[IA64-SGI] add support for TIO huge-window
[linux-2.6/verdex.git] / arch / ia64 / sn / pci / pcibr / pcibr_dma.c
blobae455b6b18978c057da3f5501da58b38a2a00ebe
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2001-2005 Silicon Graphics, Inc. All rights reserved.
7 */
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/geo.h>
13 #include <asm/sn/pcibr_provider.h>
14 #include <asm/sn/pcibus_provider_defs.h>
15 #include <asm/sn/pcidev.h>
16 #include <asm/sn/pic.h>
17 #include <asm/sn/sn_sal.h>
18 #include <asm/sn/tiocp.h>
19 #include "tio.h"
20 #include "xtalk/xwidgetdev.h"
21 #include "xtalk/hubdev.h"
23 extern int sn_ioif_inited;
25 /* =====================================================================
26 * DMA MANAGEMENT
28 * The Bridge ASIC provides three methods of doing DMA: via a "direct map"
29 * register available in 32-bit PCI space (which selects a contiguous 2G
30 * address space on some other widget), via "direct" addressing via 64-bit
31 * PCI space (all destination information comes from the PCI address,
32 * including transfer attributes), and via a "mapped" region that allows
33 * a bunch of different small mappings to be established with the PMU.
35 * For efficiency, we most prefer to use the 32bit direct mapping facility,
36 * since it requires no resource allocations. The advantage of using the
37 * PMU over the 64-bit direct is that single-cycle PCI addressing can be
38 * used; the advantage of using 64-bit direct over PMU addressing is that
39 * we do not have to allocate entries in the PMU.
42 static dma_addr_t
43 pcibr_dmamap_ate32(struct pcidev_info *info,
44 uint64_t paddr, size_t req_size, uint64_t flags)
47 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
48 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
49 pdi_pcibus_info;
50 uint8_t internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
51 pdi_linux_pcidev->devfn)) - 1;
52 int ate_count;
53 int ate_index;
54 uint64_t ate_flags = flags | PCI32_ATE_V;
55 uint64_t ate;
56 uint64_t pci_addr;
57 uint64_t xio_addr;
58 uint64_t offset;
60 /* PIC in PCI-X mode does not supports 32bit PageMap mode */
61 if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
62 return 0;
65 /* Calculate the number of ATEs needed. */
66 if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
67 ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
68 +req_size /* max mapping bytes */
69 - 1) + 1; /* round UP */
70 } else { /* assume requested target is page aligned */
71 ate_count = IOPG(req_size /* max mapping bytes */
72 - 1) + 1; /* round UP */
75 /* Get the number of ATEs required. */
76 ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
77 if (ate_index < 0)
78 return 0;
80 /* In PCI-X mode, Prefetch not supported */
81 if (IS_PCIX(pcibus_info))
82 ate_flags &= ~(PCI32_ATE_PREF);
84 xio_addr =
85 IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
86 PHYS_TO_TIODMA(paddr);
87 offset = IOPGOFF(xio_addr);
88 ate = ate_flags | (xio_addr - offset);
90 /* If PIC, put the targetid in the ATE */
91 if (IS_PIC_SOFT(pcibus_info)) {
92 ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
94 ate_write(pcibus_info, ate_index, ate_count, ate);
97 * Set up the DMA mapped Address.
99 pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
102 * If swap was set in device in pcibr_endian_set()
103 * we need to turn swapping on.
105 if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
106 ATE_SWAP_ON(pci_addr);
108 return pci_addr;
111 static dma_addr_t
112 pcibr_dmatrans_direct64(struct pcidev_info * info, uint64_t paddr,
113 uint64_t dma_attributes)
115 struct pcibus_info *pcibus_info = (struct pcibus_info *)
116 ((info->pdi_host_pcidev_info)->pdi_pcibus_info);
117 uint64_t pci_addr;
119 /* Translate to Crosstalk View of Physical Address */
120 pci_addr = (IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
121 PHYS_TO_TIODMA(paddr)) | dma_attributes;
123 /* Handle Bus mode */
124 if (IS_PCIX(pcibus_info))
125 pci_addr &= ~PCI64_ATTR_PREF;
127 /* Handle Bridge Chipset differences */
128 if (IS_PIC_SOFT(pcibus_info)) {
129 pci_addr |=
130 ((uint64_t) pcibus_info->
131 pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
132 } else
133 pci_addr |= TIOCP_PCI64_CMDTYPE_MEM;
135 /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
136 if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
137 pci_addr |= PCI64_ATTR_VIRTUAL;
139 return pci_addr;
143 static dma_addr_t
144 pcibr_dmatrans_direct32(struct pcidev_info * info,
145 uint64_t paddr, size_t req_size, uint64_t flags)
148 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
149 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
150 pdi_pcibus_info;
151 uint64_t xio_addr;
153 uint64_t xio_base;
154 uint64_t offset;
155 uint64_t endoff;
157 if (IS_PCIX(pcibus_info)) {
158 return 0;
161 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
162 PHYS_TO_TIODMA(paddr);
164 xio_base = pcibus_info->pbi_dir_xbase;
165 offset = xio_addr - xio_base;
166 endoff = req_size + offset;
167 if ((req_size > (1ULL << 31)) || /* Too Big */
168 (xio_addr < xio_base) || /* Out of range for mappings */
169 (endoff > (1ULL << 31))) { /* Too Big */
170 return 0;
173 return PCI32_DIRECT_BASE | offset;
178 * Wrapper routine for free'ing DMA maps
179 * DMA mappings for Direct 64 and 32 do not have any DMA maps.
181 void
182 pcibr_dma_unmap(struct pci_dev *hwdev, dma_addr_t dma_handle, int direction)
184 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
185 struct pcibus_info *pcibus_info =
186 (struct pcibus_info *)pcidev_info->pdi_pcibus_info;
188 if (IS_PCI32_MAPPED(dma_handle)) {
189 int ate_index;
191 ate_index =
192 IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
193 pcibr_ate_free(pcibus_info, ate_index);
198 * On SN systems there is a race condition between a PIO read response and
199 * DMA's. In rare cases, the read response may beat the DMA, causing the
200 * driver to think that data in memory is complete and meaningful. This code
201 * eliminates that race. This routine is called by the PIO read routines
202 * after doing the read. For PIC this routine then forces a fake interrupt
203 * on another line, which is logically associated with the slot that the PIO
204 * is addressed to. It then spins while watching the memory location that
205 * the interrupt is targetted to. When the interrupt response arrives, we
206 * are sure that the DMA has landed in memory and it is safe for the driver
207 * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
208 * Bridge register since it ensures the data has entered the coherence domain,
209 * unlike the PIC Device(x) Write Request Buffer Flush register.
212 void sn_dma_flush(uint64_t addr)
214 nasid_t nasid;
215 int is_tio;
216 int wid_num;
217 int i, j;
218 uint64_t flags;
219 uint64_t itte;
220 struct hubdev_info *hubinfo;
221 volatile struct sn_flush_device_list *p;
222 struct sn_flush_nasid_entry *flush_nasid_list;
224 if (!sn_ioif_inited)
225 return;
227 nasid = NASID_GET(addr);
228 if (-1 == nasid_to_cnodeid(nasid))
229 return;
231 hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
233 if (!hubinfo) {
234 BUG();
237 flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
238 if (flush_nasid_list->widget_p == NULL)
239 return;
241 is_tio = (nasid & 1);
242 if (is_tio) {
243 int itte_index;
245 if (TIO_HWIN(addr))
246 itte_index = 0;
247 else if (TIO_BWIN_WINDOWNUM(addr))
248 itte_index = TIO_BWIN_WINDOWNUM(addr);
249 else
250 itte_index = -1;
252 if (itte_index >= 0) {
253 itte = flush_nasid_list->iio_itte[itte_index];
254 if (! TIO_ITTE_VALID(itte))
255 return;
256 wid_num = TIO_ITTE_WIDGET(itte);
257 } else
258 wid_num = TIO_SWIN_WIDGETNUM(addr);
259 } else {
260 if (BWIN_WINDOWNUM(addr)) {
261 itte = flush_nasid_list->iio_itte[BWIN_WINDOWNUM(addr)];
262 wid_num = IIO_ITTE_WIDGET(itte);
263 } else
264 wid_num = SWIN_WIDGETNUM(addr);
266 if (flush_nasid_list->widget_p[wid_num] == NULL)
267 return;
268 p = &flush_nasid_list->widget_p[wid_num][0];
270 /* find a matching BAR */
271 for (i = 0; i < DEV_PER_WIDGET; i++) {
272 for (j = 0; j < PCI_ROM_RESOURCE; j++) {
273 if (p->sfdl_bar_list[j].start == 0)
274 break;
275 if (addr >= p->sfdl_bar_list[j].start
276 && addr <= p->sfdl_bar_list[j].end)
277 break;
279 if (j < PCI_ROM_RESOURCE && p->sfdl_bar_list[j].start != 0)
280 break;
281 p++;
284 /* if no matching BAR, return without doing anything. */
285 if (i == DEV_PER_WIDGET)
286 return;
289 * For TIOCP use the Device(x) Write Request Buffer Flush Bridge
290 * register since it ensures the data has entered the coherence
291 * domain, unlike PIC.
293 if (is_tio) {
295 * Note: devices behind TIOCE should never be matched in the
296 * above code, and so the following code is PIC/CP centric.
297 * If CE ever needs the sn_dma_flush mechanism, we will have
298 * to account for that here and in tioce_bus_fixup().
300 uint32_t tio_id = REMOTE_HUB_L(nasid, TIO_NODE_ID);
301 uint32_t revnum = XWIDGET_PART_REV_NUM(tio_id);
303 /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
304 if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
305 return;
306 } else {
307 pcireg_wrb_flush_get(p->sfdl_pcibus_info,
308 (p->sfdl_slot - 1));
310 } else {
311 spin_lock_irqsave(&((struct sn_flush_device_list *)p)->
312 sfdl_flush_lock, flags);
314 *p->sfdl_flush_addr = 0;
316 /* force an interrupt. */
317 *(volatile uint32_t *)(p->sfdl_force_int_addr) = 1;
319 /* wait for the interrupt to come back. */
320 while (*(p->sfdl_flush_addr) != 0x10f) ;
322 /* okay, everything is synched up. */
323 spin_unlock_irqrestore((spinlock_t *)&p->sfdl_flush_lock, flags);
325 return;
329 * DMA interfaces. Called from pci_dma.c routines.
332 dma_addr_t
333 pcibr_dma_map(struct pci_dev * hwdev, unsigned long phys_addr, size_t size)
335 dma_addr_t dma_handle;
336 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
338 /* SN cannot support DMA addresses smaller than 32 bits. */
339 if (hwdev->dma_mask < 0x7fffffff) {
340 return 0;
343 if (hwdev->dma_mask == ~0UL) {
345 * Handle the most common case: 64 bit cards. This
346 * call should always succeed.
349 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
350 PCI64_ATTR_PREF);
351 } else {
352 /* Handle 32-63 bit cards via direct mapping */
353 dma_handle = pcibr_dmatrans_direct32(pcidev_info, phys_addr,
354 size, 0);
355 if (!dma_handle) {
357 * It is a 32 bit card and we cannot do direct mapping,
358 * so we use an ATE.
361 dma_handle = pcibr_dmamap_ate32(pcidev_info, phys_addr,
362 size, PCI32_ATE_PREF);
366 return dma_handle;
369 dma_addr_t
370 pcibr_dma_map_consistent(struct pci_dev * hwdev, unsigned long phys_addr,
371 size_t size)
373 dma_addr_t dma_handle;
374 struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(hwdev);
376 if (hwdev->dev.coherent_dma_mask == ~0UL) {
377 dma_handle = pcibr_dmatrans_direct64(pcidev_info, phys_addr,
378 PCI64_ATTR_BAR);
379 } else {
380 dma_handle = (dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
381 phys_addr, size,
382 PCI32_ATE_BAR);
385 return dma_handle;
388 EXPORT_SYMBOL(sn_dma_flush);