[SCSI] qla1280: convert to use the data buffer accessors
[linux-2.6/verdex.git] / arch / powerpc / sysdev / commproc.c
blobf6a63780bbde5b3bcd7223cc34e0a85f6293f9a3
1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <asm/mpc8xx.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/8xx_immap.h>
37 #include <asm/commproc.h>
38 #include <asm/io.h>
39 #include <asm/tlbflush.h>
40 #include <asm/rheap.h>
41 #include <asm/prom.h>
42 #include <asm/cpm.h>
44 #include <asm/fs_pd.h>
46 #define CPM_MAP_SIZE (0x4000)
48 #ifndef CONFIG_PPC_CPM_NEW_BINDING
49 static void m8xx_cpm_dpinit(void);
50 #endif
51 static uint host_buffer; /* One page of host buffer */
52 static uint host_end; /* end + 1 */
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
57 static struct irq_host *cpm_pic_host;
59 static void cpm_mask_irq(unsigned int irq)
61 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
66 static void cpm_unmask_irq(unsigned int irq)
68 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
73 static void cpm_end_irq(unsigned int irq)
75 unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
80 static struct irq_chip cpm_pic = {
81 .typename = " CPM PIC ",
82 .mask = cpm_mask_irq,
83 .unmask = cpm_unmask_irq,
84 .eoi = cpm_end_irq,
87 int cpm_get_irq(void)
89 int cpm_vec;
91 /* Get the vector by setting the ACK bit and then reading
92 * the register.
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
101 static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
102 irq_hw_number_t hw)
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
106 get_irq_desc(virq)->status |= IRQ_LEVEL;
107 set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
111 /* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts. All we have to do is ACK it
113 * and return. This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
118 return IRQ_HANDLED;
121 static struct irqaction cpm_error_irqaction = {
122 .handler = cpm_error_interrupt,
123 .mask = CPU_MASK_NONE,
124 .name = "error",
127 static struct irq_host_ops cpm_pic_host_ops = {
128 .map = cpm_pic_host_map,
131 unsigned int cpm_pic_init(void)
133 struct device_node *np = NULL;
134 struct resource res;
135 unsigned int sirq = NO_IRQ, hwirq, eirq;
136 int ret;
138 pr_debug("cpm_pic_init\n");
140 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141 if (np == NULL)
142 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143 if (np == NULL) {
144 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145 return sirq;
148 ret = of_address_to_resource(np, 0, &res);
149 if (ret)
150 goto end;
152 cpic_reg = ioremap(res.start, res.end - res.start + 1);
153 if (cpic_reg == NULL)
154 goto end;
156 sirq = irq_of_parse_and_map(np, 0);
157 if (sirq == NO_IRQ)
158 goto end;
160 /* Initialize the CPM interrupt controller. */
161 hwirq = (unsigned int)irq_map[sirq].hwirq;
162 out_be32(&cpic_reg->cpic_cicr,
163 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164 ((hwirq/2) << 13) | CICR_HP_MASK);
166 out_be32(&cpic_reg->cpic_cimr, 0);
168 cpm_pic_host = irq_alloc_host(of_node_get(np), IRQ_HOST_MAP_LINEAR,
169 64, &cpm_pic_host_ops, 64);
170 if (cpm_pic_host == NULL) {
171 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
172 sirq = NO_IRQ;
173 goto end;
176 /* Install our own error handler. */
177 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
178 if (np == NULL)
179 np = of_find_node_by_type(NULL, "cpm");
180 if (np == NULL) {
181 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
182 goto end;
185 eirq = irq_of_parse_and_map(np, 0);
186 if (eirq == NO_IRQ)
187 goto end;
189 if (setup_irq(eirq, &cpm_error_irqaction))
190 printk(KERN_ERR "Could not allocate CPM error IRQ!");
192 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
194 end:
195 of_node_put(np);
196 return sirq;
199 void __init cpm_reset(void)
201 sysconf8xx_t __iomem *siu_conf;
203 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
204 if (!mpc8xx_immr) {
205 printk(KERN_CRIT "Could not map IMMR\n");
206 return;
209 cpmp = &mpc8xx_immr->im_cpm;
211 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
212 /* Perform a reset.
214 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
216 /* Wait for it.
218 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
219 #endif
221 #ifdef CONFIG_UCODE_PATCH
222 cpm_load_patch(cpmp);
223 #endif
225 /* Set SDMA Bus Request priority 5.
226 * On 860T, this also enables FEC priority 6. I am not sure
227 * this is what we realy want for some applications, but the
228 * manual recommends it.
229 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
231 siu_conf = immr_map(im_siu_conf);
232 out_be32(&siu_conf->sc_sdcr, 1);
233 immr_unmap(siu_conf);
235 #ifdef CONFIG_PPC_CPM_NEW_BINDING
236 cpm_muram_init();
237 #else
238 /* Reclaim the DP memory for our use. */
239 m8xx_cpm_dpinit();
240 #endif
243 /* We used to do this earlier, but have to postpone as long as possible
244 * to ensure the kernel VM is now running.
246 static void
247 alloc_host_memory(void)
249 dma_addr_t physaddr;
251 /* Set the host page for allocation.
253 host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
254 GFP_KERNEL);
255 host_end = host_buffer + PAGE_SIZE;
258 /* We also own one page of host buffer space for the allocation of
259 * UART "fifos" and the like.
261 uint
262 m8xx_cpm_hostalloc(uint size)
264 uint retloc;
266 if (host_buffer == 0)
267 alloc_host_memory();
269 if ((host_buffer + size) >= host_end)
270 return(0);
272 retloc = host_buffer;
273 host_buffer += size;
275 return(retloc);
278 /* Set a baud rate generator. This needs lots of work. There are
279 * four BRGs, any of which can be wired to any channel.
280 * The internal baud rate clock is the system clock divided by 16.
281 * This assumes the baudrate is 16x oversampled by the uart.
283 #define BRG_INT_CLK (get_brgfreq())
284 #define BRG_UART_CLK (BRG_INT_CLK/16)
285 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
287 void
288 cpm_setbrg(uint brg, uint rate)
290 u32 __iomem *bp;
292 /* This is good enough to get SMCs running.....
294 bp = &cpmp->cp_brgc1;
295 bp += brg;
296 /* The BRG has a 12-bit counter. For really slow baud rates (or
297 * really fast processors), we may have to further divide by 16.
299 if (((BRG_UART_CLK / rate) - 1) < 4096)
300 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
301 else
302 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
303 CPM_BRG_EN | CPM_BRG_DIV16);
306 #ifndef CONFIG_PPC_CPM_NEW_BINDING
308 * dpalloc / dpfree bits.
310 static spinlock_t cpm_dpmem_lock;
312 * 16 blocks should be enough to satisfy all requests
313 * until the memory subsystem goes up...
315 static rh_block_t cpm_boot_dpmem_rh_block[16];
316 static rh_info_t cpm_dpmem_info;
318 #define CPM_DPMEM_ALIGNMENT 8
319 static u8 __iomem *dpram_vbase;
320 static phys_addr_t dpram_pbase;
322 static void m8xx_cpm_dpinit(void)
324 spin_lock_init(&cpm_dpmem_lock);
326 dpram_vbase = cpmp->cp_dpmem;
327 dpram_pbase = get_immrbase() + offsetof(immap_t, im_cpm.cp_dpmem);
329 /* Initialize the info header */
330 rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
331 sizeof(cpm_boot_dpmem_rh_block) /
332 sizeof(cpm_boot_dpmem_rh_block[0]),
333 cpm_boot_dpmem_rh_block);
336 * Attach the usable dpmem area.
337 * XXX: This is actually crap. CPM_DATAONLY_BASE and
338 * CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
339 * with the processor and the microcode patches applied / activated.
340 * But the following should be at least safe.
342 rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
346 * Allocate the requested size worth of DP memory.
347 * This function returns an offset into the DPRAM area.
348 * Use cpm_dpram_addr() to get the virtual address of the area.
350 unsigned long cpm_dpalloc(uint size, uint align)
352 unsigned long start;
353 unsigned long flags;
355 spin_lock_irqsave(&cpm_dpmem_lock, flags);
356 cpm_dpmem_info.alignment = align;
357 start = rh_alloc(&cpm_dpmem_info, size, "commproc");
358 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
360 return (uint)start;
362 EXPORT_SYMBOL(cpm_dpalloc);
364 int cpm_dpfree(unsigned long offset)
366 int ret;
367 unsigned long flags;
369 spin_lock_irqsave(&cpm_dpmem_lock, flags);
370 ret = rh_free(&cpm_dpmem_info, offset);
371 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
373 return ret;
375 EXPORT_SYMBOL(cpm_dpfree);
377 unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
379 unsigned long start;
380 unsigned long flags;
382 spin_lock_irqsave(&cpm_dpmem_lock, flags);
383 cpm_dpmem_info.alignment = align;
384 start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
385 spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
387 return start;
389 EXPORT_SYMBOL(cpm_dpalloc_fixed);
391 void cpm_dpdump(void)
393 rh_dump(&cpm_dpmem_info);
395 EXPORT_SYMBOL(cpm_dpdump);
397 void *cpm_dpram_addr(unsigned long offset)
399 return (void *)(dpram_vbase + offset);
401 EXPORT_SYMBOL(cpm_dpram_addr);
403 uint cpm_dpram_phys(u8 *addr)
405 return (dpram_pbase + (uint)(addr - dpram_vbase));
407 EXPORT_SYMBOL(cpm_dpram_phys);
408 #endif /* !CONFIG_PPC_CPM_NEW_BINDING */
410 struct cpm_ioport16 {
411 __be16 dir, par, sor, dat, intr;
412 __be16 res[3];
415 struct cpm_ioport32 {
416 __be32 dir, par, sor;
419 static void cpm1_set_pin32(int port, int pin, int flags)
421 struct cpm_ioport32 __iomem *iop;
422 pin = 1 << (31 - pin);
424 if (port == CPM_PORTB)
425 iop = (struct cpm_ioport32 __iomem *)
426 &mpc8xx_immr->im_cpm.cp_pbdir;
427 else
428 iop = (struct cpm_ioport32 __iomem *)
429 &mpc8xx_immr->im_cpm.cp_pedir;
431 if (flags & CPM_PIN_OUTPUT)
432 setbits32(&iop->dir, pin);
433 else
434 clrbits32(&iop->dir, pin);
436 if (!(flags & CPM_PIN_GPIO))
437 setbits32(&iop->par, pin);
438 else
439 clrbits32(&iop->par, pin);
441 if (port == CPM_PORTE) {
442 if (flags & CPM_PIN_SECONDARY)
443 setbits32(&iop->sor, pin);
444 else
445 clrbits32(&iop->sor, pin);
447 if (flags & CPM_PIN_OPENDRAIN)
448 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
449 else
450 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
454 static void cpm1_set_pin16(int port, int pin, int flags)
456 struct cpm_ioport16 __iomem *iop =
457 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
459 pin = 1 << (15 - pin);
461 if (port != 0)
462 iop += port - 1;
464 if (flags & CPM_PIN_OUTPUT)
465 setbits16(&iop->dir, pin);
466 else
467 clrbits16(&iop->dir, pin);
469 if (!(flags & CPM_PIN_GPIO))
470 setbits16(&iop->par, pin);
471 else
472 clrbits16(&iop->par, pin);
474 if (port == CPM_PORTC) {
475 if (flags & CPM_PIN_SECONDARY)
476 setbits16(&iop->sor, pin);
477 else
478 clrbits16(&iop->sor, pin);
482 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
484 if (port == CPM_PORTB || port == CPM_PORTE)
485 cpm1_set_pin32(port, pin, flags);
486 else
487 cpm1_set_pin16(port, pin, flags);
490 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
492 int shift;
493 int i, bits = 0;
494 u32 __iomem *reg;
495 u32 mask = 7;
497 u8 clk_map[][3] = {
498 {CPM_CLK_SCC1, CPM_BRG1, 0},
499 {CPM_CLK_SCC1, CPM_BRG2, 1},
500 {CPM_CLK_SCC1, CPM_BRG3, 2},
501 {CPM_CLK_SCC1, CPM_BRG4, 3},
502 {CPM_CLK_SCC1, CPM_CLK1, 4},
503 {CPM_CLK_SCC1, CPM_CLK2, 5},
504 {CPM_CLK_SCC1, CPM_CLK3, 6},
505 {CPM_CLK_SCC1, CPM_CLK4, 7},
507 {CPM_CLK_SCC2, CPM_BRG1, 0},
508 {CPM_CLK_SCC2, CPM_BRG2, 1},
509 {CPM_CLK_SCC2, CPM_BRG3, 2},
510 {CPM_CLK_SCC2, CPM_BRG4, 3},
511 {CPM_CLK_SCC2, CPM_CLK1, 4},
512 {CPM_CLK_SCC2, CPM_CLK2, 5},
513 {CPM_CLK_SCC2, CPM_CLK3, 6},
514 {CPM_CLK_SCC2, CPM_CLK4, 7},
516 {CPM_CLK_SCC3, CPM_BRG1, 0},
517 {CPM_CLK_SCC3, CPM_BRG2, 1},
518 {CPM_CLK_SCC3, CPM_BRG3, 2},
519 {CPM_CLK_SCC3, CPM_BRG4, 3},
520 {CPM_CLK_SCC3, CPM_CLK5, 4},
521 {CPM_CLK_SCC3, CPM_CLK6, 5},
522 {CPM_CLK_SCC3, CPM_CLK7, 6},
523 {CPM_CLK_SCC3, CPM_CLK8, 7},
525 {CPM_CLK_SCC4, CPM_BRG1, 0},
526 {CPM_CLK_SCC4, CPM_BRG2, 1},
527 {CPM_CLK_SCC4, CPM_BRG3, 2},
528 {CPM_CLK_SCC4, CPM_BRG4, 3},
529 {CPM_CLK_SCC4, CPM_CLK5, 4},
530 {CPM_CLK_SCC4, CPM_CLK6, 5},
531 {CPM_CLK_SCC4, CPM_CLK7, 6},
532 {CPM_CLK_SCC4, CPM_CLK8, 7},
534 {CPM_CLK_SMC1, CPM_BRG1, 0},
535 {CPM_CLK_SMC1, CPM_BRG2, 1},
536 {CPM_CLK_SMC1, CPM_BRG3, 2},
537 {CPM_CLK_SMC1, CPM_BRG4, 3},
538 {CPM_CLK_SMC1, CPM_CLK1, 4},
539 {CPM_CLK_SMC1, CPM_CLK2, 5},
540 {CPM_CLK_SMC1, CPM_CLK3, 6},
541 {CPM_CLK_SMC1, CPM_CLK4, 7},
543 {CPM_CLK_SMC2, CPM_BRG1, 0},
544 {CPM_CLK_SMC2, CPM_BRG2, 1},
545 {CPM_CLK_SMC2, CPM_BRG3, 2},
546 {CPM_CLK_SMC2, CPM_BRG4, 3},
547 {CPM_CLK_SMC2, CPM_CLK5, 4},
548 {CPM_CLK_SMC2, CPM_CLK6, 5},
549 {CPM_CLK_SMC2, CPM_CLK7, 6},
550 {CPM_CLK_SMC2, CPM_CLK8, 7},
553 switch (target) {
554 case CPM_CLK_SCC1:
555 reg = &mpc8xx_immr->im_cpm.cp_sicr;
556 shift = 0;
557 break;
559 case CPM_CLK_SCC2:
560 reg = &mpc8xx_immr->im_cpm.cp_sicr;
561 shift = 8;
562 break;
564 case CPM_CLK_SCC3:
565 reg = &mpc8xx_immr->im_cpm.cp_sicr;
566 shift = 16;
567 break;
569 case CPM_CLK_SCC4:
570 reg = &mpc8xx_immr->im_cpm.cp_sicr;
571 shift = 24;
572 break;
574 case CPM_CLK_SMC1:
575 reg = &mpc8xx_immr->im_cpm.cp_simode;
576 shift = 12;
577 break;
579 case CPM_CLK_SMC2:
580 reg = &mpc8xx_immr->im_cpm.cp_simode;
581 shift = 28;
582 break;
584 default:
585 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
586 return -EINVAL;
589 if (reg == &mpc8xx_immr->im_cpm.cp_sicr && mode == CPM_CLK_RX)
590 shift += 3;
592 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
593 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
594 bits = clk_map[i][2];
595 break;
599 if (i == ARRAY_SIZE(clk_map)) {
600 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
601 return -EINVAL;
604 bits <<= shift;
605 mask <<= shift;
606 out_be32(reg, (in_be32(reg) & ~mask) | bits);
608 return 0;