[SCSI] qla1280: convert to use the data buffer accessors
[linux-2.6/verdex.git] / arch / powerpc / platforms / pseries / eeh.c
blob22322b35a0ffd1224e4e0c7c9f19c64a0b7bc12f
1 /*
2 * eeh.c
3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/rbtree.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <asm/atomic.h>
33 #include <asm/eeh.h>
34 #include <asm/eeh_event.h>
35 #include <asm/io.h>
36 #include <asm/machdep.h>
37 #include <asm/ppc-pci.h>
38 #include <asm/rtas.h>
40 #undef DEBUG
42 /** Overview:
43 * EEH, or "Extended Error Handling" is a PCI bridge technology for
44 * dealing with PCI bus errors that can't be dealt with within the
45 * usual PCI framework, except by check-stopping the CPU. Systems
46 * that are designed for high-availability/reliability cannot afford
47 * to crash due to a "mere" PCI error, thus the need for EEH.
48 * An EEH-capable bridge operates by converting a detected error
49 * into a "slot freeze", taking the PCI adapter off-line, making
50 * the slot behave, from the OS'es point of view, as if the slot
51 * were "empty": all reads return 0xff's and all writes are silently
52 * ignored. EEH slot isolation events can be triggered by parity
53 * errors on the address or data busses (e.g. during posted writes),
54 * which in turn might be caused by low voltage on the bus, dust,
55 * vibration, humidity, radioactivity or plain-old failed hardware.
57 * Note, however, that one of the leading causes of EEH slot
58 * freeze events are buggy device drivers, buggy device microcode,
59 * or buggy device hardware. This is because any attempt by the
60 * device to bus-master data to a memory address that is not
61 * assigned to the device will trigger a slot freeze. (The idea
62 * is to prevent devices-gone-wild from corrupting system memory).
63 * Buggy hardware/drivers will have a miserable time co-existing
64 * with EEH.
66 * Ideally, a PCI device driver, when suspecting that an isolation
67 * event has occured (e.g. by reading 0xff's), will then ask EEH
68 * whether this is the case, and then take appropriate steps to
69 * reset the PCI slot, the PCI device, and then resume operations.
70 * However, until that day, the checking is done here, with the
71 * eeh_check_failure() routine embedded in the MMIO macros. If
72 * the slot is found to be isolated, an "EEH Event" is synthesized
73 * and sent out for processing.
76 /* If a device driver keeps reading an MMIO register in an interrupt
77 * handler after a slot isolation event has occurred, we assume it
78 * is broken and panic. This sets the threshold for how many read
79 * attempts we allow before panicking.
81 #define EEH_MAX_FAILS 2100000
83 /* Time to wait for a PCI slot to report status, in milliseconds */
84 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
86 /* RTAS tokens */
87 static int ibm_set_eeh_option;
88 static int ibm_set_slot_reset;
89 static int ibm_read_slot_reset_state;
90 static int ibm_read_slot_reset_state2;
91 static int ibm_slot_error_detail;
92 static int ibm_get_config_addr_info;
93 static int ibm_get_config_addr_info2;
94 static int ibm_configure_bridge;
96 int eeh_subsystem_enabled;
97 EXPORT_SYMBOL(eeh_subsystem_enabled);
99 /* Lock to avoid races due to multiple reports of an error */
100 static DEFINE_SPINLOCK(confirm_error_lock);
102 /* Buffer for reporting slot-error-detail rtas calls. Its here
103 * in BSS, and not dynamically alloced, so that it ends up in
104 * RMO where RTAS can access it.
106 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
107 static DEFINE_SPINLOCK(slot_errbuf_lock);
108 static int eeh_error_buf_size;
110 /* Buffer for reporting pci register dumps. Its here in BSS, and
111 * not dynamically alloced, so that it ends up in RMO where RTAS
112 * can access it.
114 #define EEH_PCI_REGS_LOG_LEN 4096
115 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
117 /* System monitoring statistics */
118 static unsigned long no_device;
119 static unsigned long no_dn;
120 static unsigned long no_cfg_addr;
121 static unsigned long ignored_check;
122 static unsigned long total_mmio_ffs;
123 static unsigned long false_positives;
124 static unsigned long slot_resets;
126 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
128 /* --------------------------------------------------------------- */
129 /* Below lies the EEH event infrastructure */
131 static void rtas_slot_error_detail(struct pci_dn *pdn, int severity,
132 char *driver_log, size_t loglen)
134 int config_addr;
135 unsigned long flags;
136 int rc;
138 /* Log the error with the rtas logger */
139 spin_lock_irqsave(&slot_errbuf_lock, flags);
140 memset(slot_errbuf, 0, eeh_error_buf_size);
142 /* Use PE configuration address, if present */
143 config_addr = pdn->eeh_config_addr;
144 if (pdn->eeh_pe_config_addr)
145 config_addr = pdn->eeh_pe_config_addr;
147 rc = rtas_call(ibm_slot_error_detail,
148 8, 1, NULL, config_addr,
149 BUID_HI(pdn->phb->buid),
150 BUID_LO(pdn->phb->buid),
151 virt_to_phys(driver_log), loglen,
152 virt_to_phys(slot_errbuf),
153 eeh_error_buf_size,
154 severity);
156 if (rc == 0)
157 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
158 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
162 * gather_pci_data - copy assorted PCI config space registers to buff
163 * @pdn: device to report data for
164 * @buf: point to buffer in which to log
165 * @len: amount of room in buffer
167 * This routine captures assorted PCI configuration space data,
168 * and puts them into a buffer for RTAS error logging.
170 static size_t gather_pci_data(struct pci_dn *pdn, char * buf, size_t len)
172 struct device_node *dn;
173 struct pci_dev *dev = pdn->pcidev;
174 u32 cfg;
175 int cap, i;
176 int n = 0;
178 n += scnprintf(buf+n, len-n, "%s\n", pdn->node->full_name);
179 printk(KERN_WARNING "EEH: of node=%s\n", pdn->node->full_name);
181 rtas_read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
182 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
183 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg);
185 rtas_read_config(pdn, PCI_COMMAND, 4, &cfg);
186 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
187 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg);
189 /* Gather bridge-specific registers */
190 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
191 rtas_read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
192 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
193 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg);
195 rtas_read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
196 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
197 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg);
200 /* Dump out the PCI-X command and status regs */
201 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_PCIX);
202 if (cap) {
203 rtas_read_config(pdn, cap, 4, &cfg);
204 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
205 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg);
207 rtas_read_config(pdn, cap+4, 4, &cfg);
208 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
209 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg);
212 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
213 cap = pci_find_capability(pdn->pcidev, PCI_CAP_ID_EXP);
214 if (cap) {
215 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
216 printk(KERN_WARNING
217 "EEH: PCI-E capabilities and status follow:\n");
219 for (i=0; i<=8; i++) {
220 rtas_read_config(pdn, cap+4*i, 4, &cfg);
221 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
222 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg);
225 cap = pci_find_ext_capability(pdn->pcidev, PCI_EXT_CAP_ID_ERR);
226 if (cap) {
227 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
228 printk(KERN_WARNING
229 "EEH: PCI-E AER capability register set follows:\n");
231 for (i=0; i<14; i++) {
232 rtas_read_config(pdn, cap+4*i, 4, &cfg);
233 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
234 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg);
239 /* Gather status on devices under the bridge */
240 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) {
241 dn = pdn->node->child;
242 while (dn) {
243 pdn = PCI_DN(dn);
244 if (pdn)
245 n += gather_pci_data(pdn, buf+n, len-n);
246 dn = dn->sibling;
250 return n;
253 void eeh_slot_error_detail(struct pci_dn *pdn, int severity)
255 size_t loglen = 0;
256 pci_regs_buf[0] = 0;
258 rtas_pci_enable(pdn, EEH_THAW_MMIO);
259 loglen = gather_pci_data(pdn, pci_regs_buf, EEH_PCI_REGS_LOG_LEN);
261 rtas_slot_error_detail(pdn, severity, pci_regs_buf, loglen);
265 * read_slot_reset_state - Read the reset state of a device node's slot
266 * @dn: device node to read
267 * @rets: array to return results in
269 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
271 int token, outputs;
272 int config_addr;
274 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
275 token = ibm_read_slot_reset_state2;
276 outputs = 4;
277 } else {
278 token = ibm_read_slot_reset_state;
279 rets[2] = 0; /* fake PE Unavailable info */
280 outputs = 3;
283 /* Use PE configuration address, if present */
284 config_addr = pdn->eeh_config_addr;
285 if (pdn->eeh_pe_config_addr)
286 config_addr = pdn->eeh_pe_config_addr;
288 return rtas_call(token, 3, outputs, rets, config_addr,
289 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
293 * eeh_wait_for_slot_status - returns error status of slot
294 * @pdn pci device node
295 * @max_wait_msecs maximum number to millisecs to wait
297 * Return negative value if a permanent error, else return
298 * Partition Endpoint (PE) status value.
300 * If @max_wait_msecs is positive, then this routine will
301 * sleep until a valid status can be obtained, or until
302 * the max allowed wait time is exceeded, in which case
303 * a -2 is returned.
306 eeh_wait_for_slot_status(struct pci_dn *pdn, int max_wait_msecs)
308 int rc;
309 int rets[3];
310 int mwait;
312 while (1) {
313 rc = read_slot_reset_state(pdn, rets);
314 if (rc) return rc;
315 if (rets[1] == 0) return -1; /* EEH is not supported */
317 if (rets[0] != 5) return rets[0]; /* return actual status */
319 if (rets[2] == 0) return -1; /* permanently unavailable */
321 if (max_wait_msecs <= 0) return -1;
323 mwait = rets[2];
324 if (mwait <= 0) {
325 printk (KERN_WARNING
326 "EEH: Firmware returned bad wait value=%d\n", mwait);
327 mwait = 1000;
328 } else if (mwait > 300*1000) {
329 printk (KERN_WARNING
330 "EEH: Firmware is taking too long, time=%d\n", mwait);
331 mwait = 300*1000;
333 max_wait_msecs -= mwait;
334 msleep (mwait);
337 printk(KERN_WARNING "EEH: Timed out waiting for slot status\n");
338 return -2;
342 * eeh_token_to_phys - convert EEH address token to phys address
343 * @token i/o token, should be address in the form 0xA....
345 static inline unsigned long eeh_token_to_phys(unsigned long token)
347 pte_t *ptep;
348 unsigned long pa;
350 ptep = find_linux_pte(init_mm.pgd, token);
351 if (!ptep)
352 return token;
353 pa = pte_pfn(*ptep) << PAGE_SHIFT;
355 return pa | (token & (PAGE_SIZE-1));
358 /**
359 * Return the "partitionable endpoint" (pe) under which this device lies
361 struct device_node * find_device_pe(struct device_node *dn)
363 while ((dn->parent) && PCI_DN(dn->parent) &&
364 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
365 dn = dn->parent;
367 return dn;
370 /** Mark all devices that are peers of this device as failed.
371 * Mark the device driver too, so that it can see the failure
372 * immediately; this is critical, since some drivers poll
373 * status registers in interrupts ... If a driver is polling,
374 * and the slot is frozen, then the driver can deadlock in
375 * an interrupt context, which is bad.
378 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
380 while (dn) {
381 if (PCI_DN(dn)) {
382 /* Mark the pci device driver too */
383 struct pci_dev *dev = PCI_DN(dn)->pcidev;
385 PCI_DN(dn)->eeh_mode |= mode_flag;
387 if (dev && dev->driver)
388 dev->error_state = pci_channel_io_frozen;
390 if (dn->child)
391 __eeh_mark_slot (dn->child, mode_flag);
393 dn = dn->sibling;
397 void eeh_mark_slot (struct device_node *dn, int mode_flag)
399 struct pci_dev *dev;
400 dn = find_device_pe (dn);
402 /* Back up one, since config addrs might be shared */
403 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
404 dn = dn->parent;
406 PCI_DN(dn)->eeh_mode |= mode_flag;
408 /* Mark the pci device too */
409 dev = PCI_DN(dn)->pcidev;
410 if (dev)
411 dev->error_state = pci_channel_io_frozen;
413 __eeh_mark_slot (dn->child, mode_flag);
416 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
418 while (dn) {
419 if (PCI_DN(dn)) {
420 PCI_DN(dn)->eeh_mode &= ~mode_flag;
421 PCI_DN(dn)->eeh_check_count = 0;
422 if (dn->child)
423 __eeh_clear_slot (dn->child, mode_flag);
425 dn = dn->sibling;
429 void eeh_clear_slot (struct device_node *dn, int mode_flag)
431 unsigned long flags;
432 spin_lock_irqsave(&confirm_error_lock, flags);
434 dn = find_device_pe (dn);
436 /* Back up one, since config addrs might be shared */
437 if (!pcibios_find_pci_bus(dn) && PCI_DN(dn->parent))
438 dn = dn->parent;
440 PCI_DN(dn)->eeh_mode &= ~mode_flag;
441 PCI_DN(dn)->eeh_check_count = 0;
442 __eeh_clear_slot (dn->child, mode_flag);
443 spin_unlock_irqrestore(&confirm_error_lock, flags);
447 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
448 * @dn device node
449 * @dev pci device, if known
451 * Check for an EEH failure for the given device node. Call this
452 * routine if the result of a read was all 0xff's and you want to
453 * find out if this is due to an EEH slot freeze. This routine
454 * will query firmware for the EEH status.
456 * Returns 0 if there has not been an EEH error; otherwise returns
457 * a non-zero value and queues up a slot isolation event notification.
459 * It is safe to call this routine in an interrupt context.
461 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
463 int ret;
464 int rets[3];
465 unsigned long flags;
466 struct pci_dn *pdn;
467 int rc = 0;
469 total_mmio_ffs++;
471 if (!eeh_subsystem_enabled)
472 return 0;
474 if (!dn) {
475 no_dn++;
476 return 0;
478 pdn = PCI_DN(dn);
480 /* Access to IO BARs might get this far and still not want checking. */
481 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
482 pdn->eeh_mode & EEH_MODE_NOCHECK) {
483 ignored_check++;
484 #ifdef DEBUG
485 printk ("EEH:ignored check (%x) for %s %s\n",
486 pdn->eeh_mode, pci_name (dev), dn->full_name);
487 #endif
488 return 0;
491 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
492 no_cfg_addr++;
493 return 0;
496 /* If we already have a pending isolation event for this
497 * slot, we know it's bad already, we don't need to check.
498 * Do this checking under a lock; as multiple PCI devices
499 * in one slot might report errors simultaneously, and we
500 * only want one error recovery routine running.
502 spin_lock_irqsave(&confirm_error_lock, flags);
503 rc = 1;
504 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
505 pdn->eeh_check_count ++;
506 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
507 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
508 pdn->eeh_check_count);
509 dump_stack();
510 msleep(5000);
512 /* re-read the slot reset state */
513 if (read_slot_reset_state(pdn, rets) != 0)
514 rets[0] = -1; /* reset state unknown */
516 /* If we are here, then we hit an infinite loop. Stop. */
517 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
519 goto dn_unlock;
523 * Now test for an EEH failure. This is VERY expensive.
524 * Note that the eeh_config_addr may be a parent device
525 * in the case of a device behind a bridge, or it may be
526 * function zero of a multi-function device.
527 * In any case they must share a common PHB.
529 ret = read_slot_reset_state(pdn, rets);
531 /* If the call to firmware failed, punt */
532 if (ret != 0) {
533 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
534 ret, dn->full_name);
535 false_positives++;
536 pdn->eeh_false_positives ++;
537 rc = 0;
538 goto dn_unlock;
541 /* Note that config-io to empty slots may fail;
542 * they are empty when they don't have children. */
543 if ((rets[0] == 5) && (dn->child == NULL)) {
544 false_positives++;
545 pdn->eeh_false_positives ++;
546 rc = 0;
547 goto dn_unlock;
550 /* If EEH is not supported on this device, punt. */
551 if (rets[1] != 1) {
552 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
553 ret, dn->full_name);
554 false_positives++;
555 pdn->eeh_false_positives ++;
556 rc = 0;
557 goto dn_unlock;
560 /* If not the kind of error we know about, punt. */
561 if (rets[0] != 1 && rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
562 false_positives++;
563 pdn->eeh_false_positives ++;
564 rc = 0;
565 goto dn_unlock;
568 slot_resets++;
570 /* Avoid repeated reports of this failure, including problems
571 * with other functions on this device, and functions under
572 * bridges. */
573 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
574 spin_unlock_irqrestore(&confirm_error_lock, flags);
576 eeh_send_failure_event (dn, dev);
578 /* Most EEH events are due to device driver bugs. Having
579 * a stack trace will help the device-driver authors figure
580 * out what happened. So print that out. */
581 dump_stack();
582 return 1;
584 dn_unlock:
585 spin_unlock_irqrestore(&confirm_error_lock, flags);
586 return rc;
589 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
592 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
593 * @token i/o token, should be address in the form 0xA....
594 * @val value, should be all 1's (XXX why do we need this arg??)
596 * Check for an EEH failure at the given token address. Call this
597 * routine if the result of a read was all 0xff's and you want to
598 * find out if this is due to an EEH slot freeze event. This routine
599 * will query firmware for the EEH status.
601 * Note this routine is safe to call in an interrupt context.
603 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
605 unsigned long addr;
606 struct pci_dev *dev;
607 struct device_node *dn;
609 /* Finding the phys addr + pci device; this is pretty quick. */
610 addr = eeh_token_to_phys((unsigned long __force) token);
611 dev = pci_get_device_by_addr(addr);
612 if (!dev) {
613 no_device++;
614 return val;
617 dn = pci_device_to_OF_node(dev);
618 eeh_dn_check_failure (dn, dev);
620 pci_dev_put(dev);
621 return val;
624 EXPORT_SYMBOL(eeh_check_failure);
626 /* ------------------------------------------------------------- */
627 /* The code below deals with error recovery */
630 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
631 * @pdn pci device node
635 rtas_pci_enable(struct pci_dn *pdn, int function)
637 int config_addr;
638 int rc;
640 /* Use PE configuration address, if present */
641 config_addr = pdn->eeh_config_addr;
642 if (pdn->eeh_pe_config_addr)
643 config_addr = pdn->eeh_pe_config_addr;
645 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
646 config_addr,
647 BUID_HI(pdn->phb->buid),
648 BUID_LO(pdn->phb->buid),
649 function);
651 if (rc)
652 printk(KERN_WARNING "EEH: Unexpected state change %d, err=%d dn=%s\n",
653 function, rc, pdn->node->full_name);
655 rc = eeh_wait_for_slot_status (pdn, PCI_BUS_RESET_WAIT_MSEC);
656 if ((rc == 4) && (function == EEH_THAW_MMIO))
657 return 0;
659 return rc;
663 * rtas_pci_slot_reset - raises/lowers the pci #RST line
664 * @pdn pci device node
665 * @state: 1/0 to raise/lower the #RST
667 * Clear the EEH-frozen condition on a slot. This routine
668 * asserts the PCI #RST line if the 'state' argument is '1',
669 * and drops the #RST line if 'state is '0'. This routine is
670 * safe to call in an interrupt context.
674 static void
675 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
677 int config_addr;
678 int rc;
680 BUG_ON (pdn==NULL);
682 if (!pdn->phb) {
683 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
684 pdn->node->full_name);
685 return;
688 /* Use PE configuration address, if present */
689 config_addr = pdn->eeh_config_addr;
690 if (pdn->eeh_pe_config_addr)
691 config_addr = pdn->eeh_pe_config_addr;
693 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
694 config_addr,
695 BUID_HI(pdn->phb->buid),
696 BUID_LO(pdn->phb->buid),
697 state);
698 if (rc)
699 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
700 " (%d) #RST=%d dn=%s\n",
701 rc, state, pdn->node->full_name);
705 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
706 * @dev: pci device struct
707 * @state: reset state to enter
709 * Return value:
710 * 0 if success
712 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
714 struct device_node *dn = pci_device_to_OF_node(dev);
715 struct pci_dn *pdn = PCI_DN(dn);
717 switch (state) {
718 case pcie_deassert_reset:
719 rtas_pci_slot_reset(pdn, 0);
720 break;
721 case pcie_hot_reset:
722 rtas_pci_slot_reset(pdn, 1);
723 break;
724 case pcie_warm_reset:
725 rtas_pci_slot_reset(pdn, 3);
726 break;
727 default:
728 return -EINVAL;
731 return 0;
735 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
736 * @pdn: pci device node to be reset.
738 * Return 0 if success, else a non-zero value.
741 static void __rtas_set_slot_reset(struct pci_dn *pdn)
743 rtas_pci_slot_reset (pdn, 1);
745 /* The PCI bus requires that the reset be held high for at least
746 * a 100 milliseconds. We wait a bit longer 'just in case'. */
748 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
749 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
751 /* We might get hit with another EEH freeze as soon as the
752 * pci slot reset line is dropped. Make sure we don't miss
753 * these, and clear the flag now. */
754 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
756 rtas_pci_slot_reset (pdn, 0);
758 /* After a PCI slot has been reset, the PCI Express spec requires
759 * a 1.5 second idle time for the bus to stabilize, before starting
760 * up traffic. */
761 #define PCI_BUS_SETTLE_TIME_MSEC 1800
762 msleep (PCI_BUS_SETTLE_TIME_MSEC);
765 int rtas_set_slot_reset(struct pci_dn *pdn)
767 int i, rc;
769 /* Take three shots at resetting the bus */
770 for (i=0; i<3; i++) {
771 __rtas_set_slot_reset(pdn);
773 rc = eeh_wait_for_slot_status(pdn, PCI_BUS_RESET_WAIT_MSEC);
774 if (rc == 0)
775 return 0;
777 if (rc < 0) {
778 printk(KERN_ERR "EEH: unrecoverable slot failure %s\n",
779 pdn->node->full_name);
780 return -1;
782 printk(KERN_ERR "EEH: bus reset %d failed on slot %s, rc=%d\n",
783 i+1, pdn->node->full_name, rc);
786 return -1;
789 /* ------------------------------------------------------- */
790 /** Save and restore of PCI BARs
792 * Although firmware will set up BARs during boot, it doesn't
793 * set up device BAR's after a device reset, although it will,
794 * if requested, set up bridge configuration. Thus, we need to
795 * configure the PCI devices ourselves.
799 * __restore_bars - Restore the Base Address Registers
800 * @pdn: pci device node
802 * Loads the PCI configuration space base address registers,
803 * the expansion ROM base address, the latency timer, and etc.
804 * from the saved values in the device node.
806 static inline void __restore_bars (struct pci_dn *pdn)
808 int i;
810 if (NULL==pdn->phb) return;
811 for (i=4; i<10; i++) {
812 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
815 /* 12 == Expansion ROM Address */
816 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
818 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
819 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
821 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
822 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
824 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
825 SAVED_BYTE(PCI_LATENCY_TIMER));
827 /* max latency, min grant, interrupt pin and line */
828 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
832 * eeh_restore_bars - restore the PCI config space info
834 * This routine performs a recursive walk to the children
835 * of this device as well.
837 void eeh_restore_bars(struct pci_dn *pdn)
839 struct device_node *dn;
840 if (!pdn)
841 return;
843 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
844 __restore_bars (pdn);
846 dn = pdn->node->child;
847 while (dn) {
848 eeh_restore_bars (PCI_DN(dn));
849 dn = dn->sibling;
854 * eeh_save_bars - save device bars
856 * Save the values of the device bars. Unlike the restore
857 * routine, this routine is *not* recursive. This is because
858 * PCI devices are added individuallly; but, for the restore,
859 * an entire slot is reset at a time.
861 static void eeh_save_bars(struct pci_dn *pdn)
863 int i;
865 if (!pdn )
866 return;
868 for (i = 0; i < 16; i++)
869 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
872 void
873 rtas_configure_bridge(struct pci_dn *pdn)
875 int config_addr;
876 int rc;
878 /* Use PE configuration address, if present */
879 config_addr = pdn->eeh_config_addr;
880 if (pdn->eeh_pe_config_addr)
881 config_addr = pdn->eeh_pe_config_addr;
883 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
884 config_addr,
885 BUID_HI(pdn->phb->buid),
886 BUID_LO(pdn->phb->buid));
887 if (rc) {
888 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
889 rc, pdn->node->full_name);
893 /* ------------------------------------------------------------- */
894 /* The code below deals with enabling EEH for devices during the
895 * early boot sequence. EEH must be enabled before any PCI probing
896 * can be done.
899 #define EEH_ENABLE 1
901 struct eeh_early_enable_info {
902 unsigned int buid_hi;
903 unsigned int buid_lo;
906 static int get_pe_addr (int config_addr,
907 struct eeh_early_enable_info *info)
909 unsigned int rets[3];
910 int ret;
912 /* Use latest config-addr token on power6 */
913 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
914 /* Make sure we have a PE in hand */
915 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
916 config_addr, info->buid_hi, info->buid_lo, 1);
917 if (ret || (rets[0]==0))
918 return 0;
920 ret = rtas_call (ibm_get_config_addr_info2, 4, 2, rets,
921 config_addr, info->buid_hi, info->buid_lo, 0);
922 if (ret)
923 return 0;
924 return rets[0];
927 /* Use older config-addr token on power5 */
928 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
929 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
930 config_addr, info->buid_hi, info->buid_lo, 0);
931 if (ret)
932 return 0;
933 return rets[0];
935 return 0;
938 /* Enable eeh for the given device node. */
939 static void *early_enable_eeh(struct device_node *dn, void *data)
941 unsigned int rets[3];
942 struct eeh_early_enable_info *info = data;
943 int ret;
944 const char *status = of_get_property(dn, "status", NULL);
945 const u32 *class_code = of_get_property(dn, "class-code", NULL);
946 const u32 *vendor_id = of_get_property(dn, "vendor-id", NULL);
947 const u32 *device_id = of_get_property(dn, "device-id", NULL);
948 const u32 *regs;
949 int enable;
950 struct pci_dn *pdn = PCI_DN(dn);
952 pdn->class_code = 0;
953 pdn->eeh_mode = 0;
954 pdn->eeh_check_count = 0;
955 pdn->eeh_freeze_count = 0;
956 pdn->eeh_false_positives = 0;
958 if (status && strncmp(status, "ok", 2) != 0)
959 return NULL; /* ignore devices with bad status */
961 /* Ignore bad nodes. */
962 if (!class_code || !vendor_id || !device_id)
963 return NULL;
965 /* There is nothing to check on PCI to ISA bridges */
966 if (dn->type && !strcmp(dn->type, "isa")) {
967 pdn->eeh_mode |= EEH_MODE_NOCHECK;
968 return NULL;
970 pdn->class_code = *class_code;
972 /* Ok... see if this device supports EEH. Some do, some don't,
973 * and the only way to find out is to check each and every one. */
974 regs = of_get_property(dn, "reg", NULL);
975 if (regs) {
976 /* First register entry is addr (00BBSS00) */
977 /* Try to enable eeh */
978 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
979 regs[0], info->buid_hi, info->buid_lo,
980 EEH_ENABLE);
982 enable = 0;
983 if (ret == 0) {
984 pdn->eeh_config_addr = regs[0];
986 /* If the newer, better, ibm,get-config-addr-info is supported,
987 * then use that instead. */
988 pdn->eeh_pe_config_addr = get_pe_addr(pdn->eeh_config_addr, info);
990 /* Some older systems (Power4) allow the
991 * ibm,set-eeh-option call to succeed even on nodes
992 * where EEH is not supported. Verify support
993 * explicitly. */
994 ret = read_slot_reset_state(pdn, rets);
995 if ((ret == 0) && (rets[1] == 1))
996 enable = 1;
999 if (enable) {
1000 eeh_subsystem_enabled = 1;
1001 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1003 #ifdef DEBUG
1004 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1005 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
1006 #endif
1007 } else {
1009 /* This device doesn't support EEH, but it may have an
1010 * EEH parent, in which case we mark it as supported. */
1011 if (dn->parent && PCI_DN(dn->parent)
1012 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
1013 /* Parent supports EEH. */
1014 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
1015 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
1016 return NULL;
1019 } else {
1020 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
1021 dn->full_name);
1024 eeh_save_bars(pdn);
1025 return NULL;
1029 * Initialize EEH by trying to enable it for all of the adapters in the system.
1030 * As a side effect we can determine here if eeh is supported at all.
1031 * Note that we leave EEH on so failed config cycles won't cause a machine
1032 * check. If a user turns off EEH for a particular adapter they are really
1033 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1034 * grant access to a slot if EEH isn't enabled, and so we always enable
1035 * EEH for all slots/all devices.
1037 * The eeh-force-off option disables EEH checking globally, for all slots.
1038 * Even if force-off is set, the EEH hardware is still enabled, so that
1039 * newer systems can boot.
1041 void __init eeh_init(void)
1043 struct device_node *phb, *np;
1044 struct eeh_early_enable_info info;
1046 spin_lock_init(&confirm_error_lock);
1047 spin_lock_init(&slot_errbuf_lock);
1049 np = of_find_node_by_path("/rtas");
1050 if (np == NULL)
1051 return;
1053 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1054 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1055 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1056 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1057 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1058 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
1059 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
1060 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
1062 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1063 return;
1065 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1066 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1067 eeh_error_buf_size = 1024;
1069 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1070 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1071 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1072 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1075 /* Enable EEH for all adapters. Note that eeh requires buid's */
1076 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1077 phb = of_find_node_by_name(phb, "pci")) {
1078 unsigned long buid;
1080 buid = get_phb_buid(phb);
1081 if (buid == 0 || PCI_DN(phb) == NULL)
1082 continue;
1084 info.buid_lo = BUID_LO(buid);
1085 info.buid_hi = BUID_HI(buid);
1086 traverse_pci_devices(phb, early_enable_eeh, &info);
1089 if (eeh_subsystem_enabled)
1090 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1091 else
1092 printk(KERN_WARNING "EEH: No capable adapters found\n");
1096 * eeh_add_device_early - enable EEH for the indicated device_node
1097 * @dn: device node for which to set up EEH
1099 * This routine must be used to perform EEH initialization for PCI
1100 * devices that were added after system boot (e.g. hotplug, dlpar).
1101 * This routine must be called before any i/o is performed to the
1102 * adapter (inluding any config-space i/o).
1103 * Whether this actually enables EEH or not for this device depends
1104 * on the CEC architecture, type of the device, on earlier boot
1105 * command-line arguments & etc.
1107 static void eeh_add_device_early(struct device_node *dn)
1109 struct pci_controller *phb;
1110 struct eeh_early_enable_info info;
1112 if (!dn || !PCI_DN(dn))
1113 return;
1114 phb = PCI_DN(dn)->phb;
1116 /* USB Bus children of PCI devices will not have BUID's */
1117 if (NULL == phb || 0 == phb->buid)
1118 return;
1120 info.buid_hi = BUID_HI(phb->buid);
1121 info.buid_lo = BUID_LO(phb->buid);
1122 early_enable_eeh(dn, &info);
1125 void eeh_add_device_tree_early(struct device_node *dn)
1127 struct device_node *sib;
1128 for (sib = dn->child; sib; sib = sib->sibling)
1129 eeh_add_device_tree_early(sib);
1130 eeh_add_device_early(dn);
1132 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1135 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1136 * @dev: pci device for which to set up EEH
1138 * This routine must be used to complete EEH initialization for PCI
1139 * devices that were added after system boot (e.g. hotplug, dlpar).
1141 static void eeh_add_device_late(struct pci_dev *dev)
1143 struct device_node *dn;
1144 struct pci_dn *pdn;
1146 if (!dev || !eeh_subsystem_enabled)
1147 return;
1149 #ifdef DEBUG
1150 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1151 #endif
1153 pci_dev_get (dev);
1154 dn = pci_device_to_OF_node(dev);
1155 pdn = PCI_DN(dn);
1156 pdn->pcidev = dev;
1158 pci_addr_cache_insert_device(dev);
1159 eeh_sysfs_add_device(dev);
1162 void eeh_add_device_tree_late(struct pci_bus *bus)
1164 struct pci_dev *dev;
1166 list_for_each_entry(dev, &bus->devices, bus_list) {
1167 eeh_add_device_late(dev);
1168 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1169 struct pci_bus *subbus = dev->subordinate;
1170 if (subbus)
1171 eeh_add_device_tree_late(subbus);
1175 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1178 * eeh_remove_device - undo EEH setup for the indicated pci device
1179 * @dev: pci device to be removed
1181 * This routine should be called when a device is removed from
1182 * a running system (e.g. by hotplug or dlpar). It unregisters
1183 * the PCI device from the EEH subsystem. I/O errors affecting
1184 * this device will no longer be detected after this call; thus,
1185 * i/o errors affecting this slot may leave this device unusable.
1187 static void eeh_remove_device(struct pci_dev *dev)
1189 struct device_node *dn;
1190 if (!dev || !eeh_subsystem_enabled)
1191 return;
1193 /* Unregister the device with the EEH/PCI address search system */
1194 #ifdef DEBUG
1195 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1196 #endif
1197 pci_addr_cache_remove_device(dev);
1198 eeh_sysfs_remove_device(dev);
1200 dn = pci_device_to_OF_node(dev);
1201 if (PCI_DN(dn)->pcidev) {
1202 PCI_DN(dn)->pcidev = NULL;
1203 pci_dev_put (dev);
1207 void eeh_remove_bus_device(struct pci_dev *dev)
1209 struct pci_bus *bus = dev->subordinate;
1210 struct pci_dev *child, *tmp;
1212 eeh_remove_device(dev);
1214 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1215 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1216 eeh_remove_bus_device(child);
1219 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1221 static int proc_eeh_show(struct seq_file *m, void *v)
1223 if (0 == eeh_subsystem_enabled) {
1224 seq_printf(m, "EEH Subsystem is globally disabled\n");
1225 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1226 } else {
1227 seq_printf(m, "EEH Subsystem is enabled\n");
1228 seq_printf(m,
1229 "no device=%ld\n"
1230 "no device node=%ld\n"
1231 "no config address=%ld\n"
1232 "check not wanted=%ld\n"
1233 "eeh_total_mmio_ffs=%ld\n"
1234 "eeh_false_positives=%ld\n"
1235 "eeh_slot_resets=%ld\n",
1236 no_device, no_dn, no_cfg_addr,
1237 ignored_check, total_mmio_ffs,
1238 false_positives,
1239 slot_resets);
1242 return 0;
1245 static int proc_eeh_open(struct inode *inode, struct file *file)
1247 return single_open(file, proc_eeh_show, NULL);
1250 static const struct file_operations proc_eeh_operations = {
1251 .open = proc_eeh_open,
1252 .read = seq_read,
1253 .llseek = seq_lseek,
1254 .release = single_release,
1257 static int __init eeh_init_proc(void)
1259 struct proc_dir_entry *e;
1261 if (machine_is(pseries)) {
1262 e = create_proc_entry("ppc64/eeh", 0, NULL);
1263 if (e)
1264 e->proc_fops = &proc_eeh_operations;
1267 return 0;
1269 __initcall(eeh_init_proc);