[PATCH] 3c59x PM fixes
[linux-2.6/verdex.git] / drivers / net / 3c59x.c
blobde0dc4ab6e549db5c7f0e44783d8225b6688158b
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 Written 1996-1999 by Donald Becker.
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
12 Problem reports and questions should be directed to
13 vortex@scyld.com
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Linux Kernel Additions:
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
198 #define DRV_NAME "3c59x"
199 #define DRV_VERSION "LK1.1.19"
200 #define DRV_RELDATE "10 Nov 2002"
204 /* A few values that may be tweaked. */
205 /* Keep the ring sizes a power of two for efficiency. */
206 #define TX_RING_SIZE 16
207 #define RX_RING_SIZE 32
208 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
210 /* "Knobs" that adjust features and parameters. */
211 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213 #ifndef __arm__
214 static int rx_copybreak = 200;
215 #else
216 /* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218 static int rx_copybreak = 1513;
219 #endif
220 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221 static const int mtu = 1500;
222 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223 static int max_interrupt_work = 32;
224 /* Tx timeout interval (millisecs) */
225 static int watchdog = 5000;
227 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
231 #define tx_interrupt_mitigation 1
233 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234 #define vortex_debug debug
235 #ifdef VORTEX_DEBUG
236 static int vortex_debug = VORTEX_DEBUG;
237 #else
238 static int vortex_debug = 1;
239 #endif
241 #include <linux/config.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/string.h>
245 #include <linux/timer.h>
246 #include <linux/errno.h>
247 #include <linux/in.h>
248 #include <linux/ioport.h>
249 #include <linux/slab.h>
250 #include <linux/interrupt.h>
251 #include <linux/pci.h>
252 #include <linux/mii.h>
253 #include <linux/init.h>
254 #include <linux/netdevice.h>
255 #include <linux/etherdevice.h>
256 #include <linux/skbuff.h>
257 #include <linux/ethtool.h>
258 #include <linux/highmem.h>
259 #include <linux/eisa.h>
260 #include <linux/bitops.h>
261 #include <asm/irq.h> /* For NR_IRQS only. */
262 #include <asm/io.h>
263 #include <asm/uaccess.h>
265 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
266 This is only in the support-all-kernels source code. */
268 #define RUN_AT(x) (jiffies + (x))
270 #include <linux/delay.h>
273 static char version[] __devinitdata =
274 DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
276 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
277 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
278 DRV_VERSION " " DRV_RELDATE);
279 MODULE_LICENSE("GPL");
280 MODULE_VERSION(DRV_VERSION);
283 /* Operational parameter that usually are not changed. */
285 /* The Vortex size is twice that of the original EtherLinkIII series: the
286 runtime register window, window 1, is now always mapped in.
287 The Boomerang size is twice as large as the Vortex -- it has additional
288 bus master control registers. */
289 #define VORTEX_TOTAL_SIZE 0x20
290 #define BOOMERANG_TOTAL_SIZE 0x40
292 /* Set iff a MII transceiver on any interface requires mdio preamble.
293 This only set with the original DP83840 on older 3c905 boards, so the extra
294 code size of a per-interface flag is not worthwhile. */
295 static char mii_preamble_required;
297 #define PFX DRV_NAME ": "
302 Theory of Operation
304 I. Board Compatibility
306 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
307 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
308 versions of the FastEtherLink cards. The supported product IDs are
309 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
311 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
312 with the kernel source or available from
313 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
315 II. Board-specific settings
317 PCI bus devices are configured by the system at boot time, so no jumpers
318 need to be set on the board. The system BIOS should be set to assign the
319 PCI INTA signal to an otherwise unused system IRQ line.
321 The EEPROM settings for media type and forced-full-duplex are observed.
322 The EEPROM media type should be left at the default "autoselect" unless using
323 10base2 or AUI connections which cannot be reliably detected.
325 III. Driver operation
327 The 3c59x series use an interface that's very similar to the previous 3c5x9
328 series. The primary interface is two programmed-I/O FIFOs, with an
329 alternate single-contiguous-region bus-master transfer (see next).
331 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
332 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
333 DEC Tulip and Intel Speedo3. The first chip version retains a compatible
334 programmed-I/O interface that has been removed in 'B' and subsequent board
335 revisions.
337 One extension that is advertised in a very large font is that the adapters
338 are capable of being bus masters. On the Vortex chip this capability was
339 only for a single contiguous region making it far less useful than the full
340 bus master capability. There is a significant performance impact of taking
341 an extra interrupt or polling for the completion of each transfer, as well
342 as difficulty sharing the single transfer engine between the transmit and
343 receive threads. Using DMA transfers is a win only with large blocks or
344 with the flawed versions of the Intel Orion motherboard PCI controller.
346 The Boomerang chip's full-bus-master interface is useful, and has the
347 currently-unused advantages over other similar chips that queued transmit
348 packets may be reordered and receive buffer groups are associated with a
349 single frame.
351 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
352 Rather than a fixed intermediate receive buffer, this scheme allocates
353 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
354 the copying breakpoint: it is chosen to trade-off the memory wasted by
355 passing the full-sized skbuff to the queue layer for all frames vs. the
356 copying cost of copying a frame to a correctly-sized skbuff.
358 IIIC. Synchronization
359 The driver runs as two independent, single-threaded flows of control. One
360 is the send-packet routine, which enforces single-threaded use by the
361 dev->tbusy flag. The other thread is the interrupt handler, which is single
362 threaded by the hardware and other software.
364 IV. Notes
366 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
367 3c590, 3c595, and 3c900 boards.
368 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
369 the EISA version is called "Demon". According to Terry these names come
370 from rides at the local amusement park.
372 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
373 This driver only supports ethernet packets because of the skbuff allocation
374 limit of 4K.
377 /* This table drives the PCI probe routines. It's mostly boilerplate in all
378 of the drivers, and will likely be provided by some future kernel.
380 enum pci_flags_bit {
381 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
382 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
385 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
386 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
387 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
388 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
389 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
390 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
392 enum vortex_chips {
393 CH_3C590 = 0,
394 CH_3C592,
395 CH_3C597,
396 CH_3C595_1,
397 CH_3C595_2,
399 CH_3C595_3,
400 CH_3C900_1,
401 CH_3C900_2,
402 CH_3C900_3,
403 CH_3C900_4,
405 CH_3C900_5,
406 CH_3C900B_FL,
407 CH_3C905_1,
408 CH_3C905_2,
409 CH_3C905B_1,
411 CH_3C905B_2,
412 CH_3C905B_FX,
413 CH_3C905C,
414 CH_3C9202,
415 CH_3C980,
416 CH_3C9805,
418 CH_3CSOHO100_TX,
419 CH_3C555,
420 CH_3C556,
421 CH_3C556B,
422 CH_3C575,
424 CH_3C575_1,
425 CH_3CCFE575,
426 CH_3CCFE575CT,
427 CH_3CCFE656,
428 CH_3CCFEM656,
430 CH_3CCFEM656_1,
431 CH_3C450,
432 CH_3C920,
433 CH_3C982A,
434 CH_3C982B,
436 CH_905BT4,
437 CH_920B_EMB_WNM,
441 /* note: this array directly indexed by above enums, and MUST
442 * be kept in sync with both the enums above, and the PCI device
443 * table below
445 static struct vortex_chip_info {
446 const char *name;
447 int flags;
448 int drv_flags;
449 int io_size;
450 } vortex_info_tbl[] __devinitdata = {
451 {"3c590 Vortex 10Mbps",
452 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
453 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
454 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
455 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
456 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
457 {"3c595 Vortex 100baseTx",
458 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
459 {"3c595 Vortex 100baseT4",
460 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
462 {"3c595 Vortex 100base-MII",
463 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
464 {"3c900 Boomerang 10baseT",
465 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
466 {"3c900 Boomerang 10Mbps Combo",
467 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
468 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
469 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
470 {"3c900 Cyclone 10Mbps Combo",
471 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
473 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
474 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
475 {"3c900B-FL Cyclone 10base-FL",
476 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
477 {"3c905 Boomerang 100baseTx",
478 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
479 {"3c905 Boomerang 100baseT4",
480 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
481 {"3c905B Cyclone 100baseTx",
482 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
484 {"3c905B Cyclone 10/100/BNC",
485 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
486 {"3c905B-FX Cyclone 100baseFx",
487 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
488 {"3c905C Tornado",
489 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
490 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
491 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
492 {"3c980 Cyclone",
493 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
495 {"3c980C Python-T",
496 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
497 {"3cSOHO100-TX Hurricane",
498 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
499 {"3c555 Laptop Hurricane",
500 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
501 {"3c556 Laptop Tornado",
502 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
503 HAS_HWCKSM, 128, },
504 {"3c556B Laptop Hurricane",
505 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
506 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
508 {"3c575 [Megahertz] 10/100 LAN CardBus",
509 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
510 {"3c575 Boomerang CardBus",
511 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
512 {"3CCFE575BT Cyclone CardBus",
513 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
514 INVERT_LED_PWR|HAS_HWCKSM, 128, },
515 {"3CCFE575CT Tornado CardBus",
516 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
517 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
518 {"3CCFE656 Cyclone CardBus",
519 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
520 INVERT_LED_PWR|HAS_HWCKSM, 128, },
522 {"3CCFEM656B Cyclone+Winmodem CardBus",
523 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
524 INVERT_LED_PWR|HAS_HWCKSM, 128, },
525 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
526 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
527 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
528 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
529 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
530 {"3c920 Tornado",
531 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
532 {"3c982 Hydra Dual Port A",
533 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
535 {"3c982 Hydra Dual Port B",
536 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
537 {"3c905B-T4",
538 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
539 {"3c920B-EMB-WNM Tornado",
540 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
542 {NULL,}, /* NULL terminated list. */
546 static struct pci_device_id vortex_pci_tbl[] = {
547 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
548 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
549 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
550 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
551 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
553 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
554 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
555 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
556 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
557 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
559 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
560 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
561 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
562 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
563 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
565 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
566 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
567 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
568 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
569 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
570 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
572 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
573 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
574 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
575 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
576 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
578 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
579 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
580 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
581 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
582 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
584 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
585 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
586 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
587 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
588 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
590 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
591 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
593 {0,} /* 0 terminated list. */
595 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
598 /* Operational definitions.
599 These are not used by other compilation units and thus are not
600 exported in a ".h" file.
602 First the windows. There are eight register windows, with the command
603 and status registers available in each.
605 #define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
606 #define EL3_CMD 0x0e
607 #define EL3_STATUS 0x0e
609 /* The top five bits written to EL3_CMD are a command, the lower
610 11 bits are the parameter, if applicable.
611 Note that 11 parameters bits was fine for ethernet, but the new chip
612 can handle FDDI length frames (~4500 octets) and now parameters count
613 32-bit 'Dwords' rather than octets. */
615 enum vortex_cmd {
616 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
617 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
618 UpStall = 6<<11, UpUnstall = (6<<11)+1,
619 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
620 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
621 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
622 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
623 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
624 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
625 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
627 /* The SetRxFilter command accepts the following classes: */
628 enum RxFilter {
629 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
631 /* Bits in the general status register. */
632 enum vortex_status {
633 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
634 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
635 IntReq = 0x0040, StatsFull = 0x0080,
636 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
637 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
638 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
641 /* Register window 1 offsets, the window used in normal operation.
642 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
643 enum Window1 {
644 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
645 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
646 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
648 enum Window0 {
649 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
650 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
651 IntrStatus=0x0E, /* Valid in all windows. */
653 enum Win0_EEPROM_bits {
654 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
655 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
656 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
658 /* EEPROM locations. */
659 enum eeprom_offset {
660 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
661 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
662 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
663 DriverTune=13, Checksum=15};
665 enum Window2 { /* Window 2. */
666 Wn2_ResetOptions=12,
668 enum Window3 { /* Window 3: MAC/config bits. */
669 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
672 #define BFEXT(value, offset, bitcount) \
673 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
675 #define BFINS(lhs, rhs, offset, bitcount) \
676 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
677 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
679 #define RAM_SIZE(v) BFEXT(v, 0, 3)
680 #define RAM_WIDTH(v) BFEXT(v, 3, 1)
681 #define RAM_SPEED(v) BFEXT(v, 4, 2)
682 #define ROM_SIZE(v) BFEXT(v, 6, 2)
683 #define RAM_SPLIT(v) BFEXT(v, 16, 2)
684 #define XCVR(v) BFEXT(v, 20, 4)
685 #define AUTOSELECT(v) BFEXT(v, 24, 1)
687 enum Window4 { /* Window 4: Xcvr/media bits. */
688 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
690 enum Win4_Media_bits {
691 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
692 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
693 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
694 Media_LnkBeat = 0x0800,
696 enum Window7 { /* Window 7: Bus Master control. */
697 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
698 Wn7_MasterStatus = 12,
700 /* Boomerang bus master control registers. */
701 enum MasterCtrl {
702 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
703 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
706 /* The Rx and Tx descriptor lists.
707 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
708 alignment contraint on tx_ring[] and rx_ring[]. */
709 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
710 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
711 struct boom_rx_desc {
712 u32 next; /* Last entry points to 0. */
713 s32 status;
714 u32 addr; /* Up to 63 addr/len pairs possible. */
715 s32 length; /* Set LAST_FRAG to indicate last pair. */
717 /* Values for the Rx status entry. */
718 enum rx_desc_status {
719 RxDComplete=0x00008000, RxDError=0x4000,
720 /* See boomerang_rx() for actual error bits */
721 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
722 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
725 #ifdef MAX_SKB_FRAGS
726 #define DO_ZEROCOPY 1
727 #else
728 #define DO_ZEROCOPY 0
729 #endif
731 struct boom_tx_desc {
732 u32 next; /* Last entry points to 0. */
733 s32 status; /* bits 0:12 length, others see below. */
734 #if DO_ZEROCOPY
735 struct {
736 u32 addr;
737 s32 length;
738 } frag[1+MAX_SKB_FRAGS];
739 #else
740 u32 addr;
741 s32 length;
742 #endif
745 /* Values for the Tx status entry. */
746 enum tx_desc_status {
747 CRCDisable=0x2000, TxDComplete=0x8000,
748 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
749 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
752 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
753 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
755 struct vortex_extra_stats {
756 unsigned long tx_deferred;
757 unsigned long tx_multiple_collisions;
758 unsigned long rx_bad_ssd;
761 struct vortex_private {
762 /* The Rx and Tx rings should be quad-word-aligned. */
763 struct boom_rx_desc* rx_ring;
764 struct boom_tx_desc* tx_ring;
765 dma_addr_t rx_ring_dma;
766 dma_addr_t tx_ring_dma;
767 /* The addresses of transmit- and receive-in-place skbuffs. */
768 struct sk_buff* rx_skbuff[RX_RING_SIZE];
769 struct sk_buff* tx_skbuff[TX_RING_SIZE];
770 unsigned int cur_rx, cur_tx; /* The next free ring entry */
771 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
772 struct net_device_stats stats; /* Generic stats */
773 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
774 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
775 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
777 /* PCI configuration space information. */
778 struct device *gendev;
779 char __iomem *cb_fn_base; /* CardBus function status addr space. */
781 /* Some values here only for performance evaluation and path-coverage */
782 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
783 int card_idx;
785 /* The remainder are related to chip state, mostly media selection. */
786 struct timer_list timer; /* Media selection timer. */
787 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
788 int options; /* User-settable misc. driver options. */
789 unsigned int media_override:4, /* Passed-in media type. */
790 default_media:4, /* Read from the EEPROM/Wn3_Config. */
791 full_duplex:1, force_fd:1, autoselect:1,
792 bus_master:1, /* Vortex can only do a fragment bus-m. */
793 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
794 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
795 partner_flow_ctrl:1, /* Partner supports flow control */
796 has_nway:1,
797 enable_wol:1, /* Wake-on-LAN is enabled */
798 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
799 open:1,
800 medialock:1,
801 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
802 large_frames:1; /* accept large frames */
803 int drv_flags;
804 u16 status_enable;
805 u16 intr_enable;
806 u16 available_media; /* From Wn3_Options. */
807 u16 capabilities, info1, info2; /* Various, from EEPROM. */
808 u16 advertising; /* NWay media advertisement */
809 unsigned char phys[2]; /* MII device addresses. */
810 u16 deferred; /* Resend these interrupts when we
811 * bale from the ISR */
812 u16 io_size; /* Size of PCI region (for release_region) */
813 spinlock_t lock; /* Serialise access to device & its vortex_private */
814 struct mii_if_info mii; /* MII lib hooks/info */
817 #ifdef CONFIG_PCI
818 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
819 #else
820 #define DEVICE_PCI(dev) NULL
821 #endif
823 #define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
825 #ifdef CONFIG_EISA
826 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
827 #else
828 #define DEVICE_EISA(dev) NULL
829 #endif
831 #define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
833 /* The action to take with a media selection timer tick.
834 Note that we deviate from the 3Com order by checking 10base2 before AUI.
836 enum xcvr_types {
837 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
838 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
841 static struct media_table {
842 char *name;
843 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
844 mask:8, /* The transceiver-present bit in Wn3_Config.*/
845 next:8; /* The media type to try next. */
846 int wait; /* Time before we check media status. */
847 } media_tbl[] = {
848 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
849 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
850 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
851 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
852 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
853 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
854 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
855 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
856 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
857 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
858 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
861 static struct {
862 const char str[ETH_GSTRING_LEN];
863 } ethtool_stats_keys[] = {
864 { "tx_deferred" },
865 { "tx_multiple_collisions" },
866 { "rx_bad_ssd" },
869 /* number of ETHTOOL_GSTATS u64's */
870 #define VORTEX_NUM_STATS 3
872 static int vortex_probe1(struct device *gendev, long ioaddr, int irq,
873 int chip_idx, int card_idx);
874 static void vortex_up(struct net_device *dev);
875 static void vortex_down(struct net_device *dev, int final);
876 static int vortex_open(struct net_device *dev);
877 static void mdio_sync(long ioaddr, int bits);
878 static int mdio_read(struct net_device *dev, int phy_id, int location);
879 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
880 static void vortex_timer(unsigned long arg);
881 static void rx_oom_timer(unsigned long arg);
882 static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
883 static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
884 static int vortex_rx(struct net_device *dev);
885 static int boomerang_rx(struct net_device *dev);
886 static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
887 static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
888 static int vortex_close(struct net_device *dev);
889 static void dump_tx_ring(struct net_device *dev);
890 static void update_stats(long ioaddr, struct net_device *dev);
891 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
892 static void set_rx_mode(struct net_device *dev);
893 #ifdef CONFIG_PCI
894 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
895 #endif
896 static void vortex_tx_timeout(struct net_device *dev);
897 static void acpi_set_WOL(struct net_device *dev);
898 static struct ethtool_ops vortex_ethtool_ops;
899 static void set_8021q_mode(struct net_device *dev, int enable);
902 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
903 /* Option count limit only -- unlimited interfaces are supported. */
904 #define MAX_UNITS 8
905 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1,};
906 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
907 static int hw_checksums[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
908 static int flow_ctrl[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
909 static int enable_wol[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
910 static int global_options = -1;
911 static int global_full_duplex = -1;
912 static int global_enable_wol = -1;
914 /* #define dev_alloc_skb dev_alloc_skb_debug */
916 /* Variables to work-around the Compaq PCI BIOS32 problem. */
917 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
918 static struct net_device *compaq_net_device;
920 static int vortex_cards_found;
922 module_param(debug, int, 0);
923 module_param(global_options, int, 0);
924 module_param_array(options, int, NULL, 0);
925 module_param(global_full_duplex, int, 0);
926 module_param_array(full_duplex, int, NULL, 0);
927 module_param_array(hw_checksums, int, NULL, 0);
928 module_param_array(flow_ctrl, int, NULL, 0);
929 module_param(global_enable_wol, int, 0);
930 module_param_array(enable_wol, int, NULL, 0);
931 module_param(rx_copybreak, int, 0);
932 module_param(max_interrupt_work, int, 0);
933 module_param(compaq_ioaddr, int, 0);
934 module_param(compaq_irq, int, 0);
935 module_param(compaq_device_id, int, 0);
936 module_param(watchdog, int, 0);
937 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
938 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
939 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
940 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
941 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if options is unset");
942 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
943 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
944 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
945 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if options is unset");
946 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
947 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
948 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
949 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
950 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
951 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
953 #ifdef CONFIG_NET_POLL_CONTROLLER
954 static void poll_vortex(struct net_device *dev)
956 struct vortex_private *vp = netdev_priv(dev);
957 unsigned long flags;
958 local_save_flags(flags);
959 local_irq_disable();
960 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
961 local_irq_restore(flags);
963 #endif
965 #ifdef CONFIG_PM
967 static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
969 struct net_device *dev = pci_get_drvdata(pdev);
971 if (dev && dev->priv) {
972 if (netif_running(dev)) {
973 netif_device_detach(dev);
974 vortex_down(dev, 1);
976 pci_save_state(pdev);
977 pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
978 free_irq(dev->irq, dev);
979 pci_disable_device(pdev);
980 pci_set_power_state(pdev, pci_choose_state(pdev, state));
982 return 0;
985 static int vortex_resume (struct pci_dev *pdev)
987 struct net_device *dev = pci_get_drvdata(pdev);
988 struct vortex_private *vp = netdev_priv(dev);
990 if (dev && vp) {
991 pci_set_power_state(pdev, PCI_D0);
992 pci_restore_state(pdev);
993 pci_enable_device(pdev);
994 pci_set_master(pdev);
995 if (request_irq(dev->irq, vp->full_bus_master_rx ?
996 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev)) {
997 printk(KERN_WARNING "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
998 pci_disable_device(pdev);
999 return -EBUSY;
1001 if (netif_running(dev)) {
1002 vortex_up(dev);
1003 netif_device_attach(dev);
1006 return 0;
1009 #endif /* CONFIG_PM */
1011 #ifdef CONFIG_EISA
1012 static struct eisa_device_id vortex_eisa_ids[] = {
1013 { "TCM5920", CH_3C592 },
1014 { "TCM5970", CH_3C597 },
1015 { "" }
1018 static int vortex_eisa_probe (struct device *device);
1019 static int vortex_eisa_remove (struct device *device);
1021 static struct eisa_driver vortex_eisa_driver = {
1022 .id_table = vortex_eisa_ids,
1023 .driver = {
1024 .name = "3c59x",
1025 .probe = vortex_eisa_probe,
1026 .remove = vortex_eisa_remove
1030 static int vortex_eisa_probe (struct device *device)
1032 long ioaddr;
1033 struct eisa_device *edev;
1035 edev = to_eisa_device (device);
1036 ioaddr = edev->base_addr;
1038 if (!request_region(ioaddr, VORTEX_TOTAL_SIZE, DRV_NAME))
1039 return -EBUSY;
1041 if (vortex_probe1(device, ioaddr, inw(ioaddr + 0xC88) >> 12,
1042 edev->id.driver_data, vortex_cards_found)) {
1043 release_region (ioaddr, VORTEX_TOTAL_SIZE);
1044 return -ENODEV;
1047 vortex_cards_found++;
1049 return 0;
1052 static int vortex_eisa_remove (struct device *device)
1054 struct eisa_device *edev;
1055 struct net_device *dev;
1056 struct vortex_private *vp;
1057 long ioaddr;
1059 edev = to_eisa_device (device);
1060 dev = eisa_get_drvdata (edev);
1062 if (!dev) {
1063 printk("vortex_eisa_remove called for Compaq device!\n");
1064 BUG();
1067 vp = netdev_priv(dev);
1068 ioaddr = dev->base_addr;
1070 unregister_netdev (dev);
1071 outw (TotalReset|0x14, ioaddr + EL3_CMD);
1072 release_region (ioaddr, VORTEX_TOTAL_SIZE);
1074 free_netdev (dev);
1075 return 0;
1077 #endif
1079 /* returns count found (>= 0), or negative on error */
1080 static int __init vortex_eisa_init (void)
1082 int eisa_found = 0;
1083 int orig_cards_found = vortex_cards_found;
1085 #ifdef CONFIG_EISA
1086 if (eisa_driver_register (&vortex_eisa_driver) >= 0) {
1087 /* Because of the way EISA bus is probed, we cannot assume
1088 * any device have been found when we exit from
1089 * eisa_driver_register (the bus root driver may not be
1090 * initialized yet). So we blindly assume something was
1091 * found, and let the sysfs magic happend... */
1093 eisa_found = 1;
1095 #endif
1097 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1098 if (compaq_ioaddr) {
1099 vortex_probe1(NULL, compaq_ioaddr, compaq_irq,
1100 compaq_device_id, vortex_cards_found++);
1103 return vortex_cards_found - orig_cards_found + eisa_found;
1106 /* returns count (>= 0), or negative on error */
1107 static int __devinit vortex_init_one (struct pci_dev *pdev,
1108 const struct pci_device_id *ent)
1110 int rc;
1112 /* wake up and enable device */
1113 rc = pci_enable_device (pdev);
1114 if (rc < 0)
1115 goto out;
1117 rc = vortex_probe1 (&pdev->dev, pci_resource_start (pdev, 0),
1118 pdev->irq, ent->driver_data, vortex_cards_found);
1119 if (rc < 0) {
1120 pci_disable_device (pdev);
1121 goto out;
1124 vortex_cards_found++;
1126 out:
1127 return rc;
1131 * Start up the PCI/EISA device which is described by *gendev.
1132 * Return 0 on success.
1134 * NOTE: pdev can be NULL, for the case of a Compaq device
1136 static int __devinit vortex_probe1(struct device *gendev,
1137 long ioaddr, int irq,
1138 int chip_idx, int card_idx)
1140 struct vortex_private *vp;
1141 int option;
1142 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1143 int i, step;
1144 struct net_device *dev;
1145 static int printed_version;
1146 int retval, print_info;
1147 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1148 char *print_name = "3c59x";
1149 struct pci_dev *pdev = NULL;
1150 struct eisa_device *edev = NULL;
1152 if (!printed_version) {
1153 printk (version);
1154 printed_version = 1;
1157 if (gendev) {
1158 if ((pdev = DEVICE_PCI(gendev))) {
1159 print_name = pci_name(pdev);
1162 if ((edev = DEVICE_EISA(gendev))) {
1163 print_name = edev->dev.bus_id;
1167 dev = alloc_etherdev(sizeof(*vp));
1168 retval = -ENOMEM;
1169 if (!dev) {
1170 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1171 goto out;
1173 SET_MODULE_OWNER(dev);
1174 SET_NETDEV_DEV(dev, gendev);
1175 vp = netdev_priv(dev);
1177 option = global_options;
1179 /* The lower four bits are the media type. */
1180 if (dev->mem_start) {
1182 * The 'options' param is passed in as the third arg to the
1183 * LILO 'ether=' argument for non-modular use
1185 option = dev->mem_start;
1187 else if (card_idx < MAX_UNITS) {
1188 if (options[card_idx] >= 0)
1189 option = options[card_idx];
1192 if (option > 0) {
1193 if (option & 0x8000)
1194 vortex_debug = 7;
1195 if (option & 0x4000)
1196 vortex_debug = 2;
1197 if (option & 0x0400)
1198 vp->enable_wol = 1;
1201 print_info = (vortex_debug > 1);
1202 if (print_info)
1203 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1205 printk(KERN_INFO "%s: 3Com %s %s at 0x%lx. Vers " DRV_VERSION "\n",
1206 print_name,
1207 pdev ? "PCI" : "EISA",
1208 vci->name,
1209 ioaddr);
1211 dev->base_addr = ioaddr;
1212 dev->irq = irq;
1213 dev->mtu = mtu;
1214 vp->large_frames = mtu > 1500;
1215 vp->drv_flags = vci->drv_flags;
1216 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1217 vp->io_size = vci->io_size;
1218 vp->card_idx = card_idx;
1220 /* module list only for Compaq device */
1221 if (gendev == NULL) {
1222 compaq_net_device = dev;
1225 /* PCI-only startup logic */
1226 if (pdev) {
1227 /* EISA resources already marked, so only PCI needs to do this here */
1228 /* Ignore return value, because Cardbus drivers already allocate for us */
1229 if (request_region(ioaddr, vci->io_size, print_name) != NULL)
1230 vp->must_free_region = 1;
1232 /* enable bus-mastering if necessary */
1233 if (vci->flags & PCI_USES_MASTER)
1234 pci_set_master (pdev);
1236 if (vci->drv_flags & IS_VORTEX) {
1237 u8 pci_latency;
1238 u8 new_latency = 248;
1240 /* Check the PCI latency value. On the 3c590 series the latency timer
1241 must be set to the maximum value to avoid data corruption that occurs
1242 when the timer expires during a transfer. This bug exists the Vortex
1243 chip only. */
1244 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1245 if (pci_latency < new_latency) {
1246 printk(KERN_INFO "%s: Overriding PCI latency"
1247 " timer (CFLT) setting of %d, new value is %d.\n",
1248 print_name, pci_latency, new_latency);
1249 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1254 spin_lock_init(&vp->lock);
1255 vp->gendev = gendev;
1256 vp->mii.dev = dev;
1257 vp->mii.mdio_read = mdio_read;
1258 vp->mii.mdio_write = mdio_write;
1259 vp->mii.phy_id_mask = 0x1f;
1260 vp->mii.reg_num_mask = 0x1f;
1262 /* Makes sure rings are at least 16 byte aligned. */
1263 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1264 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1265 &vp->rx_ring_dma);
1266 retval = -ENOMEM;
1267 if (vp->rx_ring == 0)
1268 goto free_region;
1270 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1271 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1273 /* if we are a PCI driver, we store info in pdev->driver_data
1274 * instead of a module list */
1275 if (pdev)
1276 pci_set_drvdata(pdev, dev);
1277 if (edev)
1278 eisa_set_drvdata (edev, dev);
1280 vp->media_override = 7;
1281 if (option >= 0) {
1282 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1283 if (vp->media_override != 7)
1284 vp->medialock = 1;
1285 vp->full_duplex = (option & 0x200) ? 1 : 0;
1286 vp->bus_master = (option & 16) ? 1 : 0;
1289 if (global_full_duplex > 0)
1290 vp->full_duplex = 1;
1291 if (global_enable_wol > 0)
1292 vp->enable_wol = 1;
1294 if (card_idx < MAX_UNITS) {
1295 if (full_duplex[card_idx] > 0)
1296 vp->full_duplex = 1;
1297 if (flow_ctrl[card_idx] > 0)
1298 vp->flow_ctrl = 1;
1299 if (enable_wol[card_idx] > 0)
1300 vp->enable_wol = 1;
1303 vp->force_fd = vp->full_duplex;
1304 vp->options = option;
1305 /* Read the station address from the EEPROM. */
1306 EL3WINDOW(0);
1308 int base;
1310 if (vci->drv_flags & EEPROM_8BIT)
1311 base = 0x230;
1312 else if (vci->drv_flags & EEPROM_OFFSET)
1313 base = EEPROM_Read + 0x30;
1314 else
1315 base = EEPROM_Read;
1317 for (i = 0; i < 0x40; i++) {
1318 int timer;
1319 outw(base + i, ioaddr + Wn0EepromCmd);
1320 /* Pause for at least 162 us. for the read to take place. */
1321 for (timer = 10; timer >= 0; timer--) {
1322 udelay(162);
1323 if ((inw(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1324 break;
1326 eeprom[i] = inw(ioaddr + Wn0EepromData);
1329 for (i = 0; i < 0x18; i++)
1330 checksum ^= eeprom[i];
1331 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1332 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1333 while (i < 0x21)
1334 checksum ^= eeprom[i++];
1335 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1337 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1338 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1339 for (i = 0; i < 3; i++)
1340 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1341 if (print_info) {
1342 for (i = 0; i < 6; i++)
1343 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1345 /* Unfortunately an all zero eeprom passes the checksum and this
1346 gets found in the wild in failure cases. Crypto is hard 8) */
1347 if (!is_valid_ether_addr(dev->dev_addr)) {
1348 retval = -EINVAL;
1349 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1350 goto free_ring; /* With every pack */
1352 EL3WINDOW(2);
1353 for (i = 0; i < 6; i++)
1354 outb(dev->dev_addr[i], ioaddr + i);
1356 #ifdef __sparc__
1357 if (print_info)
1358 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1359 #else
1360 if (print_info)
1361 printk(", IRQ %d\n", dev->irq);
1362 /* Tell them about an invalid IRQ. */
1363 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1364 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1365 dev->irq);
1366 #endif
1368 EL3WINDOW(4);
1369 step = (inb(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1370 if (print_info) {
1371 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1372 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1373 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1377 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1378 unsigned long fn_st_addr; /* Cardbus function status space */
1379 unsigned short n;
1381 fn_st_addr = pci_resource_start (pdev, 2);
1382 if (fn_st_addr) {
1383 vp->cb_fn_base = ioremap(fn_st_addr, 128);
1384 retval = -ENOMEM;
1385 if (!vp->cb_fn_base)
1386 goto free_ring;
1388 if (print_info) {
1389 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1390 print_name, fn_st_addr, vp->cb_fn_base);
1392 EL3WINDOW(2);
1394 n = inw(ioaddr + Wn2_ResetOptions) & ~0x4010;
1395 if (vp->drv_flags & INVERT_LED_PWR)
1396 n |= 0x10;
1397 if (vp->drv_flags & INVERT_MII_PWR)
1398 n |= 0x4000;
1399 outw(n, ioaddr + Wn2_ResetOptions);
1400 if (vp->drv_flags & WNO_XCVR_PWR) {
1401 EL3WINDOW(0);
1402 outw(0x0800, ioaddr);
1406 /* Extract our information from the EEPROM data. */
1407 vp->info1 = eeprom[13];
1408 vp->info2 = eeprom[15];
1409 vp->capabilities = eeprom[16];
1411 if (vp->info1 & 0x8000) {
1412 vp->full_duplex = 1;
1413 if (print_info)
1414 printk(KERN_INFO "Full duplex capable\n");
1418 static const char * ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1419 unsigned int config;
1420 EL3WINDOW(3);
1421 vp->available_media = inw(ioaddr + Wn3_Options);
1422 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1423 vp->available_media = 0x40;
1424 config = inl(ioaddr + Wn3_Config);
1425 if (print_info) {
1426 printk(KERN_DEBUG " Internal config register is %4.4x, "
1427 "transceivers %#x.\n", config, inw(ioaddr + Wn3_Options));
1428 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1429 8 << RAM_SIZE(config),
1430 RAM_WIDTH(config) ? "word" : "byte",
1431 ram_split[RAM_SPLIT(config)],
1432 AUTOSELECT(config) ? "autoselect/" : "",
1433 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1434 media_tbl[XCVR(config)].name);
1436 vp->default_media = XCVR(config);
1437 if (vp->default_media == XCVR_NWAY)
1438 vp->has_nway = 1;
1439 vp->autoselect = AUTOSELECT(config);
1442 if (vp->media_override != 7) {
1443 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1444 print_name, vp->media_override,
1445 media_tbl[vp->media_override].name);
1446 dev->if_port = vp->media_override;
1447 } else
1448 dev->if_port = vp->default_media;
1450 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1451 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1452 int phy, phy_idx = 0;
1453 EL3WINDOW(4);
1454 mii_preamble_required++;
1455 if (vp->drv_flags & EXTRA_PREAMBLE)
1456 mii_preamble_required++;
1457 mdio_sync(ioaddr, 32);
1458 mdio_read(dev, 24, 1);
1459 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1460 int mii_status, phyx;
1463 * For the 3c905CX we look at index 24 first, because it bogusly
1464 * reports an external PHY at all indices
1466 if (phy == 0)
1467 phyx = 24;
1468 else if (phy <= 24)
1469 phyx = phy - 1;
1470 else
1471 phyx = phy;
1472 mii_status = mdio_read(dev, phyx, 1);
1473 if (mii_status && mii_status != 0xffff) {
1474 vp->phys[phy_idx++] = phyx;
1475 if (print_info) {
1476 printk(KERN_INFO " MII transceiver found at address %d,"
1477 " status %4x.\n", phyx, mii_status);
1479 if ((mii_status & 0x0040) == 0)
1480 mii_preamble_required++;
1483 mii_preamble_required--;
1484 if (phy_idx == 0) {
1485 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1486 vp->phys[0] = 24;
1487 } else {
1488 vp->advertising = mdio_read(dev, vp->phys[0], 4);
1489 if (vp->full_duplex) {
1490 /* Only advertise the FD media types. */
1491 vp->advertising &= ~0x02A0;
1492 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1495 vp->mii.phy_id = vp->phys[0];
1498 if (vp->capabilities & CapBusMaster) {
1499 vp->full_bus_master_tx = 1;
1500 if (print_info) {
1501 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1502 (vp->info2 & 1) ? "early" : "whole-frame" );
1504 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1505 vp->bus_master = 0; /* AKPM: vortex only */
1508 /* The 3c59x-specific entries in the device structure. */
1509 dev->open = vortex_open;
1510 if (vp->full_bus_master_tx) {
1511 dev->hard_start_xmit = boomerang_start_xmit;
1512 /* Actually, it still should work with iommu. */
1513 dev->features |= NETIF_F_SG;
1514 if (((hw_checksums[card_idx] == -1) && (vp->drv_flags & HAS_HWCKSM)) ||
1515 (hw_checksums[card_idx] == 1)) {
1516 dev->features |= NETIF_F_IP_CSUM;
1518 } else {
1519 dev->hard_start_xmit = vortex_start_xmit;
1522 if (print_info) {
1523 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1524 print_name,
1525 (dev->features & NETIF_F_SG) ? "en":"dis",
1526 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1529 dev->stop = vortex_close;
1530 dev->get_stats = vortex_get_stats;
1531 #ifdef CONFIG_PCI
1532 dev->do_ioctl = vortex_ioctl;
1533 #endif
1534 dev->ethtool_ops = &vortex_ethtool_ops;
1535 dev->set_multicast_list = set_rx_mode;
1536 dev->tx_timeout = vortex_tx_timeout;
1537 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1538 #ifdef CONFIG_NET_POLL_CONTROLLER
1539 dev->poll_controller = poll_vortex;
1540 #endif
1541 if (pdev) {
1542 vp->pm_state_valid = 1;
1543 pci_save_state(VORTEX_PCI(vp));
1544 acpi_set_WOL(dev);
1546 retval = register_netdev(dev);
1547 if (retval == 0)
1548 return 0;
1550 free_ring:
1551 pci_free_consistent(pdev,
1552 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1553 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1554 vp->rx_ring,
1555 vp->rx_ring_dma);
1556 free_region:
1557 if (vp->must_free_region)
1558 release_region(ioaddr, vci->io_size);
1559 free_netdev(dev);
1560 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1561 out:
1562 return retval;
1565 static void
1566 issue_and_wait(struct net_device *dev, int cmd)
1568 int i;
1570 outw(cmd, dev->base_addr + EL3_CMD);
1571 for (i = 0; i < 2000; i++) {
1572 if (!(inw(dev->base_addr + EL3_STATUS) & CmdInProgress))
1573 return;
1576 /* OK, that didn't work. Do it the slow way. One second */
1577 for (i = 0; i < 100000; i++) {
1578 if (!(inw(dev->base_addr + EL3_STATUS) & CmdInProgress)) {
1579 if (vortex_debug > 1)
1580 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1581 dev->name, cmd, i * 10);
1582 return;
1584 udelay(10);
1586 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1587 dev->name, cmd, inw(dev->base_addr + EL3_STATUS));
1590 static void
1591 vortex_up(struct net_device *dev)
1593 long ioaddr = dev->base_addr;
1594 struct vortex_private *vp = netdev_priv(dev);
1595 unsigned int config;
1596 int i;
1598 if (VORTEX_PCI(vp)) {
1599 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1600 if (vp->pm_state_valid)
1601 pci_restore_state(VORTEX_PCI(vp));
1602 pci_enable_device(VORTEX_PCI(vp));
1605 /* Before initializing select the active media port. */
1606 EL3WINDOW(3);
1607 config = inl(ioaddr + Wn3_Config);
1609 if (vp->media_override != 7) {
1610 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1611 dev->name, vp->media_override,
1612 media_tbl[vp->media_override].name);
1613 dev->if_port = vp->media_override;
1614 } else if (vp->autoselect) {
1615 if (vp->has_nway) {
1616 if (vortex_debug > 1)
1617 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1618 dev->name, dev->if_port);
1619 dev->if_port = XCVR_NWAY;
1620 } else {
1621 /* Find first available media type, starting with 100baseTx. */
1622 dev->if_port = XCVR_100baseTx;
1623 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1624 dev->if_port = media_tbl[dev->if_port].next;
1625 if (vortex_debug > 1)
1626 printk(KERN_INFO "%s: first available media type: %s\n",
1627 dev->name, media_tbl[dev->if_port].name);
1629 } else {
1630 dev->if_port = vp->default_media;
1631 if (vortex_debug > 1)
1632 printk(KERN_INFO "%s: using default media %s\n",
1633 dev->name, media_tbl[dev->if_port].name);
1636 init_timer(&vp->timer);
1637 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1638 vp->timer.data = (unsigned long)dev;
1639 vp->timer.function = vortex_timer; /* timer handler */
1640 add_timer(&vp->timer);
1642 init_timer(&vp->rx_oom_timer);
1643 vp->rx_oom_timer.data = (unsigned long)dev;
1644 vp->rx_oom_timer.function = rx_oom_timer;
1646 if (vortex_debug > 1)
1647 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1648 dev->name, media_tbl[dev->if_port].name);
1650 vp->full_duplex = vp->force_fd;
1651 config = BFINS(config, dev->if_port, 20, 4);
1652 if (vortex_debug > 6)
1653 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1654 outl(config, ioaddr + Wn3_Config);
1656 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1657 int mii_reg1, mii_reg5;
1658 EL3WINDOW(4);
1659 /* Read BMSR (reg1) only to clear old status. */
1660 mii_reg1 = mdio_read(dev, vp->phys[0], 1);
1661 mii_reg5 = mdio_read(dev, vp->phys[0], 5);
1662 if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) {
1663 netif_carrier_off(dev); /* No MII device or no link partner report */
1664 } else {
1665 mii_reg5 &= vp->advertising;
1666 if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */
1667 || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */
1668 vp->full_duplex = 1;
1669 netif_carrier_on(dev);
1671 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1672 if (vortex_debug > 1)
1673 printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x,"
1674 " info1 %04x, setting %s-duplex.\n",
1675 dev->name, vp->phys[0],
1676 mii_reg1, mii_reg5,
1677 vp->info1, ((vp->info1 & 0x8000) || vp->full_duplex) ? "full" : "half");
1678 EL3WINDOW(3);
1681 /* Set the full-duplex bit. */
1682 outw( ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1683 (vp->large_frames ? 0x40 : 0) |
1684 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1685 ioaddr + Wn3_MAC_Ctrl);
1687 if (vortex_debug > 1) {
1688 printk(KERN_DEBUG "%s: vortex_up() InternalConfig %8.8x.\n",
1689 dev->name, config);
1692 issue_and_wait(dev, TxReset);
1694 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1696 issue_and_wait(dev, RxReset|0x04);
1698 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1700 if (vortex_debug > 1) {
1701 EL3WINDOW(4);
1702 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1703 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
1706 /* Set the station address and mask in window 2 each time opened. */
1707 EL3WINDOW(2);
1708 for (i = 0; i < 6; i++)
1709 outb(dev->dev_addr[i], ioaddr + i);
1710 for (; i < 12; i+=2)
1711 outw(0, ioaddr + i);
1713 if (vp->cb_fn_base) {
1714 unsigned short n = inw(ioaddr + Wn2_ResetOptions) & ~0x4010;
1715 if (vp->drv_flags & INVERT_LED_PWR)
1716 n |= 0x10;
1717 if (vp->drv_flags & INVERT_MII_PWR)
1718 n |= 0x4000;
1719 outw(n, ioaddr + Wn2_ResetOptions);
1722 if (dev->if_port == XCVR_10base2)
1723 /* Start the thinnet transceiver. We should really wait 50ms...*/
1724 outw(StartCoax, ioaddr + EL3_CMD);
1725 if (dev->if_port != XCVR_NWAY) {
1726 EL3WINDOW(4);
1727 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1728 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1731 /* Switch to the stats window, and clear all stats by reading. */
1732 outw(StatsDisable, ioaddr + EL3_CMD);
1733 EL3WINDOW(6);
1734 for (i = 0; i < 10; i++)
1735 inb(ioaddr + i);
1736 inw(ioaddr + 10);
1737 inw(ioaddr + 12);
1738 /* New: On the Vortex we must also clear the BadSSD counter. */
1739 EL3WINDOW(4);
1740 inb(ioaddr + 12);
1741 /* ..and on the Boomerang we enable the extra statistics bits. */
1742 outw(0x0040, ioaddr + Wn4_NetDiag);
1744 /* Switch to register set 7 for normal use. */
1745 EL3WINDOW(7);
1747 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1748 vp->cur_rx = vp->dirty_rx = 0;
1749 /* Initialize the RxEarly register as recommended. */
1750 outw(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1751 outl(0x0020, ioaddr + PktStatus);
1752 outl(vp->rx_ring_dma, ioaddr + UpListPtr);
1754 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1755 vp->cur_tx = vp->dirty_tx = 0;
1756 if (vp->drv_flags & IS_BOOMERANG)
1757 outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1758 /* Clear the Rx, Tx rings. */
1759 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1760 vp->rx_ring[i].status = 0;
1761 for (i = 0; i < TX_RING_SIZE; i++)
1762 vp->tx_skbuff[i] = NULL;
1763 outl(0, ioaddr + DownListPtr);
1765 /* Set receiver mode: presumably accept b-case and phys addr only. */
1766 set_rx_mode(dev);
1767 /* enable 802.1q tagged frames */
1768 set_8021q_mode(dev, 1);
1769 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1771 // issue_and_wait(dev, SetTxStart|0x07ff);
1772 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1773 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1774 /* Allow status bits to be seen. */
1775 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1776 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1777 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1778 (vp->bus_master ? DMADone : 0);
1779 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1780 (vp->full_bus_master_rx ? 0 : RxComplete) |
1781 StatsFull | HostError | TxComplete | IntReq
1782 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1783 outw(vp->status_enable, ioaddr + EL3_CMD);
1784 /* Ack all pending events, and set active indicator mask. */
1785 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1786 ioaddr + EL3_CMD);
1787 outw(vp->intr_enable, ioaddr + EL3_CMD);
1788 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1789 writel(0x8000, vp->cb_fn_base + 4);
1790 netif_start_queue (dev);
1793 static int
1794 vortex_open(struct net_device *dev)
1796 struct vortex_private *vp = netdev_priv(dev);
1797 int i;
1798 int retval;
1800 /* Use the now-standard shared IRQ implementation. */
1801 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1802 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1803 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1804 goto out;
1807 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1808 if (vortex_debug > 2)
1809 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1810 for (i = 0; i < RX_RING_SIZE; i++) {
1811 struct sk_buff *skb;
1812 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1813 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1814 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1815 skb = dev_alloc_skb(PKT_BUF_SZ);
1816 vp->rx_skbuff[i] = skb;
1817 if (skb == NULL)
1818 break; /* Bad news! */
1819 skb->dev = dev; /* Mark as being used by this device. */
1820 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1821 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1823 if (i != RX_RING_SIZE) {
1824 int j;
1825 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1826 for (j = 0; j < i; j++) {
1827 if (vp->rx_skbuff[j]) {
1828 dev_kfree_skb(vp->rx_skbuff[j]);
1829 vp->rx_skbuff[j] = NULL;
1832 retval = -ENOMEM;
1833 goto out_free_irq;
1835 /* Wrap the ring. */
1836 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1839 vortex_up(dev);
1840 return 0;
1842 out_free_irq:
1843 free_irq(dev->irq, dev);
1844 out:
1845 if (vortex_debug > 1)
1846 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1847 return retval;
1850 static void
1851 vortex_timer(unsigned long data)
1853 struct net_device *dev = (struct net_device *)data;
1854 struct vortex_private *vp = netdev_priv(dev);
1855 long ioaddr = dev->base_addr;
1856 int next_tick = 60*HZ;
1857 int ok = 0;
1858 int media_status, mii_status, old_window;
1860 if (vortex_debug > 2) {
1861 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1862 dev->name, media_tbl[dev->if_port].name);
1863 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1866 if (vp->medialock)
1867 goto leave_media_alone;
1868 disable_irq(dev->irq);
1869 old_window = inw(ioaddr + EL3_CMD) >> 13;
1870 EL3WINDOW(4);
1871 media_status = inw(ioaddr + Wn4_Media);
1872 switch (dev->if_port) {
1873 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1874 if (media_status & Media_LnkBeat) {
1875 netif_carrier_on(dev);
1876 ok = 1;
1877 if (vortex_debug > 1)
1878 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1879 dev->name, media_tbl[dev->if_port].name, media_status);
1880 } else {
1881 netif_carrier_off(dev);
1882 if (vortex_debug > 1) {
1883 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1884 dev->name, media_tbl[dev->if_port].name, media_status);
1887 break;
1888 case XCVR_MII: case XCVR_NWAY:
1890 spin_lock_bh(&vp->lock);
1891 mii_status = mdio_read(dev, vp->phys[0], 1);
1892 ok = 1;
1893 if (vortex_debug > 2)
1894 printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n",
1895 dev->name, mii_status);
1896 if (mii_status & BMSR_LSTATUS) {
1897 int mii_reg5 = mdio_read(dev, vp->phys[0], 5);
1898 if (! vp->force_fd && mii_reg5 != 0xffff) {
1899 int duplex;
1901 mii_reg5 &= vp->advertising;
1902 duplex = (mii_reg5&0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
1903 if (vp->full_duplex != duplex) {
1904 vp->full_duplex = duplex;
1905 printk(KERN_INFO "%s: Setting %s-duplex based on MII "
1906 "#%d link partner capability of %4.4x.\n",
1907 dev->name, vp->full_duplex ? "full" : "half",
1908 vp->phys[0], mii_reg5);
1909 /* Set the full-duplex bit. */
1910 EL3WINDOW(3);
1911 outw( (vp->full_duplex ? 0x20 : 0) |
1912 (vp->large_frames ? 0x40 : 0) |
1913 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1914 ioaddr + Wn3_MAC_Ctrl);
1915 if (vortex_debug > 1)
1916 printk(KERN_DEBUG "Setting duplex in Wn3_MAC_Ctrl\n");
1917 /* AKPM: bug: should reset Tx and Rx after setting Duplex. Page 180 */
1920 netif_carrier_on(dev);
1921 } else {
1922 netif_carrier_off(dev);
1924 spin_unlock_bh(&vp->lock);
1926 break;
1927 default: /* Other media types handled by Tx timeouts. */
1928 if (vortex_debug > 1)
1929 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1930 dev->name, media_tbl[dev->if_port].name, media_status);
1931 ok = 1;
1933 if ( ! ok) {
1934 unsigned int config;
1936 do {
1937 dev->if_port = media_tbl[dev->if_port].next;
1938 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1939 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1940 dev->if_port = vp->default_media;
1941 if (vortex_debug > 1)
1942 printk(KERN_DEBUG "%s: Media selection failing, using default "
1943 "%s port.\n",
1944 dev->name, media_tbl[dev->if_port].name);
1945 } else {
1946 if (vortex_debug > 1)
1947 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1948 "%s port.\n",
1949 dev->name, media_tbl[dev->if_port].name);
1950 next_tick = media_tbl[dev->if_port].wait;
1952 outw((media_status & ~(Media_10TP|Media_SQE)) |
1953 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1955 EL3WINDOW(3);
1956 config = inl(ioaddr + Wn3_Config);
1957 config = BFINS(config, dev->if_port, 20, 4);
1958 outl(config, ioaddr + Wn3_Config);
1960 outw(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1961 ioaddr + EL3_CMD);
1962 if (vortex_debug > 1)
1963 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1964 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1966 EL3WINDOW(old_window);
1967 enable_irq(dev->irq);
1969 leave_media_alone:
1970 if (vortex_debug > 2)
1971 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1972 dev->name, media_tbl[dev->if_port].name);
1974 mod_timer(&vp->timer, RUN_AT(next_tick));
1975 if (vp->deferred)
1976 outw(FakeIntr, ioaddr + EL3_CMD);
1977 return;
1980 static void vortex_tx_timeout(struct net_device *dev)
1982 struct vortex_private *vp = netdev_priv(dev);
1983 long ioaddr = dev->base_addr;
1985 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1986 dev->name, inb(ioaddr + TxStatus),
1987 inw(ioaddr + EL3_STATUS));
1988 EL3WINDOW(4);
1989 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1990 inw(ioaddr + Wn4_NetDiag),
1991 inw(ioaddr + Wn4_Media),
1992 inl(ioaddr + PktStatus),
1993 inw(ioaddr + Wn4_FIFODiag));
1994 /* Slight code bloat to be user friendly. */
1995 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
1996 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1997 " network cable problem?\n", dev->name);
1998 if (inw(ioaddr + EL3_STATUS) & IntLatch) {
1999 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
2000 " IRQ blocked by another device?\n", dev->name);
2001 /* Bad idea here.. but we might as well handle a few events. */
2004 * Block interrupts because vortex_interrupt does a bare spin_lock()
2006 unsigned long flags;
2007 local_irq_save(flags);
2008 if (vp->full_bus_master_tx)
2009 boomerang_interrupt(dev->irq, dev, NULL);
2010 else
2011 vortex_interrupt(dev->irq, dev, NULL);
2012 local_irq_restore(flags);
2016 if (vortex_debug > 0)
2017 dump_tx_ring(dev);
2019 issue_and_wait(dev, TxReset);
2021 vp->stats.tx_errors++;
2022 if (vp->full_bus_master_tx) {
2023 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2024 if (vp->cur_tx - vp->dirty_tx > 0 && inl(ioaddr + DownListPtr) == 0)
2025 outl(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2026 ioaddr + DownListPtr);
2027 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2028 netif_wake_queue (dev);
2029 if (vp->drv_flags & IS_BOOMERANG)
2030 outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2031 outw(DownUnstall, ioaddr + EL3_CMD);
2032 } else {
2033 vp->stats.tx_dropped++;
2034 netif_wake_queue(dev);
2037 /* Issue Tx Enable */
2038 outw(TxEnable, ioaddr + EL3_CMD);
2039 dev->trans_start = jiffies;
2041 /* Switch to register set 7 for normal use. */
2042 EL3WINDOW(7);
2046 * Handle uncommon interrupt sources. This is a separate routine to minimize
2047 * the cache impact.
2049 static void
2050 vortex_error(struct net_device *dev, int status)
2052 struct vortex_private *vp = netdev_priv(dev);
2053 long ioaddr = dev->base_addr;
2054 int do_tx_reset = 0, reset_mask = 0;
2055 unsigned char tx_status = 0;
2057 if (vortex_debug > 2) {
2058 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2061 if (status & TxComplete) { /* Really "TxError" for us. */
2062 tx_status = inb(ioaddr + TxStatus);
2063 /* Presumably a tx-timeout. We must merely re-enable. */
2064 if (vortex_debug > 2
2065 || (tx_status != 0x88 && vortex_debug > 0)) {
2066 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2067 dev->name, tx_status);
2068 if (tx_status == 0x82) {
2069 printk(KERN_ERR "Probably a duplex mismatch. See "
2070 "Documentation/networking/vortex.txt\n");
2072 dump_tx_ring(dev);
2074 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2075 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2076 outb(0, ioaddr + TxStatus);
2077 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2078 do_tx_reset = 1;
2079 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
2080 do_tx_reset = 1;
2081 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2082 } else { /* Merely re-enable the transmitter. */
2083 outw(TxEnable, ioaddr + EL3_CMD);
2087 if (status & RxEarly) { /* Rx early is unused. */
2088 vortex_rx(dev);
2089 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
2091 if (status & StatsFull) { /* Empty statistics. */
2092 static int DoneDidThat;
2093 if (vortex_debug > 4)
2094 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2095 update_stats(ioaddr, dev);
2096 /* HACK: Disable statistics as an interrupt source. */
2097 /* This occurs when we have the wrong media type! */
2098 if (DoneDidThat == 0 &&
2099 inw(ioaddr + EL3_STATUS) & StatsFull) {
2100 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2101 "stats as an interrupt source.\n", dev->name);
2102 EL3WINDOW(5);
2103 outw(SetIntrEnb | (inw(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2104 vp->intr_enable &= ~StatsFull;
2105 EL3WINDOW(7);
2106 DoneDidThat++;
2109 if (status & IntReq) { /* Restore all interrupt sources. */
2110 outw(vp->status_enable, ioaddr + EL3_CMD);
2111 outw(vp->intr_enable, ioaddr + EL3_CMD);
2113 if (status & HostError) {
2114 u16 fifo_diag;
2115 EL3WINDOW(4);
2116 fifo_diag = inw(ioaddr + Wn4_FIFODiag);
2117 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2118 dev->name, fifo_diag);
2119 /* Adapter failure requires Tx/Rx reset and reinit. */
2120 if (vp->full_bus_master_tx) {
2121 int bus_status = inl(ioaddr + PktStatus);
2122 /* 0x80000000 PCI master abort. */
2123 /* 0x40000000 PCI target abort. */
2124 if (vortex_debug)
2125 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2127 /* In this case, blow the card away */
2128 /* Must not enter D3 or we can't legally issue the reset! */
2129 vortex_down(dev, 0);
2130 issue_and_wait(dev, TotalReset | 0xff);
2131 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2132 } else if (fifo_diag & 0x0400)
2133 do_tx_reset = 1;
2134 if (fifo_diag & 0x3000) {
2135 /* Reset Rx fifo and upload logic */
2136 issue_and_wait(dev, RxReset|0x07);
2137 /* Set the Rx filter to the current state. */
2138 set_rx_mode(dev);
2139 /* enable 802.1q VLAN tagged frames */
2140 set_8021q_mode(dev, 1);
2141 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2142 outw(AckIntr | HostError, ioaddr + EL3_CMD);
2146 if (do_tx_reset) {
2147 issue_and_wait(dev, TxReset|reset_mask);
2148 outw(TxEnable, ioaddr + EL3_CMD);
2149 if (!vp->full_bus_master_tx)
2150 netif_wake_queue(dev);
2154 static int
2155 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2157 struct vortex_private *vp = netdev_priv(dev);
2158 long ioaddr = dev->base_addr;
2160 /* Put out the doubleword header... */
2161 outl(skb->len, ioaddr + TX_FIFO);
2162 if (vp->bus_master) {
2163 /* Set the bus-master controller to transfer the packet. */
2164 int len = (skb->len + 3) & ~3;
2165 outl( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2166 ioaddr + Wn7_MasterAddr);
2167 outw(len, ioaddr + Wn7_MasterLen);
2168 vp->tx_skb = skb;
2169 outw(StartDMADown, ioaddr + EL3_CMD);
2170 /* netif_wake_queue() will be called at the DMADone interrupt. */
2171 } else {
2172 /* ... and the packet rounded to a doubleword. */
2173 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2174 dev_kfree_skb (skb);
2175 if (inw(ioaddr + TxFree) > 1536) {
2176 netif_start_queue (dev); /* AKPM: redundant? */
2177 } else {
2178 /* Interrupt us when the FIFO has room for max-sized packet. */
2179 netif_stop_queue(dev);
2180 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2184 dev->trans_start = jiffies;
2186 /* Clear the Tx status stack. */
2188 int tx_status;
2189 int i = 32;
2191 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
2192 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2193 if (vortex_debug > 2)
2194 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2195 dev->name, tx_status);
2196 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2197 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2198 if (tx_status & 0x30) {
2199 issue_and_wait(dev, TxReset);
2201 outw(TxEnable, ioaddr + EL3_CMD);
2203 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2206 return 0;
2209 static int
2210 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2212 struct vortex_private *vp = netdev_priv(dev);
2213 long ioaddr = dev->base_addr;
2214 /* Calculate the next Tx descriptor entry. */
2215 int entry = vp->cur_tx % TX_RING_SIZE;
2216 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2217 unsigned long flags;
2219 if (vortex_debug > 6) {
2220 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2221 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2222 dev->name, vp->cur_tx);
2225 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2226 if (vortex_debug > 0)
2227 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2228 dev->name);
2229 netif_stop_queue(dev);
2230 return 1;
2233 vp->tx_skbuff[entry] = skb;
2235 vp->tx_ring[entry].next = 0;
2236 #if DO_ZEROCOPY
2237 if (skb->ip_summed != CHECKSUM_HW)
2238 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2239 else
2240 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2242 if (!skb_shinfo(skb)->nr_frags) {
2243 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2244 skb->len, PCI_DMA_TODEVICE));
2245 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2246 } else {
2247 int i;
2249 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2250 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2251 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2254 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2256 vp->tx_ring[entry].frag[i+1].addr =
2257 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2258 (void*)page_address(frag->page) + frag->page_offset,
2259 frag->size, PCI_DMA_TODEVICE));
2261 if (i == skb_shinfo(skb)->nr_frags-1)
2262 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2263 else
2264 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2267 #else
2268 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2269 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2270 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2271 #endif
2273 spin_lock_irqsave(&vp->lock, flags);
2274 /* Wait for the stall to complete. */
2275 issue_and_wait(dev, DownStall);
2276 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2277 if (inl(ioaddr + DownListPtr) == 0) {
2278 outl(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2279 vp->queued_packet++;
2282 vp->cur_tx++;
2283 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2284 netif_stop_queue (dev);
2285 } else { /* Clear previous interrupt enable. */
2286 #if defined(tx_interrupt_mitigation)
2287 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2288 * were selected, this would corrupt DN_COMPLETE. No?
2290 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2291 #endif
2293 outw(DownUnstall, ioaddr + EL3_CMD);
2294 spin_unlock_irqrestore(&vp->lock, flags);
2295 dev->trans_start = jiffies;
2296 return 0;
2299 /* The interrupt handler does all of the Rx thread work and cleans up
2300 after the Tx thread. */
2303 * This is the ISR for the vortex series chips.
2304 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2307 static irqreturn_t
2308 vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2310 struct net_device *dev = dev_id;
2311 struct vortex_private *vp = netdev_priv(dev);
2312 long ioaddr;
2313 int status;
2314 int work_done = max_interrupt_work;
2315 int handled = 0;
2317 ioaddr = dev->base_addr;
2318 spin_lock(&vp->lock);
2320 status = inw(ioaddr + EL3_STATUS);
2322 if (vortex_debug > 6)
2323 printk("vortex_interrupt(). status=0x%4x\n", status);
2325 if ((status & IntLatch) == 0)
2326 goto handler_exit; /* No interrupt: shared IRQs cause this */
2327 handled = 1;
2329 if (status & IntReq) {
2330 status |= vp->deferred;
2331 vp->deferred = 0;
2334 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2335 goto handler_exit;
2337 if (vortex_debug > 4)
2338 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2339 dev->name, status, inb(ioaddr + Timer));
2341 do {
2342 if (vortex_debug > 5)
2343 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2344 dev->name, status);
2345 if (status & RxComplete)
2346 vortex_rx(dev);
2348 if (status & TxAvailable) {
2349 if (vortex_debug > 5)
2350 printk(KERN_DEBUG " TX room bit was handled.\n");
2351 /* There's room in the FIFO for a full-sized packet. */
2352 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2353 netif_wake_queue (dev);
2356 if (status & DMADone) {
2357 if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) {
2358 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2359 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2360 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2361 if (inw(ioaddr + TxFree) > 1536) {
2363 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2364 * insufficient FIFO room, the TxAvailable test will succeed and call
2365 * netif_wake_queue()
2367 netif_wake_queue(dev);
2368 } else { /* Interrupt when FIFO has room for max-sized packet. */
2369 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2370 netif_stop_queue(dev);
2374 /* Check for all uncommon interrupts at once. */
2375 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2376 if (status == 0xffff)
2377 break;
2378 vortex_error(dev, status);
2381 if (--work_done < 0) {
2382 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2383 "%4.4x.\n", dev->name, status);
2384 /* Disable all pending interrupts. */
2385 do {
2386 vp->deferred |= status;
2387 outw(SetStatusEnb | (~vp->deferred & vp->status_enable),
2388 ioaddr + EL3_CMD);
2389 outw(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2390 } while ((status = inw(ioaddr + EL3_CMD)) & IntLatch);
2391 /* The timer will reenable interrupts. */
2392 mod_timer(&vp->timer, jiffies + 1*HZ);
2393 break;
2395 /* Acknowledge the IRQ. */
2396 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2397 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2399 if (vortex_debug > 4)
2400 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2401 dev->name, status);
2402 handler_exit:
2403 spin_unlock(&vp->lock);
2404 return IRQ_RETVAL(handled);
2408 * This is the ISR for the boomerang series chips.
2409 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2412 static irqreturn_t
2413 boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2415 struct net_device *dev = dev_id;
2416 struct vortex_private *vp = netdev_priv(dev);
2417 long ioaddr;
2418 int status;
2419 int work_done = max_interrupt_work;
2421 ioaddr = dev->base_addr;
2424 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2425 * and boomerang_start_xmit
2427 spin_lock(&vp->lock);
2429 status = inw(ioaddr + EL3_STATUS);
2431 if (vortex_debug > 6)
2432 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2434 if ((status & IntLatch) == 0)
2435 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2437 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2438 if (vortex_debug > 1)
2439 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2440 goto handler_exit;
2443 if (status & IntReq) {
2444 status |= vp->deferred;
2445 vp->deferred = 0;
2448 if (vortex_debug > 4)
2449 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2450 dev->name, status, inb(ioaddr + Timer));
2451 do {
2452 if (vortex_debug > 5)
2453 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2454 dev->name, status);
2455 if (status & UpComplete) {
2456 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
2457 if (vortex_debug > 5)
2458 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2459 boomerang_rx(dev);
2462 if (status & DownComplete) {
2463 unsigned int dirty_tx = vp->dirty_tx;
2465 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
2466 while (vp->cur_tx - dirty_tx > 0) {
2467 int entry = dirty_tx % TX_RING_SIZE;
2468 #if 1 /* AKPM: the latter is faster, but cyclone-only */
2469 if (inl(ioaddr + DownListPtr) ==
2470 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2471 break; /* It still hasn't been processed. */
2472 #else
2473 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2474 break; /* It still hasn't been processed. */
2475 #endif
2477 if (vp->tx_skbuff[entry]) {
2478 struct sk_buff *skb = vp->tx_skbuff[entry];
2479 #if DO_ZEROCOPY
2480 int i;
2481 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2482 pci_unmap_single(VORTEX_PCI(vp),
2483 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2484 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2485 PCI_DMA_TODEVICE);
2486 #else
2487 pci_unmap_single(VORTEX_PCI(vp),
2488 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2489 #endif
2490 dev_kfree_skb_irq(skb);
2491 vp->tx_skbuff[entry] = NULL;
2492 } else {
2493 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2495 /* vp->stats.tx_packets++; Counted below. */
2496 dirty_tx++;
2498 vp->dirty_tx = dirty_tx;
2499 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2500 if (vortex_debug > 6)
2501 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2502 netif_wake_queue (dev);
2506 /* Check for all uncommon interrupts at once. */
2507 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2508 vortex_error(dev, status);
2510 if (--work_done < 0) {
2511 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2512 "%4.4x.\n", dev->name, status);
2513 /* Disable all pending interrupts. */
2514 do {
2515 vp->deferred |= status;
2516 outw(SetStatusEnb | (~vp->deferred & vp->status_enable),
2517 ioaddr + EL3_CMD);
2518 outw(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2519 } while ((status = inw(ioaddr + EL3_CMD)) & IntLatch);
2520 /* The timer will reenable interrupts. */
2521 mod_timer(&vp->timer, jiffies + 1*HZ);
2522 break;
2524 /* Acknowledge the IRQ. */
2525 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2526 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2527 writel(0x8000, vp->cb_fn_base + 4);
2529 } while ((status = inw(ioaddr + EL3_STATUS)) & IntLatch);
2531 if (vortex_debug > 4)
2532 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2533 dev->name, status);
2534 handler_exit:
2535 spin_unlock(&vp->lock);
2536 return IRQ_HANDLED;
2539 static int vortex_rx(struct net_device *dev)
2541 struct vortex_private *vp = netdev_priv(dev);
2542 long ioaddr = dev->base_addr;
2543 int i;
2544 short rx_status;
2546 if (vortex_debug > 5)
2547 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2548 inw(ioaddr+EL3_STATUS), inw(ioaddr+RxStatus));
2549 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
2550 if (rx_status & 0x4000) { /* Error, update stats. */
2551 unsigned char rx_error = inb(ioaddr + RxErrors);
2552 if (vortex_debug > 2)
2553 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2554 vp->stats.rx_errors++;
2555 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2556 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2557 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2558 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2559 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2560 } else {
2561 /* The packet length: up to 4.5K!. */
2562 int pkt_len = rx_status & 0x1fff;
2563 struct sk_buff *skb;
2565 skb = dev_alloc_skb(pkt_len + 5);
2566 if (vortex_debug > 4)
2567 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2568 pkt_len, rx_status);
2569 if (skb != NULL) {
2570 skb->dev = dev;
2571 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2572 /* 'skb_put()' points to the start of sk_buff data area. */
2573 if (vp->bus_master &&
2574 ! (inw(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2575 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2576 pkt_len, PCI_DMA_FROMDEVICE);
2577 outl(dma, ioaddr + Wn7_MasterAddr);
2578 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2579 outw(StartDMAUp, ioaddr + EL3_CMD);
2580 while (inw(ioaddr + Wn7_MasterStatus) & 0x8000)
2582 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2583 } else {
2584 insl(ioaddr + RX_FIFO, skb_put(skb, pkt_len),
2585 (pkt_len + 3) >> 2);
2587 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2588 skb->protocol = eth_type_trans(skb, dev);
2589 netif_rx(skb);
2590 dev->last_rx = jiffies;
2591 vp->stats.rx_packets++;
2592 /* Wait a limited time to go to next packet. */
2593 for (i = 200; i >= 0; i--)
2594 if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
2595 break;
2596 continue;
2597 } else if (vortex_debug > 0)
2598 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2599 "size %d.\n", dev->name, pkt_len);
2601 vp->stats.rx_dropped++;
2602 issue_and_wait(dev, RxDiscard);
2605 return 0;
2608 static int
2609 boomerang_rx(struct net_device *dev)
2611 struct vortex_private *vp = netdev_priv(dev);
2612 int entry = vp->cur_rx % RX_RING_SIZE;
2613 long ioaddr = dev->base_addr;
2614 int rx_status;
2615 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2617 if (vortex_debug > 5)
2618 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", inw(ioaddr+EL3_STATUS));
2620 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2621 if (--rx_work_limit < 0)
2622 break;
2623 if (rx_status & RxDError) { /* Error, update stats. */
2624 unsigned char rx_error = rx_status >> 16;
2625 if (vortex_debug > 2)
2626 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2627 vp->stats.rx_errors++;
2628 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2629 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2630 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2631 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2632 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2633 } else {
2634 /* The packet length: up to 4.5K!. */
2635 int pkt_len = rx_status & 0x1fff;
2636 struct sk_buff *skb;
2637 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2639 if (vortex_debug > 4)
2640 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2641 pkt_len, rx_status);
2643 /* Check if the packet is long enough to just accept without
2644 copying to a properly sized skbuff. */
2645 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2646 skb->dev = dev;
2647 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2648 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2649 /* 'skb_put()' points to the start of sk_buff data area. */
2650 memcpy(skb_put(skb, pkt_len),
2651 vp->rx_skbuff[entry]->data,
2652 pkt_len);
2653 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2654 vp->rx_copy++;
2655 } else {
2656 /* Pass up the skbuff already on the Rx ring. */
2657 skb = vp->rx_skbuff[entry];
2658 vp->rx_skbuff[entry] = NULL;
2659 skb_put(skb, pkt_len);
2660 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2661 vp->rx_nocopy++;
2663 skb->protocol = eth_type_trans(skb, dev);
2664 { /* Use hardware checksum info. */
2665 int csum_bits = rx_status & 0xee000000;
2666 if (csum_bits &&
2667 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2668 csum_bits == (IPChksumValid | UDPChksumValid))) {
2669 skb->ip_summed = CHECKSUM_UNNECESSARY;
2670 vp->rx_csumhits++;
2673 netif_rx(skb);
2674 dev->last_rx = jiffies;
2675 vp->stats.rx_packets++;
2677 entry = (++vp->cur_rx) % RX_RING_SIZE;
2679 /* Refill the Rx ring buffers. */
2680 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2681 struct sk_buff *skb;
2682 entry = vp->dirty_rx % RX_RING_SIZE;
2683 if (vp->rx_skbuff[entry] == NULL) {
2684 skb = dev_alloc_skb(PKT_BUF_SZ);
2685 if (skb == NULL) {
2686 static unsigned long last_jif;
2687 if ((jiffies - last_jif) > 10 * HZ) {
2688 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2689 last_jif = jiffies;
2691 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2692 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2693 break; /* Bad news! */
2695 skb->dev = dev; /* Mark as being used by this device. */
2696 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2697 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2698 vp->rx_skbuff[entry] = skb;
2700 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2701 outw(UpUnstall, ioaddr + EL3_CMD);
2703 return 0;
2707 * If we've hit a total OOM refilling the Rx ring we poll once a second
2708 * for some memory. Otherwise there is no way to restart the rx process.
2710 static void
2711 rx_oom_timer(unsigned long arg)
2713 struct net_device *dev = (struct net_device *)arg;
2714 struct vortex_private *vp = netdev_priv(dev);
2716 spin_lock_irq(&vp->lock);
2717 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2718 boomerang_rx(dev);
2719 if (vortex_debug > 1) {
2720 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2721 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2723 spin_unlock_irq(&vp->lock);
2726 static void
2727 vortex_down(struct net_device *dev, int final_down)
2729 struct vortex_private *vp = netdev_priv(dev);
2730 long ioaddr = dev->base_addr;
2732 netif_stop_queue (dev);
2734 del_timer_sync(&vp->rx_oom_timer);
2735 del_timer_sync(&vp->timer);
2737 /* Turn off statistics ASAP. We update vp->stats below. */
2738 outw(StatsDisable, ioaddr + EL3_CMD);
2740 /* Disable the receiver and transmitter. */
2741 outw(RxDisable, ioaddr + EL3_CMD);
2742 outw(TxDisable, ioaddr + EL3_CMD);
2744 /* Disable receiving 802.1q tagged frames */
2745 set_8021q_mode(dev, 0);
2747 if (dev->if_port == XCVR_10base2)
2748 /* Turn off thinnet power. Green! */
2749 outw(StopCoax, ioaddr + EL3_CMD);
2751 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2753 update_stats(ioaddr, dev);
2754 if (vp->full_bus_master_rx)
2755 outl(0, ioaddr + UpListPtr);
2756 if (vp->full_bus_master_tx)
2757 outl(0, ioaddr + DownListPtr);
2759 if (final_down && VORTEX_PCI(vp)) {
2760 vp->pm_state_valid = 1;
2761 pci_save_state(VORTEX_PCI(vp));
2762 acpi_set_WOL(dev);
2766 static int
2767 vortex_close(struct net_device *dev)
2769 struct vortex_private *vp = netdev_priv(dev);
2770 long ioaddr = dev->base_addr;
2771 int i;
2773 if (netif_device_present(dev))
2774 vortex_down(dev, 1);
2776 if (vortex_debug > 1) {
2777 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2778 dev->name, inw(ioaddr + EL3_STATUS), inb(ioaddr + TxStatus));
2779 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2780 " tx_queued %d Rx pre-checksummed %d.\n",
2781 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2784 #if DO_ZEROCOPY
2785 if ( vp->rx_csumhits &&
2786 ((vp->drv_flags & HAS_HWCKSM) == 0) &&
2787 (hw_checksums[vp->card_idx] == -1)) {
2788 printk(KERN_WARNING "%s supports hardware checksums, and we're not using them!\n", dev->name);
2790 #endif
2792 free_irq(dev->irq, dev);
2794 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2795 for (i = 0; i < RX_RING_SIZE; i++)
2796 if (vp->rx_skbuff[i]) {
2797 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2798 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2799 dev_kfree_skb(vp->rx_skbuff[i]);
2800 vp->rx_skbuff[i] = NULL;
2803 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2804 for (i = 0; i < TX_RING_SIZE; i++) {
2805 if (vp->tx_skbuff[i]) {
2806 struct sk_buff *skb = vp->tx_skbuff[i];
2807 #if DO_ZEROCOPY
2808 int k;
2810 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2811 pci_unmap_single(VORTEX_PCI(vp),
2812 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2813 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2814 PCI_DMA_TODEVICE);
2815 #else
2816 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2817 #endif
2818 dev_kfree_skb(skb);
2819 vp->tx_skbuff[i] = NULL;
2824 return 0;
2827 static void
2828 dump_tx_ring(struct net_device *dev)
2830 if (vortex_debug > 0) {
2831 struct vortex_private *vp = netdev_priv(dev);
2832 long ioaddr = dev->base_addr;
2834 if (vp->full_bus_master_tx) {
2835 int i;
2836 int stalled = inl(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2838 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2839 vp->full_bus_master_tx,
2840 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2841 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2842 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2843 inl(ioaddr + DownListPtr),
2844 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2845 issue_and_wait(dev, DownStall);
2846 for (i = 0; i < TX_RING_SIZE; i++) {
2847 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2848 &vp->tx_ring[i],
2849 #if DO_ZEROCOPY
2850 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2851 #else
2852 le32_to_cpu(vp->tx_ring[i].length),
2853 #endif
2854 le32_to_cpu(vp->tx_ring[i].status));
2856 if (!stalled)
2857 outw(DownUnstall, ioaddr + EL3_CMD);
2862 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2864 struct vortex_private *vp = netdev_priv(dev);
2865 unsigned long flags;
2867 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2868 spin_lock_irqsave (&vp->lock, flags);
2869 update_stats(dev->base_addr, dev);
2870 spin_unlock_irqrestore (&vp->lock, flags);
2872 return &vp->stats;
2875 /* Update statistics.
2876 Unlike with the EL3 we need not worry about interrupts changing
2877 the window setting from underneath us, but we must still guard
2878 against a race condition with a StatsUpdate interrupt updating the
2879 table. This is done by checking that the ASM (!) code generated uses
2880 atomic updates with '+='.
2882 static void update_stats(long ioaddr, struct net_device *dev)
2884 struct vortex_private *vp = netdev_priv(dev);
2885 int old_window = inw(ioaddr + EL3_CMD);
2887 if (old_window == 0xffff) /* Chip suspended or ejected. */
2888 return;
2889 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2890 /* Switch to the stats window, and read everything. */
2891 EL3WINDOW(6);
2892 vp->stats.tx_carrier_errors += inb(ioaddr + 0);
2893 vp->stats.tx_heartbeat_errors += inb(ioaddr + 1);
2894 vp->stats.collisions += inb(ioaddr + 3);
2895 vp->stats.tx_window_errors += inb(ioaddr + 4);
2896 vp->stats.rx_fifo_errors += inb(ioaddr + 5);
2897 vp->stats.tx_packets += inb(ioaddr + 6);
2898 vp->stats.tx_packets += (inb(ioaddr + 9)&0x30) << 4;
2899 /* Rx packets */ inb(ioaddr + 7); /* Must read to clear */
2900 /* Don't bother with register 9, an extension of registers 6&7.
2901 If we do use the 6&7 values the atomic update assumption above
2902 is invalid. */
2903 vp->stats.rx_bytes += inw(ioaddr + 10);
2904 vp->stats.tx_bytes += inw(ioaddr + 12);
2905 /* Extra stats for get_ethtool_stats() */
2906 vp->xstats.tx_multiple_collisions += inb(ioaddr + 2);
2907 vp->xstats.tx_deferred += inb(ioaddr + 8);
2908 EL3WINDOW(4);
2909 vp->xstats.rx_bad_ssd += inb(ioaddr + 12);
2912 u8 up = inb(ioaddr + 13);
2913 vp->stats.rx_bytes += (up & 0x0f) << 16;
2914 vp->stats.tx_bytes += (up & 0xf0) << 12;
2917 EL3WINDOW(old_window >> 13);
2918 return;
2921 static int vortex_nway_reset(struct net_device *dev)
2923 struct vortex_private *vp = netdev_priv(dev);
2924 long ioaddr = dev->base_addr;
2925 unsigned long flags;
2926 int rc;
2928 spin_lock_irqsave(&vp->lock, flags);
2929 EL3WINDOW(4);
2930 rc = mii_nway_restart(&vp->mii);
2931 spin_unlock_irqrestore(&vp->lock, flags);
2932 return rc;
2935 static u32 vortex_get_link(struct net_device *dev)
2937 struct vortex_private *vp = netdev_priv(dev);
2938 long ioaddr = dev->base_addr;
2939 unsigned long flags;
2940 int rc;
2942 spin_lock_irqsave(&vp->lock, flags);
2943 EL3WINDOW(4);
2944 rc = mii_link_ok(&vp->mii);
2945 spin_unlock_irqrestore(&vp->lock, flags);
2946 return rc;
2949 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2951 struct vortex_private *vp = netdev_priv(dev);
2952 long ioaddr = dev->base_addr;
2953 unsigned long flags;
2954 int rc;
2956 spin_lock_irqsave(&vp->lock, flags);
2957 EL3WINDOW(4);
2958 rc = mii_ethtool_gset(&vp->mii, cmd);
2959 spin_unlock_irqrestore(&vp->lock, flags);
2960 return rc;
2963 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2965 struct vortex_private *vp = netdev_priv(dev);
2966 long ioaddr = dev->base_addr;
2967 unsigned long flags;
2968 int rc;
2970 spin_lock_irqsave(&vp->lock, flags);
2971 EL3WINDOW(4);
2972 rc = mii_ethtool_sset(&vp->mii, cmd);
2973 spin_unlock_irqrestore(&vp->lock, flags);
2974 return rc;
2977 static u32 vortex_get_msglevel(struct net_device *dev)
2979 return vortex_debug;
2982 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2984 vortex_debug = dbg;
2987 static int vortex_get_stats_count(struct net_device *dev)
2989 return VORTEX_NUM_STATS;
2992 static void vortex_get_ethtool_stats(struct net_device *dev,
2993 struct ethtool_stats *stats, u64 *data)
2995 struct vortex_private *vp = netdev_priv(dev);
2996 unsigned long flags;
2998 spin_lock_irqsave(&vp->lock, flags);
2999 update_stats(dev->base_addr, dev);
3000 spin_unlock_irqrestore(&vp->lock, flags);
3002 data[0] = vp->xstats.tx_deferred;
3003 data[1] = vp->xstats.tx_multiple_collisions;
3004 data[2] = vp->xstats.rx_bad_ssd;
3008 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
3010 switch (stringset) {
3011 case ETH_SS_STATS:
3012 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
3013 break;
3014 default:
3015 WARN_ON(1);
3016 break;
3020 static void vortex_get_drvinfo(struct net_device *dev,
3021 struct ethtool_drvinfo *info)
3023 struct vortex_private *vp = netdev_priv(dev);
3025 strcpy(info->driver, DRV_NAME);
3026 strcpy(info->version, DRV_VERSION);
3027 if (VORTEX_PCI(vp)) {
3028 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3029 } else {
3030 if (VORTEX_EISA(vp))
3031 sprintf(info->bus_info, vp->gendev->bus_id);
3032 else
3033 sprintf(info->bus_info, "EISA 0x%lx %d",
3034 dev->base_addr, dev->irq);
3038 static struct ethtool_ops vortex_ethtool_ops = {
3039 .get_drvinfo = vortex_get_drvinfo,
3040 .get_strings = vortex_get_strings,
3041 .get_msglevel = vortex_get_msglevel,
3042 .set_msglevel = vortex_set_msglevel,
3043 .get_ethtool_stats = vortex_get_ethtool_stats,
3044 .get_stats_count = vortex_get_stats_count,
3045 .get_settings = vortex_get_settings,
3046 .set_settings = vortex_set_settings,
3047 .get_link = vortex_get_link,
3048 .nway_reset = vortex_nway_reset,
3051 #ifdef CONFIG_PCI
3053 * Must power the device up to do MDIO operations
3055 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3057 int err;
3058 struct vortex_private *vp = netdev_priv(dev);
3059 long ioaddr = dev->base_addr;
3060 unsigned long flags;
3061 int state = 0;
3063 if(VORTEX_PCI(vp))
3064 state = VORTEX_PCI(vp)->current_state;
3066 /* The kernel core really should have pci_get_power_state() */
3068 if(state != 0)
3069 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3070 spin_lock_irqsave(&vp->lock, flags);
3071 EL3WINDOW(4);
3072 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3073 spin_unlock_irqrestore(&vp->lock, flags);
3074 if(state != 0)
3075 pci_set_power_state(VORTEX_PCI(vp), state);
3077 return err;
3079 #endif
3082 /* Pre-Cyclone chips have no documented multicast filter, so the only
3083 multicast setting is to receive all multicast frames. At least
3084 the chip has a very clean way to set the mode, unlike many others. */
3085 static void set_rx_mode(struct net_device *dev)
3087 long ioaddr = dev->base_addr;
3088 int new_mode;
3090 if (dev->flags & IFF_PROMISC) {
3091 if (vortex_debug > 0)
3092 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3093 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3094 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3095 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3096 } else
3097 new_mode = SetRxFilter | RxStation | RxBroadcast;
3099 outw(new_mode, ioaddr + EL3_CMD);
3102 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3103 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3104 Note that this must be done after each RxReset due to some backwards
3105 compatibility logic in the Cyclone and Tornado ASICs */
3107 /* The Ethernet Type used for 802.1q tagged frames */
3108 #define VLAN_ETHER_TYPE 0x8100
3110 static void set_8021q_mode(struct net_device *dev, int enable)
3112 struct vortex_private *vp = netdev_priv(dev);
3113 long ioaddr = dev->base_addr;
3114 int old_window = inw(ioaddr + EL3_CMD);
3115 int mac_ctrl;
3117 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3118 /* cyclone and tornado chipsets can recognize 802.1q
3119 * tagged frames and treat them correctly */
3121 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3122 if (enable)
3123 max_pkt_size += 4; /* 802.1Q VLAN tag */
3125 EL3WINDOW(3);
3126 outw(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3128 /* set VlanEtherType to let the hardware checksumming
3129 treat tagged frames correctly */
3130 EL3WINDOW(7);
3131 outw(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3132 } else {
3133 /* on older cards we have to enable large frames */
3135 vp->large_frames = dev->mtu > 1500 || enable;
3137 EL3WINDOW(3);
3138 mac_ctrl = inw(ioaddr+Wn3_MAC_Ctrl);
3139 if (vp->large_frames)
3140 mac_ctrl |= 0x40;
3141 else
3142 mac_ctrl &= ~0x40;
3143 outw(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3146 EL3WINDOW(old_window);
3148 #else
3150 static void set_8021q_mode(struct net_device *dev, int enable)
3155 #endif
3157 /* MII transceiver control section.
3158 Read and write the MII registers using software-generated serial
3159 MDIO protocol. See the MII specifications or DP83840A data sheet
3160 for details. */
3162 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3163 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3164 "overclocking" issues. */
3165 #define mdio_delay() inl(mdio_addr)
3167 #define MDIO_SHIFT_CLK 0x01
3168 #define MDIO_DIR_WRITE 0x04
3169 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3170 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3171 #define MDIO_DATA_READ 0x02
3172 #define MDIO_ENB_IN 0x00
3174 /* Generate the preamble required for initial synchronization and
3175 a few older transceivers. */
3176 static void mdio_sync(long ioaddr, int bits)
3178 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3180 /* Establish sync by sending at least 32 logic ones. */
3181 while (-- bits >= 0) {
3182 outw(MDIO_DATA_WRITE1, mdio_addr);
3183 mdio_delay();
3184 outw(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3185 mdio_delay();
3189 static int mdio_read(struct net_device *dev, int phy_id, int location)
3191 int i;
3192 long ioaddr = dev->base_addr;
3193 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3194 unsigned int retval = 0;
3195 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3197 if (mii_preamble_required)
3198 mdio_sync(ioaddr, 32);
3200 /* Shift the read command bits out. */
3201 for (i = 14; i >= 0; i--) {
3202 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3203 outw(dataval, mdio_addr);
3204 mdio_delay();
3205 outw(dataval | MDIO_SHIFT_CLK, mdio_addr);
3206 mdio_delay();
3208 /* Read the two transition, 16 data, and wire-idle bits. */
3209 for (i = 19; i > 0; i--) {
3210 outw(MDIO_ENB_IN, mdio_addr);
3211 mdio_delay();
3212 retval = (retval << 1) | ((inw(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3213 outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3214 mdio_delay();
3216 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3219 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3221 long ioaddr = dev->base_addr;
3222 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3223 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3224 int i;
3226 if (mii_preamble_required)
3227 mdio_sync(ioaddr, 32);
3229 /* Shift the command bits out. */
3230 for (i = 31; i >= 0; i--) {
3231 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3232 outw(dataval, mdio_addr);
3233 mdio_delay();
3234 outw(dataval | MDIO_SHIFT_CLK, mdio_addr);
3235 mdio_delay();
3237 /* Leave the interface idle. */
3238 for (i = 1; i >= 0; i--) {
3239 outw(MDIO_ENB_IN, mdio_addr);
3240 mdio_delay();
3241 outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3242 mdio_delay();
3244 return;
3247 /* ACPI: Advanced Configuration and Power Interface. */
3248 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3249 static void acpi_set_WOL(struct net_device *dev)
3251 struct vortex_private *vp = netdev_priv(dev);
3252 long ioaddr = dev->base_addr;
3254 if (vp->enable_wol) {
3255 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3256 EL3WINDOW(7);
3257 outw(2, ioaddr + 0x0c);
3258 /* The RxFilter must accept the WOL frames. */
3259 outw(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3260 outw(RxEnable, ioaddr + EL3_CMD);
3262 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3264 /* Change the power state to D3; RxEnable doesn't take effect. */
3265 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3270 static void __devexit vortex_remove_one (struct pci_dev *pdev)
3272 struct net_device *dev = pci_get_drvdata(pdev);
3273 struct vortex_private *vp;
3275 if (!dev) {
3276 printk("vortex_remove_one called for Compaq device!\n");
3277 BUG();
3280 vp = netdev_priv(dev);
3282 /* AKPM: FIXME: we should have
3283 * if (vp->cb_fn_base) iounmap(vp->cb_fn_base);
3284 * here
3286 unregister_netdev(dev);
3288 if (VORTEX_PCI(vp)) {
3289 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3290 if (vp->pm_state_valid)
3291 pci_restore_state(VORTEX_PCI(vp));
3292 pci_disable_device(VORTEX_PCI(vp));
3294 /* Should really use issue_and_wait() here */
3295 outw(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3296 dev->base_addr + EL3_CMD);
3298 pci_free_consistent(pdev,
3299 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3300 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3301 vp->rx_ring,
3302 vp->rx_ring_dma);
3303 if (vp->must_free_region)
3304 release_region(dev->base_addr, vp->io_size);
3305 free_netdev(dev);
3309 static struct pci_driver vortex_driver = {
3310 .name = "3c59x",
3311 .probe = vortex_init_one,
3312 .remove = __devexit_p(vortex_remove_one),
3313 .id_table = vortex_pci_tbl,
3314 #ifdef CONFIG_PM
3315 .suspend = vortex_suspend,
3316 .resume = vortex_resume,
3317 #endif
3321 static int vortex_have_pci;
3322 static int vortex_have_eisa;
3325 static int __init vortex_init (void)
3327 int pci_rc, eisa_rc;
3329 pci_rc = pci_module_init(&vortex_driver);
3330 eisa_rc = vortex_eisa_init();
3332 if (pci_rc == 0)
3333 vortex_have_pci = 1;
3334 if (eisa_rc > 0)
3335 vortex_have_eisa = 1;
3337 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3341 static void __exit vortex_eisa_cleanup (void)
3343 struct vortex_private *vp;
3344 long ioaddr;
3346 #ifdef CONFIG_EISA
3347 /* Take care of the EISA devices */
3348 eisa_driver_unregister (&vortex_eisa_driver);
3349 #endif
3351 if (compaq_net_device) {
3352 vp = compaq_net_device->priv;
3353 ioaddr = compaq_net_device->base_addr;
3355 unregister_netdev (compaq_net_device);
3356 outw (TotalReset, ioaddr + EL3_CMD);
3357 release_region (ioaddr, VORTEX_TOTAL_SIZE);
3359 free_netdev (compaq_net_device);
3364 static void __exit vortex_cleanup (void)
3366 if (vortex_have_pci)
3367 pci_unregister_driver (&vortex_driver);
3368 if (vortex_have_eisa)
3369 vortex_eisa_cleanup ();
3373 module_init(vortex_init);
3374 module_exit(vortex_cleanup);
3378 * Local variables:
3379 * c-indent-level: 4
3380 * c-basic-offset: 4
3381 * tab-width: 4
3382 * End: