[SCSI] qla1280: convert to use the data buffer accessors
[linux-2.6/verdex.git] / arch / sparc64 / kernel / of_device.c
blobfc5c0cc793b8f3a403307c9366b3be0a4fdc84da
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/of.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/slab.h>
8 #include <linux/errno.h>
9 #include <linux/of_device.h>
10 #include <linux/of_platform.h>
12 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
14 unsigned long ret = res->start + offset;
15 struct resource *r;
17 if (res->flags & IORESOURCE_MEM)
18 r = request_mem_region(ret, size, name);
19 else
20 r = request_region(ret, size, name);
21 if (!r)
22 ret = 0;
24 return (void __iomem *) ret;
26 EXPORT_SYMBOL(of_ioremap);
28 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
30 if (res->flags & IORESOURCE_MEM)
31 release_mem_region((unsigned long) base, size);
32 else
33 release_region((unsigned long) base, size);
35 EXPORT_SYMBOL(of_iounmap);
37 static int node_match(struct device *dev, void *data)
39 struct of_device *op = to_of_device(dev);
40 struct device_node *dp = data;
42 return (op->node == dp);
45 struct of_device *of_find_device_by_node(struct device_node *dp)
47 struct device *dev = bus_find_device(&of_platform_bus_type, NULL,
48 dp, node_match);
50 if (dev)
51 return to_of_device(dev);
53 return NULL;
55 EXPORT_SYMBOL(of_find_device_by_node);
57 #ifdef CONFIG_PCI
58 struct bus_type isa_bus_type;
59 EXPORT_SYMBOL(isa_bus_type);
61 struct bus_type ebus_bus_type;
62 EXPORT_SYMBOL(ebus_bus_type);
63 #endif
65 #ifdef CONFIG_SBUS
66 struct bus_type sbus_bus_type;
67 EXPORT_SYMBOL(sbus_bus_type);
68 #endif
70 struct bus_type of_platform_bus_type;
71 EXPORT_SYMBOL(of_platform_bus_type);
73 static inline u64 of_read_addr(const u32 *cell, int size)
75 u64 r = 0;
76 while (size--)
77 r = (r << 32) | *(cell++);
78 return r;
81 static void __init get_cells(struct device_node *dp,
82 int *addrc, int *sizec)
84 if (addrc)
85 *addrc = of_n_addr_cells(dp);
86 if (sizec)
87 *sizec = of_n_size_cells(dp);
90 /* Max address size we deal with */
91 #define OF_MAX_ADDR_CELLS 4
93 struct of_bus {
94 const char *name;
95 const char *addr_prop_name;
96 int (*match)(struct device_node *parent);
97 void (*count_cells)(struct device_node *child,
98 int *addrc, int *sizec);
99 int (*map)(u32 *addr, const u32 *range,
100 int na, int ns, int pna);
101 unsigned int (*get_flags)(const u32 *addr);
105 * Default translator (generic bus)
108 static void of_bus_default_count_cells(struct device_node *dev,
109 int *addrc, int *sizec)
111 get_cells(dev, addrc, sizec);
114 /* Make sure the least significant 64-bits are in-range. Even
115 * for 3 or 4 cell values it is a good enough approximation.
117 static int of_out_of_range(const u32 *addr, const u32 *base,
118 const u32 *size, int na, int ns)
120 u64 a = of_read_addr(addr, na);
121 u64 b = of_read_addr(base, na);
123 if (a < b)
124 return 1;
126 b += of_read_addr(size, ns);
127 if (a >= b)
128 return 1;
130 return 0;
133 static int of_bus_default_map(u32 *addr, const u32 *range,
134 int na, int ns, int pna)
136 u32 result[OF_MAX_ADDR_CELLS];
137 int i;
139 if (ns > 2) {
140 printk("of_device: Cannot handle size cells (%d) > 2.", ns);
141 return -EINVAL;
144 if (of_out_of_range(addr, range, range + na + pna, na, ns))
145 return -EINVAL;
147 /* Start with the parent range base. */
148 memcpy(result, range + na, pna * 4);
150 /* Add in the child address offset. */
151 for (i = 0; i < na; i++)
152 result[pna - 1 - i] +=
153 (addr[na - 1 - i] -
154 range[na - 1 - i]);
156 memcpy(addr, result, pna * 4);
158 return 0;
161 static unsigned int of_bus_default_get_flags(const u32 *addr)
163 return IORESOURCE_MEM;
167 * PCI bus specific translator
170 static int of_bus_pci_match(struct device_node *np)
172 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
173 const char *model = of_get_property(np, "model", NULL);
175 if (model && !strcmp(model, "SUNW,simba"))
176 return 0;
178 /* Do not do PCI specific frobbing if the
179 * PCI bridge lacks a ranges property. We
180 * want to pass it through up to the next
181 * parent as-is, not with the PCI translate
182 * method which chops off the top address cell.
184 if (!of_find_property(np, "ranges", NULL))
185 return 0;
187 return 1;
190 return 0;
193 static int of_bus_simba_match(struct device_node *np)
195 const char *model = of_get_property(np, "model", NULL);
197 if (model && !strcmp(model, "SUNW,simba"))
198 return 1;
200 /* Treat PCI busses lacking ranges property just like
201 * simba.
203 if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
204 if (!of_find_property(np, "ranges", NULL))
205 return 1;
208 return 0;
211 static int of_bus_simba_map(u32 *addr, const u32 *range,
212 int na, int ns, int pna)
214 return 0;
217 static void of_bus_pci_count_cells(struct device_node *np,
218 int *addrc, int *sizec)
220 if (addrc)
221 *addrc = 3;
222 if (sizec)
223 *sizec = 2;
226 static int of_bus_pci_map(u32 *addr, const u32 *range,
227 int na, int ns, int pna)
229 u32 result[OF_MAX_ADDR_CELLS];
230 int i;
232 /* Check address type match */
233 if ((addr[0] ^ range[0]) & 0x03000000)
234 return -EINVAL;
236 if (of_out_of_range(addr + 1, range + 1, range + na + pna,
237 na - 1, ns))
238 return -EINVAL;
240 /* Start with the parent range base. */
241 memcpy(result, range + na, pna * 4);
243 /* Add in the child address offset, skipping high cell. */
244 for (i = 0; i < na - 1; i++)
245 result[pna - 1 - i] +=
246 (addr[na - 1 - i] -
247 range[na - 1 - i]);
249 memcpy(addr, result, pna * 4);
251 return 0;
254 static unsigned int of_bus_pci_get_flags(const u32 *addr)
256 unsigned int flags = 0;
257 u32 w = addr[0];
259 switch((w >> 24) & 0x03) {
260 case 0x01:
261 flags |= IORESOURCE_IO;
262 case 0x02: /* 32 bits */
263 case 0x03: /* 64 bits */
264 flags |= IORESOURCE_MEM;
266 if (w & 0x40000000)
267 flags |= IORESOURCE_PREFETCH;
268 return flags;
272 * SBUS bus specific translator
275 static int of_bus_sbus_match(struct device_node *np)
277 return !strcmp(np->name, "sbus") ||
278 !strcmp(np->name, "sbi");
281 static void of_bus_sbus_count_cells(struct device_node *child,
282 int *addrc, int *sizec)
284 if (addrc)
285 *addrc = 2;
286 if (sizec)
287 *sizec = 1;
291 * FHC/Central bus specific translator.
293 * This is just needed to hard-code the address and size cell
294 * counts. 'fhc' and 'central' nodes lack the #address-cells and
295 * #size-cells properties, and if you walk to the root on such
296 * Enterprise boxes all you'll get is a #size-cells of 2 which is
297 * not what we want to use.
299 static int of_bus_fhc_match(struct device_node *np)
301 return !strcmp(np->name, "fhc") ||
302 !strcmp(np->name, "central");
305 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
308 * Array of bus specific translators
311 static struct of_bus of_busses[] = {
312 /* PCI */
314 .name = "pci",
315 .addr_prop_name = "assigned-addresses",
316 .match = of_bus_pci_match,
317 .count_cells = of_bus_pci_count_cells,
318 .map = of_bus_pci_map,
319 .get_flags = of_bus_pci_get_flags,
321 /* SIMBA */
323 .name = "simba",
324 .addr_prop_name = "assigned-addresses",
325 .match = of_bus_simba_match,
326 .count_cells = of_bus_pci_count_cells,
327 .map = of_bus_simba_map,
328 .get_flags = of_bus_pci_get_flags,
330 /* SBUS */
332 .name = "sbus",
333 .addr_prop_name = "reg",
334 .match = of_bus_sbus_match,
335 .count_cells = of_bus_sbus_count_cells,
336 .map = of_bus_default_map,
337 .get_flags = of_bus_default_get_flags,
339 /* FHC */
341 .name = "fhc",
342 .addr_prop_name = "reg",
343 .match = of_bus_fhc_match,
344 .count_cells = of_bus_fhc_count_cells,
345 .map = of_bus_default_map,
346 .get_flags = of_bus_default_get_flags,
348 /* Default */
350 .name = "default",
351 .addr_prop_name = "reg",
352 .match = NULL,
353 .count_cells = of_bus_default_count_cells,
354 .map = of_bus_default_map,
355 .get_flags = of_bus_default_get_flags,
359 static struct of_bus *of_match_bus(struct device_node *np)
361 int i;
363 for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
364 if (!of_busses[i].match || of_busses[i].match(np))
365 return &of_busses[i];
366 BUG();
367 return NULL;
370 static int __init build_one_resource(struct device_node *parent,
371 struct of_bus *bus,
372 struct of_bus *pbus,
373 u32 *addr,
374 int na, int ns, int pna)
376 const u32 *ranges;
377 unsigned int rlen;
378 int rone;
380 ranges = of_get_property(parent, "ranges", &rlen);
381 if (ranges == NULL || rlen == 0) {
382 u32 result[OF_MAX_ADDR_CELLS];
383 int i;
385 memset(result, 0, pna * 4);
386 for (i = 0; i < na; i++)
387 result[pna - 1 - i] =
388 addr[na - 1 - i];
390 memcpy(addr, result, pna * 4);
391 return 0;
394 /* Now walk through the ranges */
395 rlen /= 4;
396 rone = na + pna + ns;
397 for (; rlen >= rone; rlen -= rone, ranges += rone) {
398 if (!bus->map(addr, ranges, na, ns, pna))
399 return 0;
402 /* When we miss an I/O space match on PCI, just pass it up
403 * to the next PCI bridge and/or controller.
405 if (!strcmp(bus->name, "pci") &&
406 (addr[0] & 0x03000000) == 0x01000000)
407 return 0;
409 return 1;
412 static int __init use_1to1_mapping(struct device_node *pp)
414 /* If this is on the PMU bus, don't try to translate it even
415 * if a ranges property exists.
417 if (!strcmp(pp->name, "pmu"))
418 return 1;
420 /* If we have a ranges property in the parent, use it. */
421 if (of_find_property(pp, "ranges", NULL) != NULL)
422 return 0;
424 /* If the parent is the dma node of an ISA bus, pass
425 * the translation up to the root.
427 if (!strcmp(pp->name, "dma"))
428 return 0;
430 /* Similarly for all PCI bridges, if we get this far
431 * it lacks a ranges property, and this will include
432 * cases like Simba.
434 if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
435 return 0;
437 return 1;
440 static int of_resource_verbose;
442 static void __init build_device_resources(struct of_device *op,
443 struct device *parent)
445 struct of_device *p_op;
446 struct of_bus *bus;
447 int na, ns;
448 int index, num_reg;
449 const void *preg;
451 if (!parent)
452 return;
454 p_op = to_of_device(parent);
455 bus = of_match_bus(p_op->node);
456 bus->count_cells(op->node, &na, &ns);
458 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
459 if (!preg || num_reg == 0)
460 return;
462 /* Convert to num-cells. */
463 num_reg /= 4;
465 /* Convert to num-entries. */
466 num_reg /= na + ns;
468 /* Prevent overrunning the op->resources[] array. */
469 if (num_reg > PROMREG_MAX) {
470 printk(KERN_WARNING "%s: Too many regs (%d), "
471 "limiting to %d.\n",
472 op->node->full_name, num_reg, PROMREG_MAX);
473 num_reg = PROMREG_MAX;
476 for (index = 0; index < num_reg; index++) {
477 struct resource *r = &op->resource[index];
478 u32 addr[OF_MAX_ADDR_CELLS];
479 const u32 *reg = (preg + (index * ((na + ns) * 4)));
480 struct device_node *dp = op->node;
481 struct device_node *pp = p_op->node;
482 struct of_bus *pbus, *dbus;
483 u64 size, result = OF_BAD_ADDR;
484 unsigned long flags;
485 int dna, dns;
486 int pna, pns;
488 size = of_read_addr(reg + na, ns);
489 flags = bus->get_flags(reg);
491 memcpy(addr, reg, na * 4);
493 if (use_1to1_mapping(pp)) {
494 result = of_read_addr(addr, na);
495 goto build_res;
498 dna = na;
499 dns = ns;
500 dbus = bus;
502 while (1) {
503 dp = pp;
504 pp = dp->parent;
505 if (!pp) {
506 result = of_read_addr(addr, dna);
507 break;
510 pbus = of_match_bus(pp);
511 pbus->count_cells(dp, &pna, &pns);
513 if (build_one_resource(dp, dbus, pbus, addr,
514 dna, dns, pna))
515 break;
517 dna = pna;
518 dns = pns;
519 dbus = pbus;
522 build_res:
523 memset(r, 0, sizeof(*r));
525 if (of_resource_verbose)
526 printk("%s reg[%d] -> %lx\n",
527 op->node->full_name, index,
528 result);
530 if (result != OF_BAD_ADDR) {
531 if (tlb_type == hypervisor)
532 result &= 0x0fffffffffffffffUL;
534 r->start = result;
535 r->end = result + size - 1;
536 r->flags = flags;
538 r->name = op->node->name;
542 static struct device_node * __init
543 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
544 const u32 *imap, int imlen, const u32 *imask,
545 unsigned int *irq_p)
547 struct device_node *cp;
548 unsigned int irq = *irq_p;
549 struct of_bus *bus;
550 phandle handle;
551 const u32 *reg;
552 int na, num_reg, i;
554 bus = of_match_bus(pp);
555 bus->count_cells(dp, &na, NULL);
557 reg = of_get_property(dp, "reg", &num_reg);
558 if (!reg || !num_reg)
559 return NULL;
561 imlen /= ((na + 3) * 4);
562 handle = 0;
563 for (i = 0; i < imlen; i++) {
564 int j;
566 for (j = 0; j < na; j++) {
567 if ((reg[j] & imask[j]) != imap[j])
568 goto next;
570 if (imap[na] == irq) {
571 handle = imap[na + 1];
572 irq = imap[na + 2];
573 break;
576 next:
577 imap += (na + 3);
579 if (i == imlen) {
580 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
581 * properties that do not include the on-board device
582 * interrupts. Instead, the device's 'interrupts' property
583 * is already a fully specified INO value.
585 * Handle this by deciding that, if we didn't get a
586 * match in the parent's 'interrupt-map', and the
587 * parent is an IRQ translater, then use the parent as
588 * our IRQ controller.
590 if (pp->irq_trans)
591 return pp;
593 return NULL;
596 *irq_p = irq;
597 cp = of_find_node_by_phandle(handle);
599 return cp;
602 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
603 struct device_node *pp,
604 unsigned int irq)
606 const struct linux_prom_pci_registers *regs;
607 unsigned int bus, devfn, slot, ret;
609 if (irq < 1 || irq > 4)
610 return irq;
612 regs = of_get_property(dp, "reg", NULL);
613 if (!regs)
614 return irq;
616 bus = (regs->phys_hi >> 16) & 0xff;
617 devfn = (regs->phys_hi >> 8) & 0xff;
618 slot = (devfn >> 3) & 0x1f;
620 if (pp->irq_trans) {
621 /* Derived from Table 8-3, U2P User's Manual. This branch
622 * is handling a PCI controller that lacks a proper set of
623 * interrupt-map and interrupt-map-mask properties. The
624 * Ultra-E450 is one example.
626 * The bit layout is BSSLL, where:
627 * B: 0 on bus A, 1 on bus B
628 * D: 2-bit slot number, derived from PCI device number as
629 * (dev - 1) for bus A, or (dev - 2) for bus B
630 * L: 2-bit line number
632 if (bus & 0x80) {
633 /* PBM-A */
634 bus = 0x00;
635 slot = (slot - 1) << 2;
636 } else {
637 /* PBM-B */
638 bus = 0x10;
639 slot = (slot - 2) << 2;
641 irq -= 1;
643 ret = (bus | slot | irq);
644 } else {
645 /* Going through a PCI-PCI bridge that lacks a set of
646 * interrupt-map and interrupt-map-mask properties.
648 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
651 return ret;
654 static int of_irq_verbose;
656 static unsigned int __init build_one_device_irq(struct of_device *op,
657 struct device *parent,
658 unsigned int irq)
660 struct device_node *dp = op->node;
661 struct device_node *pp, *ip;
662 unsigned int orig_irq = irq;
664 if (irq == 0xffffffff)
665 return irq;
667 if (dp->irq_trans) {
668 irq = dp->irq_trans->irq_build(dp, irq,
669 dp->irq_trans->data);
671 if (of_irq_verbose)
672 printk("%s: direct translate %x --> %x\n",
673 dp->full_name, orig_irq, irq);
675 return irq;
678 /* Something more complicated. Walk up to the root, applying
679 * interrupt-map or bus specific translations, until we hit
680 * an IRQ translator.
682 * If we hit a bus type or situation we cannot handle, we
683 * stop and assume that the original IRQ number was in a
684 * format which has special meaning to it's immediate parent.
686 pp = dp->parent;
687 ip = NULL;
688 while (pp) {
689 const void *imap, *imsk;
690 int imlen;
692 imap = of_get_property(pp, "interrupt-map", &imlen);
693 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
694 if (imap && imsk) {
695 struct device_node *iret;
696 int this_orig_irq = irq;
698 iret = apply_interrupt_map(dp, pp,
699 imap, imlen, imsk,
700 &irq);
702 if (of_irq_verbose)
703 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
704 op->node->full_name,
705 pp->full_name, this_orig_irq,
706 (iret ? iret->full_name : "NULL"), irq);
708 if (!iret)
709 break;
711 if (iret->irq_trans) {
712 ip = iret;
713 break;
715 } else {
716 if (!strcmp(pp->type, "pci") ||
717 !strcmp(pp->type, "pciex")) {
718 unsigned int this_orig_irq = irq;
720 irq = pci_irq_swizzle(dp, pp, irq);
721 if (of_irq_verbose)
722 printk("%s: PCI swizzle [%s] "
723 "%x --> %x\n",
724 op->node->full_name,
725 pp->full_name, this_orig_irq,
726 irq);
730 if (pp->irq_trans) {
731 ip = pp;
732 break;
735 dp = pp;
736 pp = pp->parent;
738 if (!ip)
739 return orig_irq;
741 irq = ip->irq_trans->irq_build(op->node, irq,
742 ip->irq_trans->data);
743 if (of_irq_verbose)
744 printk("%s: Apply IRQ trans [%s] %x --> %x\n",
745 op->node->full_name, ip->full_name, orig_irq, irq);
747 return irq;
750 static struct of_device * __init scan_one_device(struct device_node *dp,
751 struct device *parent)
753 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
754 const unsigned int *irq;
755 struct dev_archdata *sd;
756 int len, i;
758 if (!op)
759 return NULL;
761 sd = &op->dev.archdata;
762 sd->prom_node = dp;
763 sd->op = op;
765 op->node = dp;
767 op->clock_freq = of_getintprop_default(dp, "clock-frequency",
768 (25*1000*1000));
769 op->portid = of_getintprop_default(dp, "upa-portid", -1);
770 if (op->portid == -1)
771 op->portid = of_getintprop_default(dp, "portid", -1);
773 irq = of_get_property(dp, "interrupts", &len);
774 if (irq) {
775 memcpy(op->irqs, irq, len);
776 op->num_irqs = len / 4;
777 } else {
778 op->num_irqs = 0;
781 /* Prevent overrunning the op->irqs[] array. */
782 if (op->num_irqs > PROMINTR_MAX) {
783 printk(KERN_WARNING "%s: Too many irqs (%d), "
784 "limiting to %d.\n",
785 dp->full_name, op->num_irqs, PROMINTR_MAX);
786 op->num_irqs = PROMINTR_MAX;
789 build_device_resources(op, parent);
790 for (i = 0; i < op->num_irqs; i++)
791 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
793 op->dev.parent = parent;
794 op->dev.bus = &of_platform_bus_type;
795 if (!parent)
796 strcpy(op->dev.bus_id, "root");
797 else
798 sprintf(op->dev.bus_id, "%08x", dp->node);
800 if (of_device_register(op)) {
801 printk("%s: Could not register of device.\n",
802 dp->full_name);
803 kfree(op);
804 op = NULL;
807 return op;
810 static void __init scan_tree(struct device_node *dp, struct device *parent)
812 while (dp) {
813 struct of_device *op = scan_one_device(dp, parent);
815 if (op)
816 scan_tree(dp->child, &op->dev);
818 dp = dp->sibling;
822 static void __init scan_of_devices(void)
824 struct device_node *root = of_find_node_by_path("/");
825 struct of_device *parent;
827 parent = scan_one_device(root, NULL);
828 if (!parent)
829 return;
831 scan_tree(root->child, &parent->dev);
834 static int __init of_bus_driver_init(void)
836 int err;
838 err = of_bus_type_init(&of_platform_bus_type, "of");
839 #ifdef CONFIG_PCI
840 if (!err)
841 err = of_bus_type_init(&isa_bus_type, "isa");
842 if (!err)
843 err = of_bus_type_init(&ebus_bus_type, "ebus");
844 #endif
845 #ifdef CONFIG_SBUS
846 if (!err)
847 err = of_bus_type_init(&sbus_bus_type, "sbus");
848 #endif
850 if (!err)
851 scan_of_devices();
853 return err;
856 postcore_initcall(of_bus_driver_init);
858 static int __init of_debug(char *str)
860 int val = 0;
862 get_option(&str, &val);
863 if (val & 1)
864 of_resource_verbose = 1;
865 if (val & 2)
866 of_irq_verbose = 1;
867 return 1;
870 __setup("of_debug=", of_debug);
872 struct of_device* of_platform_device_create(struct device_node *np,
873 const char *bus_id,
874 struct device *parent,
875 struct bus_type *bus)
877 struct of_device *dev;
879 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
880 if (!dev)
881 return NULL;
883 dev->dev.parent = parent;
884 dev->dev.bus = bus;
885 dev->dev.release = of_release_dev;
887 strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
889 if (of_device_register(dev) != 0) {
890 kfree(dev);
891 return NULL;
894 return dev;
896 EXPORT_SYMBOL(of_platform_device_create);