErr = (1 << 15),
187 RxIntr = (1 << 6),
188 RxEmpty = (1 << 7),
189 TxIntr = (1 << 0),
190 TxEmpty = (1 << 2),
191 PciErr = (1 << 13),
192 TxState = (1 << 22) | (1 << 21) | (1 << 20),
193 RxState = (1 << 19) | (1 << 18) | (1 << 17),
194 LinkFail = (1 << 12),
195 LinkPass = (1 << 4),
196 RxStopped = (1 << 8),
197 TxStopped = (1 << 1),
199 /* MacMode bits */
200 TxEnable = (1 << 13),
201 RxEnable = (1 << 1),
202 RxTx = TxEnable | RxEnable,
203 FullDuplex = (1 << 9),
204 AcceptAllMulticast = (1 << 7),
205 AcceptAllPhys = (1 << 6),
206 BOCnt = (1 << 5),
207 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
208 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
210 /* ROMCmd bits */
211 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
212 EE_CS = 0x01, /* EEPROM chip select. */
213 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
214 EE_WRITE_0 = 0x01,
215 EE_WRITE_1 = 0x05,
216 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
217 EE_ENB = (0x4800 | EE_CS),
219 /* The EEPROM commands include the alway-set leading bit. */
220 EE_READ_CMD = 6,
222 /* RxMissed bits */
223 RxMissedOver = (1 << 16),
224 RxMissedMask = 0xffff,
226 /* SROM-related bits */
227 SROMC0InfoLeaf = 27,
228 MediaBlockMask = 0x3f,
229 MediaCustomCSRs = (1 << 6),
231 /* PCIPM bits */
232 PM_Sleep = (1 << 31),
233 PM_Snooze = (1 << 30),
234 PM_Mask = PM_Sleep | PM_Snooze,
236 /* SIAStatus bits */
237 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
238 NWayRestart = (1 << 12),
239 NonselPortActive = (1 << 9),
240 LinkFailStatus = (1 << 2),
241 NetCxnErr = (1 << 1),
244 static const u32 de_intr_mask =
245 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
246 LinkPass | LinkFail | PciErr;
249 * Set the programmable burst length to 4 longwords for all:
250 * DMA errors result without these values. Cache align 16 long.
252 static const u32 de_bus_mode = CacheAlign16 | BurstLen4;
254 struct de_srom_media_block {
255 u8 opts;
256 u16 csr13;
257 u16 csr14;
258 u16 csr15;
259 } __attribute__((packed));
261 struct de_srom_info_leaf {
262 u16 default_media;
263 u8 n_blocks;
264 u8 unused;
265 } __attribute__((packed));
267 struct de_desc {
268 u32 opts1;
269 u32 opts2;
270 u32 addr1;
271 u32 addr2;
274 struct media_info {
275 u16 type; /* DE_MEDIA_xxx */
276 u16 csr13;
277 u16 csr14;
278 u16 csr15;
281 struct ring_info {
282 struct sk_buff *skb;
283 dma_addr_t mapping;
286 struct de_private {
287 unsigned tx_head;
288 unsigned tx_tail;
289 unsigned rx_tail;
291 void __iomem *regs;
292 struct net_device *dev;
293 spinlock_t lock;
295 struct de_desc *rx_ring;
296 struct de_desc *tx_ring;
297 struct ring_info tx_skb[DE_TX_RING_SIZE];
298 struct ring_info rx_skb[DE_RX_RING_SIZE];
299 unsigned rx_buf_sz;
300 dma_addr_t ring_dma;
302 u32 msg_enable;
304 struct net_device_stats net_stats;
306 struct pci_dev *pdev;
308 u16 setup_frame[DE_SETUP_FRAME_WORDS];
310 u32 media_type;
311 u32 media_supported;
312 u32 media_advertise;
313 struct media_info media[DE_MAX_MEDIA];
314 struct timer_list media_timer;
316 u8 *ee_data;
317 unsigned board_idx;
318 unsigned de21040 : 1;
319 unsigned media_lock : 1;
323 static void de_set_rx_mode (struct net_device *dev);
324 static void de_tx (struct de_private *de);
325 static void de_clean_rings (struct de_private *de);
326 static void de_media_interrupt (struct de_private *de, u32 status);
327 static void de21040_media_timer (unsigned long data);
328 static void de21041_media_timer (unsigned long data);
329 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
332 static struct pci_device_id de_pci_tbl[] = {
333 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
334 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
335 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
336 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
337 { },
339 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
341 static const char * const media_name[DE_MAX_MEDIA] = {
342 "10baseT auto",
343 "BNC",
344 "AUI",
345 "10baseT-HD",
346 "10baseT-FD"
349 /* 21040 transceiver register settings:
350 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
351 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
352 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
353 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
355 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
356 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
357 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
358 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
361 #define dr32(reg) readl(de->regs + (reg))
362 #define dw32(reg,val) writel((val), de->regs + (reg))
365 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
366 u32 status, u32 len)
368 if (netif_msg_rx_err (de))
369 printk (KERN_DEBUG
370 "%s: rx err, slot %d status 0x%x len %d\n",
371 de->dev->name, rx_tail, status, len);
373 if ((status & 0x38000300) != 0x0300) {
374 /* Ingore earlier buffers. */
375 if ((status & 0xffff) != 0x7fff) {
376 if (netif_msg_rx_err(de))
377 printk(KERN_WARNING "%s: Oversized Ethernet frame "
378 "spanned multiple buffers, status %8.8x!\n",
379 de->dev->name, status);
380 de->net_stats.rx_length_errors++;
382 } else if (status & RxError) {
383 /* There was a fatal error. */
384 de->net_stats.rx_errors++; /* end of a packet.*/
385 if (status & 0x0890) de->net_stats.rx_length_errors++;
386 if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
387 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
391 static void de_rx (struct de_private *de)
393 unsigned rx_tail = de->rx_tail;
394 unsigned rx_work = DE_RX_RING_SIZE;
395 unsigned drop = 0;
396 int rc;
398 while (rx_work--) {
399 u32 status, len;
400 dma_addr_t mapping;
401 struct sk_buff *skb, *copy_skb;
402 unsigned copying_skb, buflen;
404 skb = de->rx_skb[rx_tail].skb;
405 if (!skb)
406 BUG();
407 rmb();
408 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
409 if (status & DescOwn)
410 break;
412 len = ((status >> 16) & 0x7ff) - 4;
413 mapping = de->rx_skb[rx_tail].mapping;
415 if (unlikely(drop)) {
416 de->net_stats.rx_dropped++;
417 goto rx_next;
420 if (unlikely((status & 0x38008300) != 0x0300)) {
421 de_rx_err_acct(de, rx_tail, status, len);
422 goto rx_next;
425 copying_skb = (len <= rx_copybreak);
427 if (unlikely(netif_msg_rx_status(de)))
428 printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n",
429 de->dev->name, rx_tail, status, len,
430 copying_skb);
432 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
433 copy_skb = dev_alloc_skb (buflen);
434 if (unlikely(!copy_skb)) {
435 de->net_stats.rx_dropped++;
436 drop = 1;
437 rx_work = 100;
438 goto rx_next;
440 copy_skb->dev = de->dev;
442 if (!copying_skb) {
443 pci_unmap_single(de->pdev, mapping,
444 buflen, PCI_DMA_FROMDEVICE);
445 skb_put(skb, len);
447 mapping =
448 de->rx_skb[rx_tail].mapping =
449 pci_map_single(de->pdev, copy_skb->tail,
450 buflen, PCI_DMA_FROMDEVICE);
451 de->rx_skb[rx_tail].skb = copy_skb;
452 } else {
453 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
454 skb_reserve(copy_skb, RX_OFFSET);
455 memcpy(skb_put(copy_skb, len), skb->tail, len);
457 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
459 /* We'll reuse the original ring buffer. */
460 skb = copy_skb;
463 skb->protocol = eth_type_trans (skb, de->dev);
465 de->net_stats.rx_packets++;
466 de->net_stats.rx_bytes += skb->len;
467 de->dev->last_rx = jiffies;
468 rc = netif_rx (skb);
469 if (rc == NET_RX_DROP)
470 drop = 1;
472 rx_next:
473 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
474 if (rx_tail == (DE_RX_RING_SIZE - 1))
475 de->rx_ring[rx_tail].opts2 =
476 cpu_to_le32(RingEnd | de->rx_buf_sz);
477 else
478 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
479 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
480 rx_tail = NEXT_RX(rx_tail);
483 if (!rx_work)
484 printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name);
486 de->rx_tail = rx_tail;
489 static irqreturn_t de_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
491 struct net_device *dev = dev_instance;
492 struct de_private *de = dev->priv;
493 u32 status;
495 status = dr32(MacStatus);
496 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
497 return IRQ_NONE;
499 if (netif_msg_intr(de))
500 printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n",
501 dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail);
503 dw32(MacStatus, status);
505 if (status & (RxIntr | RxEmpty)) {
506 de_rx(de);
507 if (status & RxEmpty)
508 dw32(RxPoll, NormalRxPoll);
511 spin_lock(&de->lock);
513 if (status & (TxIntr | TxEmpty))
514 de_tx(de);
516 if (status & (LinkPass | LinkFail))
517 de_media_interrupt(de, status);
519 spin_unlock(&de->lock);
521 if (status & PciErr) {
522 u16 pci_status;
524 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
525 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
526 printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n",
527 dev->name, status, pci_status);
530 return IRQ_HANDLED;
533 static void de_tx (struct de_private *de)
535 unsigned tx_head = de->tx_head;
536 unsigned tx_tail = de->tx_tail;
538 while (tx_tail != tx_head) {
539 struct sk_buff *skb;
540 u32 status;
542 rmb();
543 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
544 if (status & DescOwn)
545 break;
547 skb = de->tx_skb[tx_tail].skb;
548 if (!skb)
549 BUG();
550 if (unlikely(skb == DE_DUMMY_SKB))
551 goto next;
553 if (unlikely(skb == DE_SETUP_SKB)) {
554 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
555 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
556 goto next;
559 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
560 skb->len, PCI_DMA_TODEVICE);
562 if (status & LastFrag) {
563 if (status & TxError) {
564 if (netif_msg_tx_err(de))
565 printk(KERN_DEBUG "%s: tx err, status 0x%x\n",
566 de->dev->name, status);
567 de->net_stats.tx_errors++;
568 if (status & TxOWC)
569 de->net_stats.tx_window_errors++;
570 if (status & TxMaxCol)
571 de->net_stats.tx_aborted_errors++;
572 if (status & TxLinkFail)
573 de->net_stats.tx_carrier_errors++;
574 if (status & TxFIFOUnder)
575 de->net_stats.tx_fifo_errors++;
576 } else {
577 de->net_stats.tx_packets++;
578 de->net_stats.tx_bytes += skb->len;
579 if (netif_msg_tx_done(de))
580 printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail);
582 dev_kfree_skb_irq(skb);
585 next:
586 de->tx_skb[tx_tail].skb = NULL;
588 tx_tail = NEXT_TX(tx_tail);
591 de->tx_tail = tx_tail;
593 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
594 netif_wake_queue(de->dev);
597 static int de_start_xmit (struct sk_buff *skb, struct net_device *dev)
599 struct de_private *de = dev->priv;
600 unsigned int entry, tx_free;
601 u32 mapping, len, flags = FirstFrag | LastFrag;
602 struct de_desc *txd;
604 spin_lock_irq(&de->lock);
606 tx_free = TX_BUFFS_AVAIL(de);
607 if (tx_free == 0) {
608 netif_stop_queue(dev);
609 spin_unlock_irq(&de->lock);
610 return 1;
612 tx_free--;
614 entry = de->tx_head;
616 txd = &de->tx_ring[entry];
618 len = skb->len;
619 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
620 if (entry == (DE_TX_RING_SIZE - 1))
621 flags |= RingEnd;
622 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
623 flags |= TxSwInt;
624 flags |= len;
625 txd->opts2 = cpu_to_le32(flags);
626 txd->addr1 = cpu_to_le32(mapping);
628 de->tx_skb[entry].skb = skb;
629 de->tx_skb[entry].mapping = mapping;
630 wmb();
632 txd->opts1 = cpu_to_le32(DescOwn);
633 wmb();
635 de->tx_head = NEXT_TX(entry);
636 if (netif_msg_tx_queued(de))
637 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
638 dev->name, entry, skb->len);
640 if (tx_free == 0)
641 netif_stop_queue(dev);
643 spin_unlock_irq(&de->lock);
645 /* Trigger an immediate transmit demand. */
646 dw32(TxPoll, NormalTxPoll);
647 dev->trans_start = jiffies;
649 return 0;
652 /* Set or clear the multicast filter for this adaptor.
653 Note that we only use exclusion around actually queueing the
654 new frame, not around filling de->setup_frame. This is non-deterministic
655 when re-entered but still correct. */
657 #undef set_bit_le
658 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
660 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
662 struct de_private *de = dev->priv;
663 u16 hash_table[32];
664 struct dev_mc_list *mclist;
665 int i;
666 u16 *eaddrs;
668 memset(hash_table, 0, sizeof(hash_table));
669 set_bit_le(255, hash_table); /* Broadcast entry */
670 /* This should work on big-endian machines as well. */
671 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
672 i++, mclist = mclist->next) {
673 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
675 set_bit_le(index, hash_table);
677 for (i = 0; i < 32; i++) {
678 *setup_frm++ = hash_table[i];
679 *setup_frm++ = hash_table[i];
681 setup_frm = &de->setup_frame[13*6];
684 /* Fill the final entry with our physical address. */
685 eaddrs = (u16 *)dev->dev_addr;
686 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
687 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
688 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
691 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
693 struct de_private *de = dev->priv;
694 struct dev_mc_list *mclist;
695 int i;
696 u16 *eaddrs;
698 /* We have <= 14 addresses so we can use the wonderful
699 16 address perfect filtering of the Tulip. */
700 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
701 i++, mclist = mclist->next) {
702 eaddrs = (u16 *)mclist->dmi_addr;
703 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
704 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
705 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
707 /* Fill the unused entries with the broadcast address. */
708 memset(setup_frm, 0xff, (15-i)*12);
709 setup_frm = &de->setup_frame[15*6];
711 /* Fill the final entry with our physical address. */
712 eaddrs = (u16 *)dev->dev_addr;
713 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
714 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
715 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
719 static void __de_set_rx_mode (struct net_device *dev)
721 struct de_private *de = dev->priv;
722 u32 macmode;
723 unsigned int entry;
724 u32 mapping;
725 struct de_desc *txd;
726 struct de_desc *dummy_txd = NULL;
728 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
730 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
731 macmode |= AcceptAllMulticast | AcceptAllPhys;
732 goto out;
735 if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
736 /* Too many to filter well -- accept all multicasts. */
737 macmode |= AcceptAllMulticast;
738 goto out;
741 /* Note that only the low-address shortword of setup_frame is valid!
742 The values are doubled for big-endian architectures. */
743 if (dev->mc_count > 14) /* Must use a multicast hash table. */
744 build_setup_frame_hash (de->setup_frame, dev);
745 else
746 build_setup_frame_perfect (de->setup_frame, dev);
749 * Now add this frame to the Tx list.
752 entry = de->tx_head;
754 /* Avoid a chip errata by prefixing a dummy entry. */
755 if (entry != 0) {
756 de->tx_skb[entry].skb = DE_DUMMY_SKB;
758 dummy_txd = &de->tx_ring[entry];
759 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
760 cpu_to_le32(RingEnd) : 0;
761 dummy_txd->addr1 = 0;
763 /* Must set DescOwned later to avoid race with chip */
765 entry = NEXT_TX(entry);
768 de->tx_skb[entry].skb = DE_SETUP_SKB;
769 de->tx_skb[entry].mapping = mapping =
770 pci_map_single (de->pdev, de->setup_frame,
771 sizeof (de->setup_frame), PCI_DMA_TODEVICE);
773 /* Put the setup frame on the Tx list. */
774 txd = &de->tx_ring[entry];
775 if (entry == (DE_TX_RING_SIZE - 1))
776 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
777 else
778 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
779 txd->addr1 = cpu_to_le32(mapping);
780 wmb();
782 txd->opts1 = cpu_to_le32(DescOwn);
783 wmb();
785 if (dummy_txd) {
786 dummy_txd->opts1 = cpu_to_le32(DescOwn);
787 wmb();
790 de->tx_head = NEXT_TX(entry);
792 if (TX_BUFFS_AVAIL(de) < 0)
793 BUG();
794 if (TX_BUFFS_AVAIL(de) == 0)
795 netif_stop_queue(dev);
797 /* Trigger an immediate transmit demand. */
798 dw32(TxPoll, NormalTxPoll);
800 out:
801 if (macmode != dr32(MacMode))
802 dw32(MacMode, macmode);
805 static void de_set_rx_mode (struct net_device *dev)
807 unsigned long flags;
808 struct de_private *de = dev->priv;
810 spin_lock_irqsave (&de->lock, flags);
811 __de_set_rx_mode(dev);
812 spin_unlock_irqrestore (&de->lock, flags);
815 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
817 if (unlikely(rx_missed & RxMissedOver))
818 de->net_stats.rx_missed_errors += RxMissedMask;
819 else
820 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
823 static void __de_get_stats(struct de_private *de)
825 u32 tmp = dr32(RxMissed); /* self-clearing */
827 de_rx_missed(de, tmp);
830 static struct net_device_stats *de_get_stats(struct net_device *dev)
832 struct de_private *de = dev->priv;
834 /* The chip only need report frame silently dropped. */
835 spin_lock_irq(&de->lock);
836 if (netif_running(dev) && netif_device_present(dev))
837 __de_get_stats(de);
838 spin_unlock_irq(&de->lock);
840 return &de->net_stats;
843 static inline int de_is_running (struct de_private *de)
845 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
848 static void de_stop_rxtx (struct de_private *de)
850 u32 macmode;
851 unsigned int work = 1000;
853 macmode = dr32(MacMode);
854 if (macmode & RxTx) {
855 dw32(MacMode, macmode & ~RxTx);
856 dr32(MacMode);
859 while (--work > 0) {
860 if (!de_is_running(de))
861 return;
862 cpu_relax();
865 printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name);
868 static inline void de_start_rxtx (struct de_private *de)
870 u32 macmode;
872 macmode = dr32(MacMode);
873 if ((macmode & RxTx) != RxTx) {
874 dw32(MacMode, macmode | RxTx);
875 dr32(MacMode);
879 static void de_stop_hw (struct de_private *de)
882 udelay(5);
883 dw32(IntrMask, 0);
885 de_stop_rxtx(de);
887 dw32(MacStatus, dr32(MacStatus));
889 udelay(10);
891 de->rx_tail = 0;
892 de->tx_head = de->tx_tail = 0;
895 static void de_link_up(struct de_private *de)
897 if (!netif_carrier_ok(de->dev)) {
898 netif_carrier_on(de->dev);
899 if (netif_msg_link(de))
900 printk(KERN_INFO "%s: link up, media %s\n",
901 de->dev->name, media_name[de->media_type]);
905 static void de_link_down(struct de_private *de)
907 if (netif_carrier_ok(de->dev)) {
908 netif_carrier_off(de->dev);
909 if (netif_msg_link(de))
910 printk(KERN_INFO "%s: link down\n", de->dev->name);
914 static void de_set_media (struct de_private *de)
916 unsigned media = de->media_type;
917 u32 macmode = dr32(MacMode);
919 if (de_is_running(de))
920 BUG();
922 if (de->de21040)
923 dw32(CSR11, FULL_DUPLEX_MAGIC);
924 dw32(CSR13, 0); /* Reset phy */
925 dw32(CSR14, de->media[media].csr14);
926 dw32(CSR15, de->media[media].csr15);
927 dw32(CSR13, de->media[media].csr13);
929 /* must delay 10ms before writing to other registers,
930 * especially CSR6
932 mdelay(10);
934 if (media == DE_MEDIA_TP_FD)
935 macmode |= FullDuplex;
936 else
937 macmode &= ~FullDuplex;
939 if (netif_msg_link(de)) {
940 printk(KERN_INFO "%s: set link %s\n"
941 KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n"
942 KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
943 de->dev->name, media_name[media],
944 de->dev->name, dr32(MacMode), dr32(SIAStatus),
945 dr32(CSR13), dr32(CSR14), dr32(CSR15),
946 de->dev->name, macmode, de->media[media].csr13,
947 de->media[media].csr14, de->media[media].csr15);
949 if (macmode != dr32(MacMode))
950 dw32(MacMode, macmode);
953 static void de_next_media (struct de_private *de, u32 *media,
954 unsigned int n_media)
956 unsigned int i;
958 for (i = 0; i < n_media; i++) {
959 if (de_ok_to_advertise(de, media[i])) {
960 de->media_type = media[i];
961 return;
966 static void de21040_media_timer (unsigned long data)
968 struct de_private *de = (struct de_private *) data;
969 struct net_device *dev = de->dev;
970 u32 status = dr32(SIAStatus);
971 unsigned int carrier;
972 unsigned long flags;
974 carrier = (status & NetCxnErr) ? 0 : 1;
976 if (carrier) {
977 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
978 goto no_link_yet;
980 de->media_timer.expires = jiffies + DE_TIMER_LINK;
981 add_timer(&de->media_timer);
982 if (!netif_carrier_ok(dev))
983 de_link_up(de);
984 else
985 if (netif_msg_timer(de))
986 printk(KERN_INFO "%s: %s link ok, status %x\n",
987 dev->name, media_name[de->media_type],
988 status);
989 return;
992 de_link_down(de);
994 if (de->media_lock)
995 return;
997 if (de->media_type == DE_MEDIA_AUI) {
998 u32 next_state = DE_MEDIA_TP;
999 de_next_media(de, &next_state, 1);
1000 } else {
1001 u32 next_state = DE_MEDIA_AUI;
1002 de_next_media(de, &next_state, 1);
1005 spin_lock_irqsave(&de->lock, flags);
1006 de_stop_rxtx(de);
1007 spin_unlock_irqrestore(&de->lock, flags);
1008 de_set_media(de);
1009 de_start_rxtx(de);
1011 no_link_yet:
1012 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1013 add_timer(&de->media_timer);
1015 if (netif_msg_timer(de))
1016 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1017 dev->name, media_name[de->media_type], status);
1020 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1022 switch (new_media) {
1023 case DE_MEDIA_TP_AUTO:
1024 if (!(de->media_advertise & ADVERTISED_Autoneg))
1025 return 0;
1026 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1027 return 0;
1028 break;
1029 case DE_MEDIA_BNC:
1030 if (!(de->media_advertise & ADVERTISED_BNC))
1031 return 0;
1032 break;
1033 case DE_MEDIA_AUI:
1034 if (!(de->media_advertise & ADVERTISED_AUI))
1035 return 0;
1036 break;
1037 case DE_MEDIA_TP:
1038 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1039 return 0;
1040 break;
1041 case DE_MEDIA_TP_FD:
1042 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1043 return 0;
1044 break;
1047 return 1;
1050 static void de21041_media_timer (unsigned long data)
1052 struct de_private *de = (struct de_private *) data;
1053 struct net_device *dev = de->dev;
1054 u32 status = dr32(SIAStatus);
1055 unsigned int carrier;
1056 unsigned long flags;
1058 carrier = (status & NetCxnErr) ? 0 : 1;
1060 if (carrier) {
1061 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1062 de->media_type == DE_MEDIA_TP ||
1063 de->media_type == DE_MEDIA_TP_FD) &&
1064 (status & LinkFailStatus))
1065 goto no_link_yet;
1067 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1068 add_timer(&de->media_timer);
1069 if (!netif_carrier_ok(dev))
1070 de_link_up(de);
1071 else
1072 if (netif_msg_timer(de))
1073 printk(KERN_INFO "%s: %s link ok, mode %x status %x\n",
1074 dev->name, media_name[de->media_type],
1075 dr32(MacMode), status);
1076 return;
1079 de_link_down(de);
1081 /* if media type locked, don't switch media */
1082 if (de->media_lock)
1083 goto set_media;
1085 /* if activity detected, use that as hint for new media type */
1086 if (status & NonselPortActive) {
1087 unsigned int have_media = 1;
1089 /* if AUI/BNC selected, then activity is on TP port */
1090 if (de->media_type == DE_MEDIA_AUI ||
1091 de->media_type == DE_MEDIA_BNC) {
1092 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1093 de->media_type = DE_MEDIA_TP_AUTO;
1094 else
1095 have_media = 0;
1098 /* TP selected. If there is only TP and BNC, then it's BNC */
1099 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1100 de_ok_to_advertise(de, DE_MEDIA_BNC))
1101 de->media_type = DE_MEDIA_BNC;
1103 /* TP selected. If there is only TP and AUI, then it's AUI */
1104 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1105 de_ok_to_advertise(de, DE_MEDIA_AUI))
1106 de->media_type = DE_MEDIA_AUI;
1108 /* otherwise, ignore the hint */
1109 else
1110 have_media = 0;
1112 if (have_media)
1113 goto set_media;
1117 * Absent or ambiguous activity hint, move to next advertised
1118 * media state. If de->media_type is left unchanged, this
1119 * simply resets the PHY and reloads the current media settings.
1121 if (de->media_type == DE_MEDIA_AUI) {
1122 u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1123 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1124 } else if (de->media_type == DE_MEDIA_BNC) {
1125 u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI };
1126 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1127 } else {
1128 u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO };
1129 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1132 set_media:
1133 spin_lock_irqsave(&de->lock, flags);
1134 de_stop_rxtx(de);
1135 spin_unlock_irqrestore(&de->lock, flags);
1136 de_set_media(de);
1137 de_start_rxtx(de);
1139 no_link_yet:
1140 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1141 add_timer(&de->media_timer);
1143 if (netif_msg_timer(de))
1144 printk(KERN_INFO "%s: no link, trying media %s, status %x\n",
1145 dev->name, media_name[de->media_type], status);
1148 static void de_media_interrupt (struct de_private *de, u32 status)
1150 if (status & LinkPass) {
1151 de_link_up(de);
1152 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1153 return;
1156 if (!(status & LinkFail))
1157 BUG();
1159 if (netif_carrier_ok(de->dev)) {
1160 de_link_down(de);
1161 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1165 static int de_reset_mac (struct de_private *de)
1167 u32 status, tmp;
1170 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1171 * in this area.
1174 if (dr32(BusMode) == 0xffffffff)
1175 return -EBUSY;
1177 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1178 dw32 (BusMode, CmdReset);
1179 mdelay (1);
1181 dw32 (BusMode, de_bus_mode);
1182 mdelay (1);
1184 for (tmp = 0; tmp < 5; tmp++) {
1185 dr32 (BusMode);
1186 mdelay (1);
1189 mdelay (1);
1191 status = dr32(MacStatus);
1192 if (status & (RxState | TxState))
1193 return -EBUSY;
1194 if (status == 0xffffffff)
1195 return -ENODEV;
1196 return 0;
1199 static void de_adapter_wake (struct de_private *de)
1201 u32 pmctl;
1203 if (de->de21040)
1204 return;
1206 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1207 if (pmctl & PM_Mask) {
1208 pmctl &= ~PM_Mask;
1209 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1211 /* de4x5.c delays, so we do too */
1212 msleep(10);
1216 static void de_adapter_sleep (struct de_private *de)
1218 u32 pmctl;
1220 if (de->de21040)
1221 return;
1223 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1224 pmctl |= PM_Sleep;
1225 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1228 static int de_init_hw (struct de_private *de)
1230 struct net_device *dev = de->dev;
1231 u32 macmode;
1232 int rc;
1234 de_adapter_wake(de);
1236 macmode = dr32(MacMode) & ~MacModeClear;
1238 rc = de_reset_mac(de);
1239 if (rc)
1240 return rc;
1242 de_set_media(de); /* reset phy */
1244 dw32(RxRingAddr, de->ring_dma);
1245 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1247 dw32(MacMode, RxTx | macmode);
1249 dr32(RxMissed); /* self-clearing */
1251 dw32(IntrMask, de_intr_mask);
1253 de_set_rx_mode(dev);
1255 return 0;
1258 static int de_refill_rx (struct de_private *de)
1260 unsigned i;
1262 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1263 struct sk_buff *skb;
1265 skb = dev_alloc_skb(de->rx_buf_sz);
1266 if (!skb)
1267 goto err_out;
1269 skb->dev = de->dev;
1271 de->rx_skb[i].mapping = pci_map_single(de->pdev,
1272 skb->tail, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1273 de->rx_skb[i].skb = skb;
1275 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1276 if (i == (DE_RX_RING_SIZE - 1))
1277 de->rx_ring[i].opts2 =
1278 cpu_to_le32(RingEnd | de->rx_buf_sz);
1279 else
1280 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1281 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1282 de->rx_ring[i].addr2 = 0;
1285 return 0;
1287 err_out:
1288 de_clean_rings(de);
1289 return -ENOMEM;
1292 static int de_init_rings (struct de_private *de)
1294 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1295 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1297 de->rx_tail = 0;
1298 de->tx_head = de->tx_tail = 0;
1300 return de_refill_rx (de);
1303 static int de_alloc_rings (struct de_private *de)
1305 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1306 if (!de->rx_ring)
1307 return -ENOMEM;
1308 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1309 return de_init_rings(de);
1312 static void de_clean_rings (struct de_private *de)
1314 unsigned i;
1316 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1317 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1318 wmb();
1319 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1320 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1321 wmb();
1323 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1324 if (de->rx_skb[i].skb) {
1325 pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1326 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1327 dev_kfree_skb(de->rx_skb[i].skb);
1331 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1332 struct sk_buff *skb = de->tx_skb[i].skb;
1333 if ((skb) && (skb != DE_DUMMY_SKB)) {
1334 if (skb != DE_SETUP_SKB) {
1335 dev_kfree_skb(skb);
1336 de->net_stats.tx_dropped++;
1337 pci_unmap_single(de->pdev,
1338 de->tx_skb[i].mapping,
1339 skb->len, PCI_DMA_TODEVICE);
1340 } else {
1341 pci_unmap_single(de->pdev,
1342 de->tx_skb[i].mapping,
1343 sizeof(de->setup_frame),
1344 PCI_DMA_TODEVICE);
1349 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1350 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1353 static void de_free_rings (struct de_private *de)
1355 de_clean_rings(de);
1356 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1357 de->rx_ring = NULL;
1358 de->tx_ring = NULL;
1361 static int de_open (struct net_device *dev)
1363 struct de_private *de = dev->priv;
1364 int rc;
1365 unsigned long flags;
1367 if (netif_msg_ifup(de))
1368 printk(KERN_DEBUG "%s: enabling interface\n", dev->name);
1370 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1372 rc = de_alloc_rings(de);
1373 if (rc) {
1374 printk(KERN_ERR "%s: ring allocation failure, err=%d\n",
1375 dev->name, rc);
1376 return rc;
1379 rc = de_init_hw(de);
1380 if (rc) {
1381 printk(KERN_ERR "%s: h/w init failure, err=%d\n",
1382 dev->name, rc);
1383 goto err_out_free;
1386 rc = request_irq(dev->irq, de_interrupt, SA_SHIRQ, dev->name, dev);
1387 if (rc) {
1388 printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n",
1389 dev->name, dev->irq, rc);
1390 goto err_out_hw;
1393 netif_start_queue(dev);
1394 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1396 return 0;
1398 err_out_hw:
1399 spin_lock_irqsave(&de->lock, flags);
1400 de_stop_hw(de);
1401 spin_unlock_irqrestore(&de->lock, flags);
1403 err_out_free:
1404 de_free_rings(de);
1405 return rc;
1408 static int de_close (struct net_device *dev)
1410 struct de_private *de = dev->priv;
1411 unsigned long flags;
1413 if (netif_msg_ifdown(de))
1414 printk(KERN_DEBUG "%s: disabling interface\n", dev->name);
1416 del_timer_sync(&de->media_timer);
1418 spin_lock_irqsave(&de->lock, flags);
1419 de_stop_hw(de);
1420 netif_stop_queue(dev);
1421 netif_carrier_off(dev);
1422 spin_unlock_irqrestore(&de->lock, flags);
1424 free_irq(dev->irq, dev);
1426 de_free_rings(de);
1427 de_adapter_sleep(de);
1428 pci_disable_device(de->pdev);
1429 return 0;
1432 static void de_tx_timeout (struct net_device *dev)
1434 struct de_private *de = dev->priv;
1436 printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1437 dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1438 de->rx_tail, de->tx_head, de->tx_tail);
1440 del_timer_sync(&de->media_timer);
1442 disable_irq(dev->irq);
1443 spin_lock_irq(&de->lock);
1445 de_stop_hw(de);
1446 netif_stop_queue(dev);
1447 netif_carrier_off(dev);
1449 spin_unlock_irq(&de->lock);
1450 enable_irq(dev->irq);
1452 /* Update the error counts. */
1453 __de_get_stats(de);
1455 synchronize_irq(dev->irq);
1456 de_clean_rings(de);
1458 de_init_hw(de);
1460 netif_wake_queue(dev);
1463 static void __de_get_regs(struct de_private *de, u8 *buf)
1465 int i;
1466 u32 *rbuf = (u32 *)buf;
1468 /* read all CSRs */
1469 for (i = 0; i < DE_NUM_REGS; i++)
1470 rbuf[i] = dr32(i * 8);
1472 /* handle self-clearing RxMissed counter, CSR8 */
1473 de_rx_missed(de, rbuf[8]);
1476 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1478 ecmd->supported = de->media_supported;
1479 ecmd->transceiver = XCVR_INTERNAL;
1480 ecmd->phy_address = 0;
1481 ecmd->advertising = de->media_advertise;
1483 switch (de->media_type) {
1484 case DE_MEDIA_AUI:
1485 ecmd->port = PORT_AUI;
1486 ecmd->speed = 5;
1487 break;
1488 case DE_MEDIA_BNC:
1489 ecmd->port = PORT_BNC;
1490 ecmd->speed = 2;
1491 break;
1492 default:
1493 ecmd->port = PORT_TP;
1494 ecmd->speed = SPEED_10;
1495 break;
1498 if (dr32(MacMode) & FullDuplex)
1499 ecmd->duplex = DUPLEX_FULL;
1500 else
1501 ecmd->duplex = DUPLEX_HALF;
1503 if (de->media_lock)
1504 ecmd->autoneg = AUTONEG_DISABLE;
1505 else
1506 ecmd->autoneg = AUTONEG_ENABLE;
1508 /* ignore maxtxpkt, maxrxpkt for now */
1510 return 0;
1513 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1515 u32 new_media;
1516 unsigned int media_lock;
1518 if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2)
1519 return -EINVAL;
1520 if (de->de21040 && ecmd->speed == 2)
1521 return -EINVAL;
1522 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1523 return -EINVAL;
1524 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1525 return -EINVAL;
1526 if (de->de21040 && ecmd->port == PORT_BNC)
1527 return -EINVAL;
1528 if (ecmd->transceiver != XCVR_INTERNAL)
1529 return -EINVAL;
1530 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1531 return -EINVAL;
1532 if (ecmd->advertising & ~de->media_supported)
1533 return -EINVAL;
1534 if (ecmd->autoneg == AUTONEG_ENABLE &&
1535 (!(ecmd->advertising & ADVERTISED_Autoneg)))
1536 return -EINVAL;
1538 switch (ecmd->port) {
1539 case PORT_AUI:
1540 new_media = DE_MEDIA_AUI;
1541 if (!(ecmd->advertising & ADVERTISED_AUI))
1542 return -EINVAL;
1543 break;
1544 case PORT_BNC:
1545 new_media = DE_MEDIA_BNC;
1546 if (!(ecmd->advertising & ADVERTISED_BNC))
1547 return -EINVAL;
1548 break;
1549 default:
1550 if (ecmd->autoneg == AUTONEG_ENABLE)
1551 new_media = DE_MEDIA_TP_AUTO;
1552 else if (ecmd->duplex == DUPLEX_FULL)
1553 new_media = DE_MEDIA_TP_FD;
1554 else
1555 new_media = DE_MEDIA_TP;
1556 if (!(ecmd->advertising & ADVERTISED_TP))
1557 return -EINVAL;
1558 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1559 return -EINVAL;
1560 break;
1563 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1565 if ((new_media == de->media_type) &&
1566 (media_lock == de->media_lock) &&
1567 (ecmd->advertising == de->media_advertise))
1568 return 0; /* nothing to change */
1570 de_link_down(de);
1571 de_stop_rxtx(de);
1573 de->media_type = new_media;
1574 de->media_lock = media_lock;
1575 de->media_advertise = ecmd->advertising;
1576 de_set_media(de);
1578 return 0;
1581 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1583 struct de_private *de = dev->priv;
1585 strcpy (info->driver, DRV_NAME);
1586 strcpy (info->version, DRV_VERSION);
1587 strcpy (info->bus_info, pci_name(de->pdev));
1588 info->eedump_len = DE_EEPROM_SIZE;
1591 static int de_get_regs_len(struct net_device *dev)
1593 return DE_REGS_SIZE;
1596 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1598 struct de_private *de = dev->priv;
1599 int rc;
1601 spin_lock_irq(&de->lock);
1602 rc = __de_get_settings(de, ecmd);
1603 spin_unlock_irq(&de->lock);
1605 return rc;
1608 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1610 struct de_private *de = dev->priv;
1611 int rc;
1613 spin_lock_irq(&de->lock);
1614 rc = __de_set_settings(de, ecmd);
1615 spin_unlock_irq(&de->lock);
1617 return rc;
1620 static u32 de_get_msglevel(struct net_device *dev)
1622 struct de_private *de = dev->priv;
1624 return de->msg_enable;
1627 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1629 struct de_private *de = dev->priv;
1631 de->msg_enable = msglvl;
1634 static int de_get_eeprom(struct net_device *dev,
1635 struct ethtool_eeprom *eeprom, u8 *data)
1637 struct de_private *de = dev->priv;
1639 if (!de->ee_data)
1640 return -EOPNOTSUPP;
1641 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1642 (eeprom->len != DE_EEPROM_SIZE))
1643 return -EINVAL;
1644 memcpy(data, de->ee_data, eeprom->len);
1646 return 0;
1649 static int de_nway_reset(struct net_device *dev)
1651 struct de_private *de = dev->priv;
1652 u32 status;
1654 if (de->media_type != DE_MEDIA_TP_AUTO)
1655 return -EINVAL;
1656 if (netif_carrier_ok(de->dev))
1657 de_link_down(de);
1659 status = dr32(SIAStatus);
1660 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1661 if (netif_msg_link(de))
1662 printk(KERN_INFO "%s: link nway restart, status %x,%x\n",
1663 de->dev->name, status, dr32(SIAStatus));
1664 return 0;
1667 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1668 void *data)
1670 struct de_private *de = dev->priv;
1672 regs->version = (DE_REGS_VER << 2) | de->de21040;
1674 spin_lock_irq(&de->lock);
1675 __de_get_regs(de, data);
1676 spin_unlock_irq(&de->lock);
1679 static struct ethtool_ops de_ethtool_ops = {
1680 .get_link = ethtool_op_get_link,
1681 .get_tx_csum = ethtool_op_get_tx_csum,
1682 .get_sg = ethtool_op_get_sg,
1683 .get_drvinfo = de_get_drvinfo,
1684 .get_regs_len = de_get_regs_len,
1685 .get_settings = de_get_settings,
1686 .set_settings = de_set_settings,
1687 .get_msglevel = de_get_msglevel,
1688 .set_msglevel = de_set_msglevel,
1689 .get_eeprom = de_get_eeprom,
1690 .nway_reset = de_nway_reset,
1691 .get_regs = de_get_regs,
1694 static void __init de21040_get_mac_address (struct de_private *de)
1696 unsigned i;
1698 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1700 for (i = 0; i < 6; i++) {
1701 int value, boguscnt = 100000;
1703 value = dr32(ROMCmd);
1704 while (value < 0 && --boguscnt > 0);
1705 de->dev->dev_addr[i] = value;
1706 udelay(1);
1707 if (boguscnt <= 0)
1708 printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i);
1712 static void __init de21040_get_media_info(struct de_private *de)
1714 unsigned int i;
1716 de->media_type = DE_MEDIA_TP;
1717 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1718 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1719 de->media_advertise = de->media_supported;
1721 for (i = 0; i < DE_MAX_MEDIA; i++) {
1722 switch (i) {
1723 case DE_MEDIA_AUI:
1724 case DE_MEDIA_TP:
1725 case DE_MEDIA_TP_FD:
1726 de->media[i].type = i;
1727 de->media[i].csr13 = t21040_csr13[i];
1728 de->media[i].csr14 = t21040_csr14[i];
1729 de->media[i].csr15 = t21040_csr15[i];
1730 break;
1731 default:
1732 de->media[i].type = DE_MEDIA_INVALID;
1733 break;
1738 /* Note: this routine returns extra data bits for size detection. */
1739 static unsigned __init tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1741 int i;
1742 unsigned retval = 0;
1743 void __iomem *ee_addr = regs + ROMCmd;
1744 int read_cmd = location | (EE_READ_CMD << addr_len);
1746 writel(EE_ENB & ~EE_CS, ee_addr);
1747 writel(EE_ENB, ee_addr);
1749 /* Shift the read command bits out. */
1750 for (i = 4 + addr_len; i >= 0; i--) {
1751 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1752 writel(EE_ENB | dataval, ee_addr);
1753 readl(ee_addr);
1754 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1755 readl(ee_addr);
1756 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1758 writel(EE_ENB, ee_addr);
1759 readl(ee_addr);
1761 for (i = 16; i > 0; i--) {
1762 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1763 readl(ee_addr);
1764 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1765 writel(EE_ENB, ee_addr);
1766 readl(ee_addr);
1769 /* Terminate the EEPROM access. */
1770 writel(EE_ENB & ~EE_CS, ee_addr);
1771 return retval;
1774 static void __init de21041_get_srom_info (struct de_private *de)
1776 unsigned i, sa_offset = 0, ofs;
1777 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1778 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1779 struct de_srom_info_leaf *il;
1780 void *bufp;
1782 /* download entire eeprom */
1783 for (i = 0; i < DE_EEPROM_WORDS; i++)
1784 ((u16 *)ee_data)[i] =
1785 le16_to_cpu(tulip_read_eeprom(de->regs, i, ee_addr_size));
1787 /* DEC now has a specification but early board makers
1788 just put the address in the first EEPROM locations. */
1789 /* This does memcmp(eedata, eedata+16, 8) */
1790 for (i = 0; i < 8; i ++)
1791 if (ee_data[i] != ee_data[16+i])
1792 sa_offset = 20;
1794 /* store MAC address */
1795 for (i = 0; i < 6; i ++)
1796 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1798 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1799 ofs = ee_data[SROMC0InfoLeaf];
1800 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1801 goto bad_srom;
1803 /* get pointer to info leaf */
1804 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1806 /* paranoia checks */
1807 if (il->n_blocks == 0)
1808 goto bad_srom;
1809 if ((sizeof(ee_data) - ofs) <
1810 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1811 goto bad_srom;
1813 /* get default media type */
1814 switch (DE_UNALIGNED_16(&il->default_media)) {
1815 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1816 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1817 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1818 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1821 if (netif_msg_probe(de))
1822 printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n",
1823 de->board_idx, ofs,
1824 media_name[de->media_type]);
1826 /* init SIA register values to defaults */
1827 for (i = 0; i < DE_MAX_MEDIA; i++) {
1828 de->media[i].type = DE_MEDIA_INVALID;
1829 de->media[i].csr13 = 0xffff;
1830 de->media[i].csr14 = 0xffff;
1831 de->media[i].csr15 = 0xffff;
1834 /* parse media blocks to see what medias are supported,
1835 * and if any custom CSR values are provided
1837 bufp = ((void *)il) + sizeof(*il);
1838 for (i = 0; i < il->n_blocks; i++) {
1839 struct de_srom_media_block *ib = bufp;
1840 unsigned idx;
1842 /* index based on media type in media block */
1843 switch(ib->opts & MediaBlockMask) {
1844 case 0: /* 10baseT */
1845 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1846 | SUPPORTED_Autoneg;
1847 idx = DE_MEDIA_TP;
1848 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1849 break;
1850 case 1: /* BNC */
1851 de->media_supported |= SUPPORTED_BNC;
1852 idx = DE_MEDIA_BNC;
1853 break;
1854 case 2: /* AUI */
1855 de->media_supported |= SUPPORTED_AUI;
1856 idx = DE_MEDIA_AUI;
1857 break;
1858 case 4: /* 10baseT-FD */
1859 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1860 | SUPPORTED_Autoneg;
1861 idx = DE_MEDIA_TP_FD;
1862 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1863 break;
1864 default:
1865 goto bad_srom;
1868 de->media[idx].type = idx;
1870 if (netif_msg_probe(de))
1871 printk(KERN_INFO "de%d: media block #%u: %s",
1872 de->board_idx, i,
1873 media_name[de->media[idx].type]);
1875 bufp += sizeof (ib->opts);
1877 if (ib->opts & MediaCustomCSRs) {
1878 de->media[idx].csr13 = DE_UNALIGNED_16(&ib->csr13);
1879 de->media[idx].csr14 = DE_UNALIGNED_16(&ib->csr14);
1880 de->media[idx].csr15 = DE_UNALIGNED_16(&ib->csr15);
1881 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1882 sizeof(ib->csr15);
1884 if (netif_msg_probe(de))
1885 printk(" (%x,%x,%x)\n",
1886 de->media[idx].csr13,
1887 de->media[idx].csr14,
1888 de->media[idx].csr15);
1890 } else if (netif_msg_probe(de))
1891 printk("\n");
1893 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1894 break;
1897 de->media_advertise = de->media_supported;
1899 fill_defaults:
1900 /* fill in defaults, for cases where custom CSRs not used */
1901 for (i = 0; i < DE_MAX_MEDIA; i++) {
1902 if (de->media[i].csr13 == 0xffff)
1903 de->media[i].csr13 = t21041_csr13[i];
1904 if (de->media[i].csr14 == 0xffff)
1905 de->media[i].csr14 = t21041_csr14[i];
1906 if (de->media[i].csr15 == 0xffff)
1907 de->media[i].csr15 = t21041_csr15[i];
1910 de->ee_data = kmalloc(DE_EEPROM_SIZE, GFP_KERNEL);
1911 if (de->ee_data)
1912 memcpy(de->ee_data, &ee_data[0], DE_EEPROM_SIZE);
1914 return;
1916 bad_srom:
1917 /* for error cases, it's ok to assume we support all these */
1918 for (i = 0; i < DE_MAX_MEDIA; i++)
1919 de->media[i].type = i;
1920 de->media_supported =
1921 SUPPORTED_10baseT_Half |
1922 SUPPORTED_10baseT_Full |
1923 SUPPORTED_Autoneg |
1924 SUPPORTED_TP |
1925 SUPPORTED_AUI |
1926 SUPPORTED_BNC;
1927 goto fill_defaults;
1930 static int __init de_init_one (struct pci_dev *pdev,
1931 const struct pci_device_id *ent)
1933 struct net_device *dev;
1934 struct de_private *de;
1935 int rc;
1936 void __iomem *regs;
1937 long pciaddr;
1938 static int board_idx = -1;
1940 board_idx++;
1942 #ifndef MODULE
1943 if (board_idx == 0)
1944 printk("%s", version);
1945 #endif
1947 /* allocate a new ethernet device structure, and fill in defaults */
1948 dev = alloc_etherdev(sizeof(struct de_private));
1949 if (!dev)
1950 return -ENOMEM;
1952 SET_MODULE_OWNER(dev);
1953 SET_NETDEV_DEV(dev, &pdev->dev);
1954 dev->open = de_open;
1955 dev->stop = de_close;
1956 dev->set_multicast_list = de_set_rx_mode;
1957 dev->hard_start_xmit = de_start_xmit;
1958 dev->get_stats = de_get_stats;
1959 dev->ethtool_ops = &de_ethtool_ops;
1960 dev->tx_timeout = de_tx_timeout;
1961 dev->watchdog_timeo = TX_TIMEOUT;
1963 de = dev->priv;
1964 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1965 de->pdev = pdev;
1966 de->dev = dev;
1967 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1968 de->board_idx = board_idx;
1969 spin_lock_init (&de->lock);
1970 init_timer(&de->media_timer);
1971 if (de->de21040)
1972 de->media_timer.function = de21040_media_timer;
1973 else
1974 de->media_timer.function = de21041_media_timer;
1975 de->media_timer.data = (unsigned long) de;
1977 netif_carrier_off(dev);
1978 netif_stop_queue(dev);
1980 /* wake up device, assign resources */
1981 rc = pci_enable_device(pdev);
1982 if (rc)
1983 goto err_out_free;
1985 /* reserve PCI resources to ensure driver atomicity */
1986 rc = pci_request_regions(pdev, DRV_NAME);
1987 if (rc)
1988 goto err_out_disable;
1990 /* check for invalid IRQ value */
1991 if (pdev->irq < 2) {
1992 rc = -EIO;
1993 printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n",
1994 pdev->irq, pci_name(pdev));
1995 goto err_out_res;
1998 dev->irq = pdev->irq;
2000 /* obtain and check validity of PCI I/O address */
2001 pciaddr = pci_resource_start(pdev, 1);
2002 if (!pciaddr) {
2003 rc = -EIO;
2004 printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n",
2005 pci_name(pdev));
2006 goto err_out_res;
2008 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2009 rc = -EIO;
2010 printk(KERN_ERR PFX "MMIO resource (%lx) too small on pci dev %s\n",
2011 pci_resource_len(pdev, 1), pci_name(pdev));
2012 goto err_out_res;
2015 /* remap CSR registers */
2016 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2017 if (!regs) {
2018 rc = -EIO;
2019 printk(KERN_ERR PFX "Cannot map PCI MMIO (%lx@%lx) on pci dev %s\n",
2020 pci_resource_len(pdev, 1), pciaddr, pci_name(pdev));
2021 goto err_out_res;
2023 dev->base_addr = (unsigned long) regs;
2024 de->regs = regs;
2026 de_adapter_wake(de);
2028 /* make sure hardware is not running */
2029 rc = de_reset_mac(de);
2030 if (rc) {
2031 printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n",
2032 pci_name(pdev));
2033 goto err_out_iomap;
2036 /* get MAC address, initialize default media type and
2037 * get list of supported media
2039 if (de->de21040) {
2040 de21040_get_mac_address(de);
2041 de21040_get_media_info(de);
2042 } else {
2043 de21041_get_srom_info(de);
2046 /* register new network interface with kernel */
2047 rc = register_netdev(dev);
2048 if (rc)
2049 goto err_out_iomap;
2051 /* print info about board and interface just registered */
2052 printk (KERN_INFO "%s: %s at 0x%lx, "
2053 "%02x:%02x:%02x:%02x:%02x:%02x, "
2054 "IRQ %d\n",
2055 dev->name,
2056 de->de21040 ? "21040" : "21041",
2057 dev->base_addr,
2058 dev->dev_addr[0], dev->dev_addr[1],
2059 dev->dev_addr[2], dev->dev_addr[3],
2060 dev->dev_addr[4], dev->dev_addr[5],
2061 dev->irq);
2063 pci_set_drvdata(pdev, dev);
2065 /* enable busmastering */
2066 pci_set_master(pdev);
2068 /* put adapter to sleep */
2069 de_adapter_sleep(de);
2071 return 0;
2073 err_out_iomap:
2074 if (de->ee_data)
2075 kfree(de->ee_data);
2076 iounmap(regs);
2077 err_out_res:
2078 pci_release_regions(pdev);
2079 err_out_disable:
2080 pci_disable_device(pdev);
2081 err_out_free:
2082 free_netdev(dev);
2083 return rc;
2086 static void __exit de_remove_one (struct pci_dev *pdev)
2088 struct net_device *dev = pci_get_drvdata(pdev);
2089 struct de_private *de = dev->priv;
2091 if (!dev)
2092 BUG();
2093 unregister_netdev(dev);
2094 if (de->ee_data)
2095 kfree(de->ee_data);
2096 iounmap(de->regs);
2097 pci_release_regions(pdev);
2098 pci_disable_device(pdev);
2099 pci_set_drvdata(pdev, NULL);
2100 free_netdev(dev);
2103 #ifdef CONFIG_PM
2105 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2107 struct net_device *dev = pci_get_drvdata (pdev);
2108 struct de_private *de = dev->priv;
2110 rtnl_lock();
2111 if (netif_running (dev)) {
2112 del_timer_sync(&de->media_timer);
2114 disable_irq(dev->irq);
2115 spin_lock_irq(&de->lock);
2117 de_stop_hw(de);
2118 netif_stop_queue(dev);
2119 netif_device_detach(dev);
2120 netif_carrier_off(dev);
2122 spin_unlock_irq(&de->lock);
2123 enable_irq(dev->irq);
2125 /* Update the error counts. */
2126 __de_get_stats(de);
2128 synchronize_irq(dev->irq);
2129 de_clean_rings(de);
2131 de_adapter_sleep(de);
2132 pci_disable_device(pdev);
2133 } else {
2134 netif_device_detach(dev);
2136 rtnl_unlock();
2137 return 0;
2140 static int de_resume (struct pci_dev *pdev)
2142 struct net_device *dev = pci_get_drvdata (pdev);
2143 struct de_private *de = dev->priv;
2145 rtnl_lock();
2146 if (netif_device_present(dev))
2147 goto out;
2148 if (netif_running(dev)) {
2149 pci_enable_device(pdev);
2150 de_init_hw(de);
2151 netif_device_attach(dev);
2152 } else {
2153 netif_device_attach(dev);
2155 out:
2156 rtnl_unlock();
2157 return 0;
2160 #endif /* CONFIG_PM */
2162 static struct pci_driver de_driver = {
2163 .name = DRV_NAME,
2164 .id_table = de_pci_tbl,
2165 .probe = de_init_one,
2166 .remove = __exit_p(de_remove_one),
2167 #ifdef CONFIG_PM
2168 .suspend = de_suspend,
2169 .resume = de_resume,
2170 #endif
2173 static int __init de_init (void)
2175 #ifdef MODULE
2176 printk("%s", version);
2177 #endif
2178 return pci_module_init (&de_driver);
2181 static void __exit de_exit (void)
2183 pci_unregister_driver (&de_driver);
2186 module_init(de_init);
2187 module_exit(de_exit);