3 * Copyright IBM Corporation 2001, 2005, 2006
4 * Copyright Dave Engebretsen & Todd Inglett 2001
5 * Copyright Linas Vepstas 2005, 2006
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/pci.h>
28 #include <linux/proc_fs.h>
29 #include <linux/rbtree.h>
30 #include <linux/seq_file.h>
31 #include <linux/spinlock.h>
32 #include <asm/atomic.h>
34 #include <asm/eeh_event.h>
36 #include <asm/machdep.h>
37 #include <asm/ppc-pci.h>
43 * EEH, or "Extended Error Handling" is a PCI bridge technology for
44 * dealing with PCI bus errors that can't be dealt with within the
45 * usual PCI framework, except by check-stopping the CPU. Systems
46 * that are designed for high-availability/reliability cannot afford
47 * to crash due to a "mere" PCI error, thus the need for EEH.
48 * An EEH-capable bridge operates by converting a detected error
49 * into a "slot freeze", taking the PCI adapter off-line, making
50 * the slot behave, from the OS'es point of view, as if the slot
51 * were "empty": all reads return 0xff's and all writes are silently
52 * ignored. EEH slot isolation events can be triggered by parity
53 * errors on the address or data busses (e.g. during posted writes),
54 * which in turn might be caused by low voltage on the bus, dust,
55 * vibration, humidity, radioactivity or plain-old failed hardware.
57 * Note, however, that one of the leading causes of EEH slot
58 * freeze events are buggy device drivers, buggy device microcode,
59 * or buggy device hardware. This is because any attempt by the
60 * device to bus-master data to a memory address that is not
61 * assigned to the device will trigger a slot freeze. (The idea
62 * is to prevent devices-gone-wild from corrupting system memory).
63 * Buggy hardware/drivers will have a miserable time co-existing
66 * Ideally, a PCI device driver, when suspecting that an isolation
67 * event has occured (e.g. by reading 0xff's), will then ask EEH
68 * whether this is the case, and then take appropriate steps to
69 * reset the PCI slot, the PCI device, and then resume operations.
70 * However, until that day, the checking is done here, with the
71 * eeh_check_failure() routine embedded in the MMIO macros. If
72 * the slot is found to be isolated, an "EEH Event" is synthesized
73 * and sent out for processing.
76 /* If a device driver keeps reading an MMIO register in an interrupt
77 * handler after a slot isolation event has occurred, we assume it
78 * is broken and panic. This sets the threshold for how many read
79 * attempts we allow before panicking.
81 #define EEH_MAX_FAILS 2100000
83 /* Time to wait for a PCI slot to report status, in milliseconds */
84 #define PCI_BUS_RESET_WAIT_MSEC (60*1000)
87 static int ibm_set_eeh_option
;
88 static int ibm_set_slot_reset
;
89 static int ibm_read_slot_reset_state
;
90 static int ibm_read_slot_reset_state2
;
91 static int ibm_slot_error_detail
;
92 static int ibm_get_config_addr_info
;
93 static int ibm_get_config_addr_info2
;
94 static int ibm_configure_bridge
;
96 int eeh_subsystem_enabled
;
97 EXPORT_SYMBOL(eeh_subsystem_enabled
);
99 /* Lock to avoid races due to multiple reports of an error */
100 static DEFINE_SPINLOCK(confirm_error_lock
);
102 /* Buffer for reporting slot-error-detail rtas calls. Its here
103 * in BSS, and not dynamically alloced, so that it ends up in
104 * RMO where RTAS can access it.
106 static unsigned char slot_errbuf
[RTAS_ERROR_LOG_MAX
];
107 static DEFINE_SPINLOCK(slot_errbuf_lock
);
108 static int eeh_error_buf_size
;
110 /* Buffer for reporting pci register dumps. Its here in BSS, and
111 * not dynamically alloced, so that it ends up in RMO where RTAS
114 #define EEH_PCI_REGS_LOG_LEN 4096
115 static unsigned char pci_regs_buf
[EEH_PCI_REGS_LOG_LEN
];
117 /* System monitoring statistics */
118 static unsigned long no_device
;
119 static unsigned long no_dn
;
120 static unsigned long no_cfg_addr
;
121 static unsigned long ignored_check
;
122 static unsigned long total_mmio_ffs
;
123 static unsigned long false_positives
;
124 static unsigned long slot_resets
;
126 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
128 /* --------------------------------------------------------------- */
129 /* Below lies the EEH event infrastructure */
131 static void rtas_slot_error_detail(struct pci_dn
*pdn
, int severity
,
132 char *driver_log
, size_t loglen
)
138 /* Log the error with the rtas logger */
139 spin_lock_irqsave(&slot_errbuf_lock
, flags
);
140 memset(slot_errbuf
, 0, eeh_error_buf_size
);
142 /* Use PE configuration address, if present */
143 config_addr
= pdn
->eeh_config_addr
;
144 if (pdn
->eeh_pe_config_addr
)
145 config_addr
= pdn
->eeh_pe_config_addr
;
147 rc
= rtas_call(ibm_slot_error_detail
,
148 8, 1, NULL
, config_addr
,
149 BUID_HI(pdn
->phb
->buid
),
150 BUID_LO(pdn
->phb
->buid
),
151 virt_to_phys(driver_log
), loglen
,
152 virt_to_phys(slot_errbuf
),
157 log_error(slot_errbuf
, ERR_TYPE_RTAS_LOG
, 0);
158 spin_unlock_irqrestore(&slot_errbuf_lock
, flags
);
162 * gather_pci_data - copy assorted PCI config space registers to buff
163 * @pdn: device to report data for
164 * @buf: point to buffer in which to log
165 * @len: amount of room in buffer
167 * This routine captures assorted PCI configuration space data,
168 * and puts them into a buffer for RTAS error logging.
170 static size_t gather_pci_data(struct pci_dn
*pdn
, char * buf
, size_t len
)
172 struct device_node
*dn
;
173 struct pci_dev
*dev
= pdn
->pcidev
;
178 n
+= scnprintf(buf
+n
, len
-n
, "%s\n", pdn
->node
->full_name
);
179 printk(KERN_WARNING
"EEH: of node=%s\n", pdn
->node
->full_name
);
181 rtas_read_config(pdn
, PCI_VENDOR_ID
, 4, &cfg
);
182 n
+= scnprintf(buf
+n
, len
-n
, "dev/vend:%08x\n", cfg
);
183 printk(KERN_WARNING
"EEH: PCI device/vendor: %08x\n", cfg
);
185 rtas_read_config(pdn
, PCI_COMMAND
, 4, &cfg
);
186 n
+= scnprintf(buf
+n
, len
-n
, "cmd/stat:%x\n", cfg
);
187 printk(KERN_WARNING
"EEH: PCI cmd/status register: %08x\n", cfg
);
189 /* Gather bridge-specific registers */
190 if (dev
->class >> 16 == PCI_BASE_CLASS_BRIDGE
) {
191 rtas_read_config(pdn
, PCI_SEC_STATUS
, 2, &cfg
);
192 n
+= scnprintf(buf
+n
, len
-n
, "sec stat:%x\n", cfg
);
193 printk(KERN_WARNING
"EEH: Bridge secondary status: %04x\n", cfg
);
195 rtas_read_config(pdn
, PCI_BRIDGE_CONTROL
, 2, &cfg
);
196 n
+= scnprintf(buf
+n
, len
-n
, "brdg ctl:%x\n", cfg
);
197 printk(KERN_WARNING
"EEH: Bridge control: %04x\n", cfg
);
200 /* Dump out the PCI-X command and status regs */
201 cap
= pci_find_capability(pdn
->pcidev
, PCI_CAP_ID_PCIX
);
203 rtas_read_config(pdn
, cap
, 4, &cfg
);
204 n
+= scnprintf(buf
+n
, len
-n
, "pcix-cmd:%x\n", cfg
);
205 printk(KERN_WARNING
"EEH: PCI-X cmd: %08x\n", cfg
);
207 rtas_read_config(pdn
, cap
+4, 4, &cfg
);
208 n
+= scnprintf(buf
+n
, len
-n
, "pcix-stat:%x\n", cfg
);
209 printk(KERN_WARNING
"EEH: PCI-X status: %08x\n", cfg
);
212 /* If PCI-E capable, dump PCI-E cap 10, and the AER */
213 cap
= pci_find_capability(pdn
->pcidev
, PCI_CAP_ID_EXP
);
215 n
+= scnprintf(buf
+n
, len
-n
, "pci-e cap10:\n");
217 "EEH: PCI-E capabilities and status follow:\n");
219 for (i
=0; i
<=8; i
++) {
220 rtas_read_config(pdn
, cap
+4*i
, 4, &cfg
);
221 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
222 printk(KERN_WARNING
"EEH: PCI-E %02x: %08x\n", i
, cfg
);
225 cap
= pci_find_ext_capability(pdn
->pcidev
, PCI_EXT_CAP_ID_ERR
);
227 n
+= scnprintf(buf
+n
, len
-n
, "pci-e AER:\n");
229 "EEH: PCI-E AER capability register set follows:\n");
231 for (i
=0; i
<14; i
++) {
232 rtas_read_config(pdn
, cap
+4*i
, 4, &cfg
);
233 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
234 printk(KERN_WARNING
"EEH: PCI-E AER %02x: %08x\n", i
, cfg
);
239 /* Gather status on devices under the bridge */
240 if (dev
->class >> 16 == PCI_BASE_CLASS_BRIDGE
) {
241 dn
= pdn
->node
->child
;
245 n
+= gather_pci_data(pdn
, buf
+n
, len
-n
);
253 void eeh_slot_error_detail(struct pci_dn
*pdn
, int severity
)
258 rtas_pci_enable(pdn
, EEH_THAW_MMIO
);
259 loglen
= gather_pci_data(pdn
, pci_regs_buf
, EEH_PCI_REGS_LOG_LEN
);
261 rtas_slot_error_detail(pdn
, severity
, pci_regs_buf
, loglen
);
265 * read_slot_reset_state - Read the reset state of a device node's slot
266 * @dn: device node to read
267 * @rets: array to return results in
269 static int read_slot_reset_state(struct pci_dn
*pdn
, int rets
[])
274 if (ibm_read_slot_reset_state2
!= RTAS_UNKNOWN_SERVICE
) {
275 token
= ibm_read_slot_reset_state2
;
278 token
= ibm_read_slot_reset_state
;
279 rets
[2] = 0; /* fake PE Unavailable info */
283 /* Use PE configuration address, if present */
284 config_addr
= pdn
->eeh_config_addr
;
285 if (pdn
->eeh_pe_config_addr
)
286 config_addr
= pdn
->eeh_pe_config_addr
;
288 return rtas_call(token
, 3, outputs
, rets
, config_addr
,
289 BUID_HI(pdn
->phb
->buid
), BUID_LO(pdn
->phb
->buid
));
293 * eeh_wait_for_slot_status - returns error status of slot
294 * @pdn pci device node
295 * @max_wait_msecs maximum number to millisecs to wait
297 * Return negative value if a permanent error, else return
298 * Partition Endpoint (PE) status value.
300 * If @max_wait_msecs is positive, then this routine will
301 * sleep until a valid status can be obtained, or until
302 * the max allowed wait time is exceeded, in which case
306 eeh_wait_for_slot_status(struct pci_dn
*pdn
, int max_wait_msecs
)
313 rc
= read_slot_reset_state(pdn
, rets
);
315 if (rets
[1] == 0) return -1; /* EEH is not supported */
317 if (rets
[0] != 5) return rets
[0]; /* return actual status */
319 if (rets
[2] == 0) return -1; /* permanently unavailable */
321 if (max_wait_msecs
<= 0) return -1;
326 "EEH: Firmware returned bad wait value=%d\n", mwait
);
328 } else if (mwait
> 300*1000) {
330 "EEH: Firmware is taking too long, time=%d\n", mwait
);
333 max_wait_msecs
-= mwait
;
337 printk(KERN_WARNING
"EEH: Timed out waiting for slot status\n");
342 * eeh_token_to_phys - convert EEH address token to phys address
343 * @token i/o token, should be address in the form 0xA....
345 static inline unsigned long eeh_token_to_phys(unsigned long token
)
350 ptep
= find_linux_pte(init_mm
.pgd
, token
);
353 pa
= pte_pfn(*ptep
) << PAGE_SHIFT
;
355 return pa
| (token
& (PAGE_SIZE
-1));
359 * Return the "partitionable endpoint" (pe) under which this device lies
361 struct device_node
* find_device_pe(struct device_node
*dn
)
363 while ((dn
->parent
) && PCI_DN(dn
->parent
) &&
364 (PCI_DN(dn
->parent
)->eeh_mode
& EEH_MODE_SUPPORTED
)) {
370 /** Mark all devices that are peers of this device as failed.
371 * Mark the device driver too, so that it can see the failure
372 * immediately; this is critical, since some drivers poll
373 * status registers in interrupts ... If a driver is polling,
374 * and the slot is frozen, then the driver can deadlock in
375 * an interrupt context, which is bad.
378 static void __eeh_mark_slot (struct device_node
*dn
, int mode_flag
)
382 /* Mark the pci device driver too */
383 struct pci_dev
*dev
= PCI_DN(dn
)->pcidev
;
385 PCI_DN(dn
)->eeh_mode
|= mode_flag
;
387 if (dev
&& dev
->driver
)
388 dev
->error_state
= pci_channel_io_frozen
;
391 __eeh_mark_slot (dn
->child
, mode_flag
);
397 void eeh_mark_slot (struct device_node
*dn
, int mode_flag
)
400 dn
= find_device_pe (dn
);
402 /* Back up one, since config addrs might be shared */
403 if (!pcibios_find_pci_bus(dn
) && PCI_DN(dn
->parent
))
406 PCI_DN(dn
)->eeh_mode
|= mode_flag
;
408 /* Mark the pci device too */
409 dev
= PCI_DN(dn
)->pcidev
;
411 dev
->error_state
= pci_channel_io_frozen
;
413 __eeh_mark_slot (dn
->child
, mode_flag
);
416 static void __eeh_clear_slot (struct device_node
*dn
, int mode_flag
)
420 PCI_DN(dn
)->eeh_mode
&= ~mode_flag
;
421 PCI_DN(dn
)->eeh_check_count
= 0;
423 __eeh_clear_slot (dn
->child
, mode_flag
);
429 void eeh_clear_slot (struct device_node
*dn
, int mode_flag
)
432 spin_lock_irqsave(&confirm_error_lock
, flags
);
434 dn
= find_device_pe (dn
);
436 /* Back up one, since config addrs might be shared */
437 if (!pcibios_find_pci_bus(dn
) && PCI_DN(dn
->parent
))
440 PCI_DN(dn
)->eeh_mode
&= ~mode_flag
;
441 PCI_DN(dn
)->eeh_check_count
= 0;
442 __eeh_clear_slot (dn
->child
, mode_flag
);
443 spin_unlock_irqrestore(&confirm_error_lock
, flags
);
447 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
449 * @dev pci device, if known
451 * Check for an EEH failure for the given device node. Call this
452 * routine if the result of a read was all 0xff's and you want to
453 * find out if this is due to an EEH slot freeze. This routine
454 * will query firmware for the EEH status.
456 * Returns 0 if there has not been an EEH error; otherwise returns
457 * a non-zero value and queues up a slot isolation event notification.
459 * It is safe to call this routine in an interrupt context.
461 int eeh_dn_check_failure(struct device_node
*dn
, struct pci_dev
*dev
)
471 if (!eeh_subsystem_enabled
)
480 /* Access to IO BARs might get this far and still not want checking. */
481 if (!(pdn
->eeh_mode
& EEH_MODE_SUPPORTED
) ||
482 pdn
->eeh_mode
& EEH_MODE_NOCHECK
) {
485 printk ("EEH:ignored check (%x) for %s %s\n",
486 pdn
->eeh_mode
, pci_name (dev
), dn
->full_name
);
491 if (!pdn
->eeh_config_addr
&& !pdn
->eeh_pe_config_addr
) {
496 /* If we already have a pending isolation event for this
497 * slot, we know it's bad already, we don't need to check.
498 * Do this checking under a lock; as multiple PCI devices
499 * in one slot might report errors simultaneously, and we
500 * only want one error recovery routine running.
502 spin_lock_irqsave(&confirm_error_lock
, flags
);
504 if (pdn
->eeh_mode
& EEH_MODE_ISOLATED
) {
505 pdn
->eeh_check_count
++;
506 if (pdn
->eeh_check_count
>= EEH_MAX_FAILS
) {
507 printk (KERN_ERR
"EEH: Device driver ignored %d bad reads, panicing\n",
508 pdn
->eeh_check_count
);
512 /* re-read the slot reset state */
513 if (read_slot_reset_state(pdn
, rets
) != 0)
514 rets
[0] = -1; /* reset state unknown */
516 /* If we are here, then we hit an infinite loop. Stop. */
517 panic("EEH: MMIO halt (%d) on device:%s\n", rets
[0], pci_name(dev
));
523 * Now test for an EEH failure. This is VERY expensive.
524 * Note that the eeh_config_addr may be a parent device
525 * in the case of a device behind a bridge, or it may be
526 * function zero of a multi-function device.
527 * In any case they must share a common PHB.
529 ret
= read_slot_reset_state(pdn
, rets
);
531 /* If the call to firmware failed, punt */
533 printk(KERN_WARNING
"EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
536 pdn
->eeh_false_positives
++;
541 /* Note that config-io to empty slots may fail;
542 * they are empty when they don't have children. */
543 if ((rets
[0] == 5) && (dn
->child
== NULL
)) {
545 pdn
->eeh_false_positives
++;
550 /* If EEH is not supported on this device, punt. */
552 printk(KERN_WARNING
"EEH: event on unsupported device, rc=%d dn=%s\n",
555 pdn
->eeh_false_positives
++;
560 /* If not the kind of error we know about, punt. */
561 if (rets
[0] != 1 && rets
[0] != 2 && rets
[0] != 4 && rets
[0] != 5) {
563 pdn
->eeh_false_positives
++;
570 /* Avoid repeated reports of this failure, including problems
571 * with other functions on this device, and functions under
573 eeh_mark_slot (dn
, EEH_MODE_ISOLATED
);
574 spin_unlock_irqrestore(&confirm_error_lock
, flags
);
576 eeh_send_failure_event (dn
, dev
);
578 /* Most EEH events are due to device driver bugs. Having
579 * a stack trace will help the device-driver authors figure
580 * out what happened. So print that out. */
585 spin_unlock_irqrestore(&confirm_error_lock
, flags
);
589 EXPORT_SYMBOL_GPL(eeh_dn_check_failure
);
592 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
593 * @token i/o token, should be address in the form 0xA....
594 * @val value, should be all 1's (XXX why do we need this arg??)
596 * Check for an EEH failure at the given token address. Call this
597 * routine if the result of a read was all 0xff's and you want to
598 * find out if this is due to an EEH slot freeze event. This routine
599 * will query firmware for the EEH status.
601 * Note this routine is safe to call in an interrupt context.
603 unsigned long eeh_check_failure(const volatile void __iomem
*token
, unsigned long val
)
607 struct device_node
*dn
;
609 /* Finding the phys addr + pci device; this is pretty quick. */
610 addr
= eeh_token_to_phys((unsigned long __force
) token
);
611 dev
= pci_get_device_by_addr(addr
);
617 dn
= pci_device_to_OF_node(dev
);
618 eeh_dn_check_failure (dn
, dev
);
624 EXPORT_SYMBOL(eeh_check_failure
);
626 /* ------------------------------------------------------------- */
627 /* The code below deals with error recovery */
630 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
631 * @pdn pci device node
635 rtas_pci_enable(struct pci_dn
*pdn
, int function
)
640 /* Use PE configuration address, if present */
641 config_addr
= pdn
->eeh_config_addr
;
642 if (pdn
->eeh_pe_config_addr
)
643 config_addr
= pdn
->eeh_pe_config_addr
;
645 rc
= rtas_call(ibm_set_eeh_option
, 4, 1, NULL
,
647 BUID_HI(pdn
->phb
->buid
),
648 BUID_LO(pdn
->phb
->buid
),
652 printk(KERN_WARNING
"EEH: Unexpected state change %d, err=%d dn=%s\n",
653 function
, rc
, pdn
->node
->full_name
);
655 rc
= eeh_wait_for_slot_status (pdn
, PCI_BUS_RESET_WAIT_MSEC
);
656 if ((rc
== 4) && (function
== EEH_THAW_MMIO
))
663 * rtas_pci_slot_reset - raises/lowers the pci #RST line
664 * @pdn pci device node
665 * @state: 1/0 to raise/lower the #RST
667 * Clear the EEH-frozen condition on a slot. This routine
668 * asserts the PCI #RST line if the 'state' argument is '1',
669 * and drops the #RST line if 'state is '0'. This routine is
670 * safe to call in an interrupt context.
675 rtas_pci_slot_reset(struct pci_dn
*pdn
, int state
)
683 printk (KERN_WARNING
"EEH: in slot reset, device node %s has no phb\n",
684 pdn
->node
->full_name
);
688 /* Use PE configuration address, if present */
689 config_addr
= pdn
->eeh_config_addr
;
690 if (pdn
->eeh_pe_config_addr
)
691 config_addr
= pdn
->eeh_pe_config_addr
;
693 rc
= rtas_call(ibm_set_slot_reset
,4,1, NULL
,
695 BUID_HI(pdn
->phb
->buid
),
696 BUID_LO(pdn
->phb
->buid
),
699 printk (KERN_WARNING
"EEH: Unable to reset the failed slot,"
700 " (%d) #RST=%d dn=%s\n",
701 rc
, state
, pdn
->node
->full_name
);
705 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
706 * @dev: pci device struct
707 * @state: reset state to enter
712 int pcibios_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
714 struct device_node
*dn
= pci_device_to_OF_node(dev
);
715 struct pci_dn
*pdn
= PCI_DN(dn
);
718 case pcie_deassert_reset
:
719 rtas_pci_slot_reset(pdn
, 0);
722 rtas_pci_slot_reset(pdn
, 1);
724 case pcie_warm_reset
:
725 rtas_pci_slot_reset(pdn
, 3);
735 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
736 * @pdn: pci device node to be reset.
738 * Return 0 if success, else a non-zero value.
741 static void __rtas_set_slot_reset(struct pci_dn
*pdn
)
743 rtas_pci_slot_reset (pdn
, 1);
745 /* The PCI bus requires that the reset be held high for at least
746 * a 100 milliseconds. We wait a bit longer 'just in case'. */
748 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
749 msleep (PCI_BUS_RST_HOLD_TIME_MSEC
);
751 /* We might get hit with another EEH freeze as soon as the
752 * pci slot reset line is dropped. Make sure we don't miss
753 * these, and clear the flag now. */
754 eeh_clear_slot (pdn
->node
, EEH_MODE_ISOLATED
);
756 rtas_pci_slot_reset (pdn
, 0);
758 /* After a PCI slot has been reset, the PCI Express spec requires
759 * a 1.5 second idle time for the bus to stabilize, before starting
761 #define PCI_BUS_SETTLE_TIME_MSEC 1800
762 msleep (PCI_BUS_SETTLE_TIME_MSEC
);
765 int rtas_set_slot_reset(struct pci_dn
*pdn
)
769 /* Take three shots at resetting the bus */
770 for (i
=0; i
<3; i
++) {
771 __rtas_set_slot_reset(pdn
);
773 rc
= eeh_wait_for_slot_status(pdn
, PCI_BUS_RESET_WAIT_MSEC
);
778 printk(KERN_ERR
"EEH: unrecoverable slot failure %s\n",
779 pdn
->node
->full_name
);
782 printk(KERN_ERR
"EEH: bus reset %d failed on slot %s, rc=%d\n",
783 i
+1, pdn
->node
->full_name
, rc
);
789 /* ------------------------------------------------------- */
790 /** Save and restore of PCI BARs
792 * Although firmware will set up BARs during boot, it doesn't
793 * set up device BAR's after a device reset, although it will,
794 * if requested, set up bridge configuration. Thus, we need to
795 * configure the PCI devices ourselves.
799 * __restore_bars - Restore the Base Address Registers
800 * @pdn: pci device node
802 * Loads the PCI configuration space base address registers,
803 * the expansion ROM base address, the latency timer, and etc.
804 * from the saved values in the device node.
806 static inline void __restore_bars (struct pci_dn
*pdn
)
810 if (NULL
==pdn
->phb
) return;
811 for (i
=4; i
<10; i
++) {
812 rtas_write_config(pdn
, i
*4, 4, pdn
->config_space
[i
]);
815 /* 12 == Expansion ROM Address */
816 rtas_write_config(pdn
, 12*4, 4, pdn
->config_space
[12]);
818 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
819 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
821 rtas_write_config (pdn
, PCI_CACHE_LINE_SIZE
, 1,
822 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
824 rtas_write_config (pdn
, PCI_LATENCY_TIMER
, 1,
825 SAVED_BYTE(PCI_LATENCY_TIMER
));
827 /* max latency, min grant, interrupt pin and line */
828 rtas_write_config(pdn
, 15*4, 4, pdn
->config_space
[15]);
832 * eeh_restore_bars - restore the PCI config space info
834 * This routine performs a recursive walk to the children
835 * of this device as well.
837 void eeh_restore_bars(struct pci_dn
*pdn
)
839 struct device_node
*dn
;
843 if ((pdn
->eeh_mode
& EEH_MODE_SUPPORTED
) && !IS_BRIDGE(pdn
->class_code
))
844 __restore_bars (pdn
);
846 dn
= pdn
->node
->child
;
848 eeh_restore_bars (PCI_DN(dn
));
854 * eeh_save_bars - save device bars
856 * Save the values of the device bars. Unlike the restore
857 * routine, this routine is *not* recursive. This is because
858 * PCI devices are added individuallly; but, for the restore,
859 * an entire slot is reset at a time.
861 static void eeh_save_bars(struct pci_dn
*pdn
)
868 for (i
= 0; i
< 16; i
++)
869 rtas_read_config(pdn
, i
* 4, 4, &pdn
->config_space
[i
]);
873 rtas_configure_bridge(struct pci_dn
*pdn
)
878 /* Use PE configuration address, if present */
879 config_addr
= pdn
->eeh_config_addr
;
880 if (pdn
->eeh_pe_config_addr
)
881 config_addr
= pdn
->eeh_pe_config_addr
;
883 rc
= rtas_call(ibm_configure_bridge
,3,1, NULL
,
885 BUID_HI(pdn
->phb
->buid
),
886 BUID_LO(pdn
->phb
->buid
));
888 printk (KERN_WARNING
"EEH: Unable to configure device bridge (%d) for %s\n",
889 rc
, pdn
->node
->full_name
);
893 /* ------------------------------------------------------------- */
894 /* The code below deals with enabling EEH for devices during the
895 * early boot sequence. EEH must be enabled before any PCI probing
901 struct eeh_early_enable_info
{
902 unsigned int buid_hi
;
903 unsigned int buid_lo
;
906 static int get_pe_addr (int config_addr
,
907 struct eeh_early_enable_info
*info
)
909 unsigned int rets
[3];
912 /* Use latest config-addr token on power6 */
913 if (ibm_get_config_addr_info2
!= RTAS_UNKNOWN_SERVICE
) {
914 /* Make sure we have a PE in hand */
915 ret
= rtas_call (ibm_get_config_addr_info2
, 4, 2, rets
,
916 config_addr
, info
->buid_hi
, info
->buid_lo
, 1);
917 if (ret
|| (rets
[0]==0))
920 ret
= rtas_call (ibm_get_config_addr_info2
, 4, 2, rets
,
921 config_addr
, info
->buid_hi
, info
->buid_lo
, 0);
927 /* Use older config-addr token on power5 */
928 if (ibm_get_config_addr_info
!= RTAS_UNKNOWN_SERVICE
) {
929 ret
= rtas_call (ibm_get_config_addr_info
, 4, 2, rets
,
930 config_addr
, info
->buid_hi
, info
->buid_lo
, 0);
938 /* Enable eeh for the given device node. */
939 static void *early_enable_eeh(struct device_node
*dn
, void *data
)
941 unsigned int rets
[3];
942 struct eeh_early_enable_info
*info
= data
;
944 const char *status
= of_get_property(dn
, "status", NULL
);
945 const u32
*class_code
= of_get_property(dn
, "class-code", NULL
);
946 const u32
*vendor_id
= of_get_property(dn
, "vendor-id", NULL
);
947 const u32
*device_id
= of_get_property(dn
, "device-id", NULL
);
950 struct pci_dn
*pdn
= PCI_DN(dn
);
954 pdn
->eeh_check_count
= 0;
955 pdn
->eeh_freeze_count
= 0;
956 pdn
->eeh_false_positives
= 0;
958 if (status
&& strncmp(status
, "ok", 2) != 0)
959 return NULL
; /* ignore devices with bad status */
961 /* Ignore bad nodes. */
962 if (!class_code
|| !vendor_id
|| !device_id
)
965 /* There is nothing to check on PCI to ISA bridges */
966 if (dn
->type
&& !strcmp(dn
->type
, "isa")) {
967 pdn
->eeh_mode
|= EEH_MODE_NOCHECK
;
970 pdn
->class_code
= *class_code
;
972 /* Ok... see if this device supports EEH. Some do, some don't,
973 * and the only way to find out is to check each and every one. */
974 regs
= of_get_property(dn
, "reg", NULL
);
976 /* First register entry is addr (00BBSS00) */
977 /* Try to enable eeh */
978 ret
= rtas_call(ibm_set_eeh_option
, 4, 1, NULL
,
979 regs
[0], info
->buid_hi
, info
->buid_lo
,
984 pdn
->eeh_config_addr
= regs
[0];
986 /* If the newer, better, ibm,get-config-addr-info is supported,
987 * then use that instead. */
988 pdn
->eeh_pe_config_addr
= get_pe_addr(pdn
->eeh_config_addr
, info
);
990 /* Some older systems (Power4) allow the
991 * ibm,set-eeh-option call to succeed even on nodes
992 * where EEH is not supported. Verify support
994 ret
= read_slot_reset_state(pdn
, rets
);
995 if ((ret
== 0) && (rets
[1] == 1))
1000 eeh_subsystem_enabled
= 1;
1001 pdn
->eeh_mode
|= EEH_MODE_SUPPORTED
;
1004 printk(KERN_DEBUG
"EEH: %s: eeh enabled, config=%x pe_config=%x\n",
1005 dn
->full_name
, pdn
->eeh_config_addr
, pdn
->eeh_pe_config_addr
);
1009 /* This device doesn't support EEH, but it may have an
1010 * EEH parent, in which case we mark it as supported. */
1011 if (dn
->parent
&& PCI_DN(dn
->parent
)
1012 && (PCI_DN(dn
->parent
)->eeh_mode
& EEH_MODE_SUPPORTED
)) {
1013 /* Parent supports EEH. */
1014 pdn
->eeh_mode
|= EEH_MODE_SUPPORTED
;
1015 pdn
->eeh_config_addr
= PCI_DN(dn
->parent
)->eeh_config_addr
;
1020 printk(KERN_WARNING
"EEH: %s: unable to get reg property.\n",
1029 * Initialize EEH by trying to enable it for all of the adapters in the system.
1030 * As a side effect we can determine here if eeh is supported at all.
1031 * Note that we leave EEH on so failed config cycles won't cause a machine
1032 * check. If a user turns off EEH for a particular adapter they are really
1033 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1034 * grant access to a slot if EEH isn't enabled, and so we always enable
1035 * EEH for all slots/all devices.
1037 * The eeh-force-off option disables EEH checking globally, for all slots.
1038 * Even if force-off is set, the EEH hardware is still enabled, so that
1039 * newer systems can boot.
1041 void __init
eeh_init(void)
1043 struct device_node
*phb
, *np
;
1044 struct eeh_early_enable_info info
;
1046 spin_lock_init(&confirm_error_lock
);
1047 spin_lock_init(&slot_errbuf_lock
);
1049 np
= of_find_node_by_path("/rtas");
1053 ibm_set_eeh_option
= rtas_token("ibm,set-eeh-option");
1054 ibm_set_slot_reset
= rtas_token("ibm,set-slot-reset");
1055 ibm_read_slot_reset_state2
= rtas_token("ibm,read-slot-reset-state2");
1056 ibm_read_slot_reset_state
= rtas_token("ibm,read-slot-reset-state");
1057 ibm_slot_error_detail
= rtas_token("ibm,slot-error-detail");
1058 ibm_get_config_addr_info
= rtas_token("ibm,get-config-addr-info");
1059 ibm_get_config_addr_info2
= rtas_token("ibm,get-config-addr-info2");
1060 ibm_configure_bridge
= rtas_token ("ibm,configure-bridge");
1062 if (ibm_set_eeh_option
== RTAS_UNKNOWN_SERVICE
)
1065 eeh_error_buf_size
= rtas_token("rtas-error-log-max");
1066 if (eeh_error_buf_size
== RTAS_UNKNOWN_SERVICE
) {
1067 eeh_error_buf_size
= 1024;
1069 if (eeh_error_buf_size
> RTAS_ERROR_LOG_MAX
) {
1070 printk(KERN_WARNING
"EEH: rtas-error-log-max is bigger than allocated "
1071 "buffer ! (%d vs %d)", eeh_error_buf_size
, RTAS_ERROR_LOG_MAX
);
1072 eeh_error_buf_size
= RTAS_ERROR_LOG_MAX
;
1075 /* Enable EEH for all adapters. Note that eeh requires buid's */
1076 for (phb
= of_find_node_by_name(NULL
, "pci"); phb
;
1077 phb
= of_find_node_by_name(phb
, "pci")) {
1080 buid
= get_phb_buid(phb
);
1081 if (buid
== 0 || PCI_DN(phb
) == NULL
)
1084 info
.buid_lo
= BUID_LO(buid
);
1085 info
.buid_hi
= BUID_HI(buid
);
1086 traverse_pci_devices(phb
, early_enable_eeh
, &info
);
1089 if (eeh_subsystem_enabled
)
1090 printk(KERN_INFO
"EEH: PCI Enhanced I/O Error Handling Enabled\n");
1092 printk(KERN_WARNING
"EEH: No capable adapters found\n");
1096 * eeh_add_device_early - enable EEH for the indicated device_node
1097 * @dn: device node for which to set up EEH
1099 * This routine must be used to perform EEH initialization for PCI
1100 * devices that were added after system boot (e.g. hotplug, dlpar).
1101 * This routine must be called before any i/o is performed to the
1102 * adapter (inluding any config-space i/o).
1103 * Whether this actually enables EEH or not for this device depends
1104 * on the CEC architecture, type of the device, on earlier boot
1105 * command-line arguments & etc.
1107 static void eeh_add_device_early(struct device_node
*dn
)
1109 struct pci_controller
*phb
;
1110 struct eeh_early_enable_info info
;
1112 if (!dn
|| !PCI_DN(dn
))
1114 phb
= PCI_DN(dn
)->phb
;
1116 /* USB Bus children of PCI devices will not have BUID's */
1117 if (NULL
== phb
|| 0 == phb
->buid
)
1120 info
.buid_hi
= BUID_HI(phb
->buid
);
1121 info
.buid_lo
= BUID_LO(phb
->buid
);
1122 early_enable_eeh(dn
, &info
);
1125 void eeh_add_device_tree_early(struct device_node
*dn
)
1127 struct device_node
*sib
;
1128 for (sib
= dn
->child
; sib
; sib
= sib
->sibling
)
1129 eeh_add_device_tree_early(sib
);
1130 eeh_add_device_early(dn
);
1132 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early
);
1135 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1136 * @dev: pci device for which to set up EEH
1138 * This routine must be used to complete EEH initialization for PCI
1139 * devices that were added after system boot (e.g. hotplug, dlpar).
1141 static void eeh_add_device_late(struct pci_dev
*dev
)
1143 struct device_node
*dn
;
1146 if (!dev
|| !eeh_subsystem_enabled
)
1150 printk(KERN_DEBUG
"EEH: adding device %s\n", pci_name(dev
));
1154 dn
= pci_device_to_OF_node(dev
);
1158 pci_addr_cache_insert_device(dev
);
1159 eeh_sysfs_add_device(dev
);
1162 void eeh_add_device_tree_late(struct pci_bus
*bus
)
1164 struct pci_dev
*dev
;
1166 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1167 eeh_add_device_late(dev
);
1168 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1169 struct pci_bus
*subbus
= dev
->subordinate
;
1171 eeh_add_device_tree_late(subbus
);
1175 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late
);
1178 * eeh_remove_device - undo EEH setup for the indicated pci device
1179 * @dev: pci device to be removed
1181 * This routine should be called when a device is removed from
1182 * a running system (e.g. by hotplug or dlpar). It unregisters
1183 * the PCI device from the EEH subsystem. I/O errors affecting
1184 * this device will no longer be detected after this call; thus,
1185 * i/o errors affecting this slot may leave this device unusable.
1187 static void eeh_remove_device(struct pci_dev
*dev
)
1189 struct device_node
*dn
;
1190 if (!dev
|| !eeh_subsystem_enabled
)
1193 /* Unregister the device with the EEH/PCI address search system */
1195 printk(KERN_DEBUG
"EEH: remove device %s\n", pci_name(dev
));
1197 pci_addr_cache_remove_device(dev
);
1198 eeh_sysfs_remove_device(dev
);
1200 dn
= pci_device_to_OF_node(dev
);
1201 if (PCI_DN(dn
)->pcidev
) {
1202 PCI_DN(dn
)->pcidev
= NULL
;
1207 void eeh_remove_bus_device(struct pci_dev
*dev
)
1209 struct pci_bus
*bus
= dev
->subordinate
;
1210 struct pci_dev
*child
, *tmp
;
1212 eeh_remove_device(dev
);
1214 if (bus
&& dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1215 list_for_each_entry_safe(child
, tmp
, &bus
->devices
, bus_list
)
1216 eeh_remove_bus_device(child
);
1219 EXPORT_SYMBOL_GPL(eeh_remove_bus_device
);
1221 static int proc_eeh_show(struct seq_file
*m
, void *v
)
1223 if (0 == eeh_subsystem_enabled
) {
1224 seq_printf(m
, "EEH Subsystem is globally disabled\n");
1225 seq_printf(m
, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs
);
1227 seq_printf(m
, "EEH Subsystem is enabled\n");
1230 "no device node=%ld\n"
1231 "no config address=%ld\n"
1232 "check not wanted=%ld\n"
1233 "eeh_total_mmio_ffs=%ld\n"
1234 "eeh_false_positives=%ld\n"
1235 "eeh_slot_resets=%ld\n",
1236 no_device
, no_dn
, no_cfg_addr
,
1237 ignored_check
, total_mmio_ffs
,
1245 static int proc_eeh_open(struct inode
*inode
, struct file
*file
)
1247 return single_open(file
, proc_eeh_show
, NULL
);
1250 static const struct file_operations proc_eeh_operations
= {
1251 .open
= proc_eeh_open
,
1253 .llseek
= seq_lseek
,
1254 .release
= single_release
,
1257 static int __init
eeh_init_proc(void)
1259 struct proc_dir_entry
*e
;
1261 if (machine_is(pseries
)) {
1262 e
= create_proc_entry("ppc64/eeh", 0, NULL
);
1264 e
->proc_fops
= &proc_eeh_operations
;
1269 __initcall(eeh_init_proc
);