[SCSI] qla1280: convert to use the data buffer accessors
[linux-2.6/verdex.git] / sound / pci / cmipci.c
blob6832649879cedf4bf1f4c2d4144f448c8d49d6dc
1 /*
2 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
23 #include <sound/driver.h>
24 #include <asm/io.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/gameport.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mutex.h>
33 #include <sound/core.h>
34 #include <sound/info.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/rawmidi.h>
38 #include <sound/mpu401.h>
39 #include <sound/opl3.h>
40 #include <sound/sb.h>
41 #include <sound/asoundef.h>
42 #include <sound/initval.h>
44 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
45 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
46 MODULE_LICENSE("GPL");
47 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
48 "{C-Media,CMI8738B},"
49 "{C-Media,CMI8338A},"
50 "{C-Media,CMI8338B}}");
52 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
53 #define SUPPORT_JOYSTICK 1
54 #endif
56 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
57 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
58 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
59 static long mpu_port[SNDRV_CARDS];
60 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
62 #ifdef SUPPORT_JOYSTICK
63 static int joystick_port[SNDRV_CARDS];
64 #endif
66 module_param_array(index, int, NULL, 0444);
67 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
68 module_param_array(id, charp, NULL, 0444);
69 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
70 module_param_array(enable, bool, NULL, 0444);
71 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
72 module_param_array(mpu_port, long, NULL, 0444);
73 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
74 module_param_array(fm_port, long, NULL, 0444);
75 MODULE_PARM_DESC(fm_port, "FM port.");
76 module_param_array(soft_ac3, bool, NULL, 0444);
77 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
78 #ifdef SUPPORT_JOYSTICK
79 module_param_array(joystick_port, int, NULL, 0444);
80 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
81 #endif
84 * CM8x38 registers definition
87 #define CM_REG_FUNCTRL0 0x00
88 #define CM_RST_CH1 0x00080000
89 #define CM_RST_CH0 0x00040000
90 #define CM_CHEN1 0x00020000 /* ch1: enable */
91 #define CM_CHEN0 0x00010000 /* ch0: enable */
92 #define CM_PAUSE1 0x00000008 /* ch1: pause */
93 #define CM_PAUSE0 0x00000004 /* ch0: pause */
94 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
95 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
97 #define CM_REG_FUNCTRL1 0x04
98 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
99 #define CM_DSFC_SHIFT 13
100 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
101 #define CM_ASFC_SHIFT 10
102 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
103 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
104 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
105 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
106 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
107 #define CM_BREQ 0x00000010 /* bus master enabled */
108 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
109 #define CM_UART_EN 0x00000004 /* legacy UART */
110 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */
111 #define CM_ZVPORT 0x00000001 /* ZVPORT */
113 #define CM_REG_CHFORMAT 0x08
115 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */
116 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
117 #define CM_CHB3D 0x20000000 /* 4 channels */
119 #define CM_CHIP_MASK1 0x1f000000
120 #define CM_CHIP_037 0x01000000
121 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */
122 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
123 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
124 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
125 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
126 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
127 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
129 #define CM_ADCBITLEN_MASK 0x0000C000
130 #define CM_ADCBITLEN_16 0x00000000
131 #define CM_ADCBITLEN_15 0x00004000
132 #define CM_ADCBITLEN_14 0x00008000
133 #define CM_ADCBITLEN_13 0x0000C000
135 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
136 #define CM_ADCDACLEN_060 0x00000000
137 #define CM_ADCDACLEN_066 0x00001000
138 #define CM_ADCDACLEN_130 0x00002000
139 #define CM_ADCDACLEN_280 0x00003000
141 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
142 #define CM_ADCDLEN_ORIGINAL 0x00000000
143 #define CM_ADCDLEN_EXTRA 0x00001000
144 #define CM_ADCDLEN_24K 0x00002000
145 #define CM_ADCDLEN_WEIGHT 0x00003000
147 #define CM_CH1_SRATE_176K 0x00000800
148 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
149 #define CM_CH1_SRATE_88K 0x00000400
150 #define CM_CH0_SRATE_176K 0x00000200
151 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
152 #define CM_CH0_SRATE_88K 0x00000100
154 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
155 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
156 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
157 #define CM_SPDLOCKED 0x00000010
159 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
160 #define CM_CH1FMT_SHIFT 2
161 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
162 #define CM_CH0FMT_SHIFT 0
164 #define CM_REG_INT_HLDCLR 0x0C
165 #define CM_CHIP_MASK2 0xff000000
166 #define CM_CHIP_8768 0x20000000
167 #define CM_CHIP_055 0x08000000
168 #define CM_CHIP_039 0x04000000
169 #define CM_CHIP_039_6CH 0x01000000
170 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
171 #define CM_TDMA_INT_EN 0x00040000
172 #define CM_CH1_INT_EN 0x00020000
173 #define CM_CH0_INT_EN 0x00010000
175 #define CM_REG_INT_STATUS 0x10
176 #define CM_INTR 0x80000000
177 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
178 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
179 #define CM_UARTINT 0x00010000
180 #define CM_LTDMAINT 0x00008000
181 #define CM_HTDMAINT 0x00004000
182 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
183 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
184 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
185 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
186 #define CM_CH1BUSY 0x00000008
187 #define CM_CH0BUSY 0x00000004
188 #define CM_CHINT1 0x00000002
189 #define CM_CHINT0 0x00000001
191 #define CM_REG_LEGACY_CTRL 0x14
192 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
193 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
194 #define CM_VMPU_330 0x00000000
195 #define CM_VMPU_320 0x20000000
196 #define CM_VMPU_310 0x40000000
197 #define CM_VMPU_300 0x60000000
198 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
199 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
200 #define CM_VSBSEL_220 0x00000000
201 #define CM_VSBSEL_240 0x04000000
202 #define CM_VSBSEL_260 0x08000000
203 #define CM_VSBSEL_280 0x0C000000
204 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
205 #define CM_FMSEL_388 0x00000000
206 #define CM_FMSEL_3C8 0x01000000
207 #define CM_FMSEL_3E0 0x02000000
208 #define CM_FMSEL_3E8 0x03000000
209 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
210 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
211 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
212 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
213 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
214 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
215 #define CM_C_EECS 0x00040000
216 #define CM_C_EEDI46 0x00020000
217 #define CM_C_EECK46 0x00010000
218 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
219 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */
220 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */
221 #define CM_EXBASEN 0x00001000 /* external bass input enable */
223 #define CM_REG_MISC_CTRL 0x18
224 #define CM_PWD 0x80000000 /* power down */
225 #define CM_RESET 0x40000000
226 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
227 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
228 #define CM_TXVX 0x08000000 /* model 037? */
229 #define CM_N4SPK3D 0x04000000 /* copy front to rear */
230 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
231 #define CM_SPDIF48K 0x01000000 /* write */
232 #define CM_SPATUS48K 0x01000000 /* read */
233 #define CM_ENDBDAC 0x00800000 /* enable double dac */
234 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
235 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
236 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
237 #define CM_FM_EN 0x00080000 /* enable legacy FM */
238 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
239 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
240 #define CM_VIDWPDSB 0x00010000 /* model 037? */
241 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
242 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
243 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
244 #define CM_VIDWPPRT 0x00002000 /* model 037? */
245 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
246 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
247 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
248 #define CM_ENCENTER 0x00000080
249 #define CM_FLINKON 0x00000080 /* force modem link detection on, model 037 */
250 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
251 #define CM_FLINKOFF 0x00000040 /* force modem link detection off, model 037 */
252 #define CM_UNKNOWN_18_5 0x00000020 /* ? */
253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
255 #define CM_UPDDMA_2048 0x00000000
256 #define CM_UPDDMA_1024 0x00000004
257 #define CM_UPDDMA_512 0x00000008
258 #define CM_UPDDMA_256 0x0000000C
259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */
260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
263 #define CM_REG_TDMA_POSITION 0x1C
264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
267 /* byte */
268 #define CM_REG_MIXER0 0x20
269 #define CM_REG_SBVR 0x20 /* write: sb16 version */
270 #define CM_REG_DEV 0x20 /* read: hardware device version */
272 #define CM_REG_MIXER21 0x21
273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */
274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */
276 #define CM_X_SB16 0x01 /* SB16 compatible */
278 #define CM_REG_SB16_DATA 0x22
279 #define CM_REG_SB16_ADDR 0x23
281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
286 #define CM_REG_MIXER1 0x24
287 #define CM_FMMUTE 0x80 /* mute FM */
288 #define CM_FMMUTE_SHIFT 7
289 #define CM_WSMUTE 0x40 /* mute PCM */
290 #define CM_WSMUTE_SHIFT 6
291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT 5
293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT 4
295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT 3
297 #define CM_WAVEINR 0x04 /* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT 2
299 #define CM_X3DEN 0x02 /* 3D surround enable */
300 #define CM_X3DEN_SHIFT 1
301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT 0
304 #define CM_REG_MIXER2 0x25
305 #define CM_RAUXREN 0x80 /* AUX right capture */
306 #define CM_RAUXREN_SHIFT 7
307 #define CM_RAUXLEN 0x40 /* AUX left capture */
308 #define CM_RAUXLEN_SHIFT 6
309 #define CM_VAUXRM 0x20 /* AUX right mute */
310 #define CM_VAUXRM_SHIFT 5
311 #define CM_VAUXLM 0x10 /* AUX left mute */
312 #define CM_VAUXLM_SHIFT 4
313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT 1
315 #define CM_MICGAINZ 0x01 /* mic boost */
316 #define CM_MICGAINZ_SHIFT 0
318 #define CM_REG_MIXER3 0x24
319 #define CM_REG_AUX_VOL 0x26
320 #define CM_VAUXL_MASK 0xf0
321 #define CM_VAUXR_MASK 0x0f
323 #define CM_REG_MISC 0x27
324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */
325 #define CM_XGPO1 0x20
326 // #define CM_XGPBIO 0x04
327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID 0x02 /* spdif input valid check */
330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335 * or identical with AC97 codec?
337 #define CM_REG_EXTERN_CODEC CM_REG_AC97
340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
342 #define CM_REG_MPU_PCI 0x40
345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
347 #define CM_REG_FM_PCI 0x50
350 * access from SB-mixer port
352 #define CM_REG_EXTENT_IND 0xf0
353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT 5
355 #define CM_VPHOM 0x10 /* Phone mute control */
356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */
357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
359 #define CM_VADMIC3 0x01 /* Mic record boost */
362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364 * unit (readonly?).
366 #define CM_REG_PLL 0xf8
369 * extended registers
371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */
372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */
373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
376 #define CM_REG_EXT_MISC 0x90
377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
387 * size of i/o region
389 #define CM_EXTENT_CODEC 0x100
390 #define CM_EXTENT_MIDI 0x2
391 #define CM_EXTENT_SYNTH 0x4
395 * channels for playback / capture
397 #define CM_CH_PLAY 0
398 #define CM_CH_CAPT 1
401 * flags to check device open/close
403 #define CM_OPEN_NONE 0
404 #define CM_OPEN_CH_MASK 0x01
405 #define CM_OPEN_DAC 0x10
406 #define CM_OPEN_ADC 0x20
407 #define CM_OPEN_SPDIF 0x40
408 #define CM_OPEN_MCHAN 0x80
409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF CM_SPDF_1
420 #define CM_CAPTURE_SPDF CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF CM_SPDF_0
424 #define CM_CAPTURE_SPDF CM_SPDF_1
425 #endif
429 * driver data
432 struct cmipci_pcm {
433 struct snd_pcm_substream *substream;
434 u8 running; /* dac/adc running? */
435 u8 fmt; /* format bits */
436 u8 is_dac;
437 u8 needs_silencing;
438 unsigned int dma_size; /* in frames */
439 unsigned int shift;
440 unsigned int ch; /* channel (0/1) */
441 unsigned int offset; /* physical address of the buffer */
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446 const char *name; /* switch to toggle */
447 int toggle_on; /* value to change when ac3 mode */
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 {"PCM Playback Switch", 0},
451 {"IEC958 Output Switch", 1},
452 {"IEC958 Mix Analog", 0},
453 // {"IEC958 Out To DAC", 1}, // no longer used
454 {"IEC958 Loop", 0},
456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
458 struct cmipci {
459 struct snd_card *card;
461 struct pci_dev *pci;
462 unsigned int device; /* device ID */
463 int irq;
465 unsigned long iobase;
466 unsigned int ctrl; /* FUNCTRL0 current value */
468 struct snd_pcm *pcm; /* DAC/ADC PCM */
469 struct snd_pcm *pcm2; /* 2nd DAC */
470 struct snd_pcm *pcm_spdif; /* SPDIF */
472 int chip_version;
473 int max_channels;
474 unsigned int can_ac3_sw: 1;
475 unsigned int can_ac3_hw: 1;
476 unsigned int can_multi_ch: 1;
477 unsigned int do_soft_ac3: 1;
479 unsigned int spdif_playback_avail: 1; /* spdif ready? */
480 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
481 int spdif_counter; /* for software AC3 */
483 unsigned int dig_status;
484 unsigned int dig_pcm_status;
486 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488 int opened[2]; /* open mode */
489 struct mutex open_mutex;
491 unsigned int mixer_insensitive: 1;
492 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
493 int mixer_res_status[CM_SAVED_MIXERS];
495 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
497 /* external MIDI */
498 struct snd_rawmidi *rmidi;
500 #ifdef SUPPORT_JOYSTICK
501 struct gameport *gameport;
502 #endif
504 spinlock_t reg_lock;
506 #ifdef CONFIG_PM
507 unsigned int saved_regs[0x20];
508 unsigned char saved_mixers[0x20];
509 #endif
513 /* read/write operations for dword register */
514 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516 outl(data, cm->iobase + cmd);
519 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521 return inl(cm->iobase + cmd);
524 /* read/write operations for word register */
525 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527 outw(data, cm->iobase + cmd);
530 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532 return inw(cm->iobase + cmd);
535 /* read/write operations for byte register */
536 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538 outb(data, cm->iobase + cmd);
541 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543 return inb(cm->iobase + cmd);
546 /* bit operations for dword register */
547 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549 unsigned int val, oval;
550 val = oval = inl(cm->iobase + cmd);
551 val |= flag;
552 if (val == oval)
553 return 0;
554 outl(val, cm->iobase + cmd);
555 return 1;
558 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560 unsigned int val, oval;
561 val = oval = inl(cm->iobase + cmd);
562 val &= ~flag;
563 if (val == oval)
564 return 0;
565 outl(val, cm->iobase + cmd);
566 return 1;
569 /* bit operations for byte register */
570 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572 unsigned char val, oval;
573 val = oval = inb(cm->iobase + cmd);
574 val |= flag;
575 if (val == oval)
576 return 0;
577 outb(val, cm->iobase + cmd);
578 return 1;
581 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583 unsigned char val, oval;
584 val = oval = inb(cm->iobase + cmd);
585 val &= ~flag;
586 if (val == oval)
587 return 0;
588 outb(val, cm->iobase + cmd);
589 return 1;
594 * PCM interface
598 * calculate frequency
601 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605 unsigned int i;
607 if (rate > 48000)
608 rate /= 2;
609 for (i = 0; i < ARRAY_SIZE(rates); i++) {
610 if (rates[i] == rate)
611 return i;
613 snd_BUG();
614 return 0;
617 #ifdef USE_VAR48KRATE
619 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
620 * does it this way .. maybe not. Never get any information from C-Media about
621 * that <werner@suse.de>.
623 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
625 unsigned int delta, tolerance;
626 int xm, xn, xr;
628 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
629 rate <<= 1;
630 *n = -1;
631 if (*r > 0xff)
632 goto out;
633 tolerance = rate*CM_TOLERANCE_RATE;
635 for (xn = (1+2); xn < (0x1f+2); xn++) {
636 for (xm = (1+2); xm < (0xff+2); xm++) {
637 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
639 if (xr < rate)
640 delta = rate - xr;
641 else
642 delta = xr - rate;
645 * If we found one, remember this,
646 * and try to find a closer one
648 if (delta < tolerance) {
649 tolerance = delta;
650 *m = xm - 2;
651 *n = xn - 2;
655 out:
656 return (*n > -1);
660 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
661 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
662 * at the register CM_REG_FUNCTRL1 (0x04).
663 * Problem: other ways are also possible (any information about that?)
665 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
667 unsigned int reg = CM_REG_PLL + slot;
669 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
670 * for DSFC/ASFC (000 upto 111).
673 /* FIXME: Init (Do we've to set an other register first before programming?) */
675 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
676 snd_cmipci_write_b(cm, reg, rate>>8);
677 snd_cmipci_write_b(cm, reg, rate&0xff);
679 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
681 #endif /* USE_VAR48KRATE */
683 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
684 struct snd_pcm_hw_params *hw_params)
686 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
689 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
690 struct snd_pcm_hw_params *hw_params)
692 struct cmipci *cm = snd_pcm_substream_chip(substream);
693 if (params_channels(hw_params) > 2) {
694 mutex_lock(&cm->open_mutex);
695 if (cm->opened[CM_CH_PLAY]) {
696 mutex_unlock(&cm->open_mutex);
697 return -EBUSY;
699 /* reserve the channel A */
700 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
701 mutex_unlock(&cm->open_mutex);
703 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
706 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
708 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
710 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
711 udelay(10);
714 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
716 return snd_pcm_lib_free_pages(substream);
723 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
724 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
725 .count = 3,
726 .list = hw_channels,
727 .mask = 0,
729 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
730 .count = 4,
731 .list = hw_channels,
732 .mask = 0,
734 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
735 .count = 5,
736 .list = hw_channels,
737 .mask = 0,
740 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
742 if (channels > 2) {
743 if (!cm->can_multi_ch || !rec->ch)
744 return -EINVAL;
745 if (rec->fmt != 0x03) /* stereo 16bit only */
746 return -EINVAL;
749 if (cm->can_multi_ch) {
750 spin_lock_irq(&cm->reg_lock);
751 if (channels > 2) {
752 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
753 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
754 } else {
755 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
756 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
758 if (channels == 8)
759 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
760 else
761 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
762 if (channels == 6) {
763 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
764 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
765 } else {
766 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
767 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
769 if (channels == 4)
770 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
771 else
772 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
773 spin_unlock_irq(&cm->reg_lock);
775 return 0;
780 * prepare playback/capture channel
781 * channel to be used must have been set in rec->ch.
783 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
784 struct snd_pcm_substream *substream)
786 unsigned int reg, freq, val;
787 unsigned int period_size;
788 struct snd_pcm_runtime *runtime = substream->runtime;
790 rec->fmt = 0;
791 rec->shift = 0;
792 if (snd_pcm_format_width(runtime->format) >= 16) {
793 rec->fmt |= 0x02;
794 if (snd_pcm_format_width(runtime->format) > 16)
795 rec->shift++; /* 24/32bit */
797 if (runtime->channels > 1)
798 rec->fmt |= 0x01;
799 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
800 snd_printd("cannot set dac channels\n");
801 return -EINVAL;
804 rec->offset = runtime->dma_addr;
805 /* buffer and period sizes in frame */
806 rec->dma_size = runtime->buffer_size << rec->shift;
807 period_size = runtime->period_size << rec->shift;
808 if (runtime->channels > 2) {
809 /* multi-channels */
810 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
811 period_size = (period_size * runtime->channels) / 2;
814 spin_lock_irq(&cm->reg_lock);
816 /* set buffer address */
817 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
818 snd_cmipci_write(cm, reg, rec->offset);
819 /* program sample counts */
820 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
821 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
822 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
824 /* set adc/dac flag */
825 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
826 if (rec->is_dac)
827 cm->ctrl &= ~val;
828 else
829 cm->ctrl |= val;
830 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
831 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
833 /* set sample rate */
834 freq = snd_cmipci_rate_freq(runtime->rate);
835 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
836 if (rec->ch) {
837 val &= ~CM_DSFC_MASK;
838 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
839 } else {
840 val &= ~CM_ASFC_MASK;
841 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
843 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
844 //snd_printd("cmipci: functrl1 = %08x\n", val);
846 /* set format */
847 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
848 if (rec->ch) {
849 val &= ~CM_CH1FMT_MASK;
850 val |= rec->fmt << CM_CH1FMT_SHIFT;
851 } else {
852 val &= ~CM_CH0FMT_MASK;
853 val |= rec->fmt << CM_CH0FMT_SHIFT;
855 if (cm->chip_version == 68) {
856 if (runtime->rate == 88200)
857 val |= CM_CH0_SRATE_88K << (rec->ch * 2);
858 else
859 val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2));
860 if (runtime->rate == 96000)
861 val |= CM_CH0_SRATE_96K << (rec->ch * 2);
862 else
863 val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2));
865 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
866 //snd_printd("cmipci: chformat = %08x\n", val);
868 rec->running = 0;
869 spin_unlock_irq(&cm->reg_lock);
871 return 0;
875 * PCM trigger/stop
877 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
878 int cmd)
880 unsigned int inthld, chen, reset, pause;
881 int result = 0;
883 inthld = CM_CH0_INT_EN << rec->ch;
884 chen = CM_CHEN0 << rec->ch;
885 reset = CM_RST_CH0 << rec->ch;
886 pause = CM_PAUSE0 << rec->ch;
888 spin_lock(&cm->reg_lock);
889 switch (cmd) {
890 case SNDRV_PCM_TRIGGER_START:
891 rec->running = 1;
892 /* set interrupt */
893 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
894 cm->ctrl |= chen;
895 /* enable channel */
896 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
897 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
898 break;
899 case SNDRV_PCM_TRIGGER_STOP:
900 rec->running = 0;
901 /* disable interrupt */
902 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
903 /* reset */
904 cm->ctrl &= ~chen;
905 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
907 rec->needs_silencing = rec->is_dac;
908 break;
909 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
910 case SNDRV_PCM_TRIGGER_SUSPEND:
911 cm->ctrl |= pause;
912 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
913 break;
914 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
915 case SNDRV_PCM_TRIGGER_RESUME:
916 cm->ctrl &= ~pause;
917 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
918 break;
919 default:
920 result = -EINVAL;
921 break;
923 spin_unlock(&cm->reg_lock);
924 return result;
928 * return the current pointer
930 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
931 struct snd_pcm_substream *substream)
933 size_t ptr;
934 unsigned int reg;
935 if (!rec->running)
936 return 0;
937 #if 1 // this seems better..
938 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
939 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
940 ptr >>= rec->shift;
941 #else
942 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
943 ptr = snd_cmipci_read(cm, reg) - rec->offset;
944 ptr = bytes_to_frames(substream->runtime, ptr);
945 #endif
946 if (substream->runtime->channels > 2)
947 ptr = (ptr * 2) / substream->runtime->channels;
948 return ptr;
952 * playback
955 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
956 int cmd)
958 struct cmipci *cm = snd_pcm_substream_chip(substream);
959 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
962 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
964 struct cmipci *cm = snd_pcm_substream_chip(substream);
965 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
971 * capture
974 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
975 int cmd)
977 struct cmipci *cm = snd_pcm_substream_chip(substream);
978 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
981 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
983 struct cmipci *cm = snd_pcm_substream_chip(substream);
984 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
989 * hw preparation for spdif
992 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
993 struct snd_ctl_elem_info *uinfo)
995 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
996 uinfo->count = 1;
997 return 0;
1000 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1001 struct snd_ctl_elem_value *ucontrol)
1003 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004 int i;
1006 spin_lock_irq(&chip->reg_lock);
1007 for (i = 0; i < 4; i++)
1008 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1009 spin_unlock_irq(&chip->reg_lock);
1010 return 0;
1013 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1014 struct snd_ctl_elem_value *ucontrol)
1016 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1017 int i, change;
1018 unsigned int val;
1020 val = 0;
1021 spin_lock_irq(&chip->reg_lock);
1022 for (i = 0; i < 4; i++)
1023 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1024 change = val != chip->dig_status;
1025 chip->dig_status = val;
1026 spin_unlock_irq(&chip->reg_lock);
1027 return change;
1030 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1032 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1033 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1034 .info = snd_cmipci_spdif_default_info,
1035 .get = snd_cmipci_spdif_default_get,
1036 .put = snd_cmipci_spdif_default_put
1039 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1040 struct snd_ctl_elem_info *uinfo)
1042 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1043 uinfo->count = 1;
1044 return 0;
1047 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1048 struct snd_ctl_elem_value *ucontrol)
1050 ucontrol->value.iec958.status[0] = 0xff;
1051 ucontrol->value.iec958.status[1] = 0xff;
1052 ucontrol->value.iec958.status[2] = 0xff;
1053 ucontrol->value.iec958.status[3] = 0xff;
1054 return 0;
1057 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1059 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1060 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1061 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1062 .info = snd_cmipci_spdif_mask_info,
1063 .get = snd_cmipci_spdif_mask_get,
1066 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1067 struct snd_ctl_elem_info *uinfo)
1069 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1070 uinfo->count = 1;
1071 return 0;
1074 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1075 struct snd_ctl_elem_value *ucontrol)
1077 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078 int i;
1080 spin_lock_irq(&chip->reg_lock);
1081 for (i = 0; i < 4; i++)
1082 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1083 spin_unlock_irq(&chip->reg_lock);
1084 return 0;
1087 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1088 struct snd_ctl_elem_value *ucontrol)
1090 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1091 int i, change;
1092 unsigned int val;
1094 val = 0;
1095 spin_lock_irq(&chip->reg_lock);
1096 for (i = 0; i < 4; i++)
1097 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1098 change = val != chip->dig_pcm_status;
1099 chip->dig_pcm_status = val;
1100 spin_unlock_irq(&chip->reg_lock);
1101 return change;
1104 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1106 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1107 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1108 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1109 .info = snd_cmipci_spdif_stream_info,
1110 .get = snd_cmipci_spdif_stream_get,
1111 .put = snd_cmipci_spdif_stream_put
1117 /* save mixer setting and mute for AC3 playback */
1118 static int save_mixer_state(struct cmipci *cm)
1120 if (! cm->mixer_insensitive) {
1121 struct snd_ctl_elem_value *val;
1122 unsigned int i;
1124 val = kmalloc(sizeof(*val), GFP_ATOMIC);
1125 if (!val)
1126 return -ENOMEM;
1127 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1128 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1129 if (ctl) {
1130 int event;
1131 memset(val, 0, sizeof(*val));
1132 ctl->get(ctl, val);
1133 cm->mixer_res_status[i] = val->value.integer.value[0];
1134 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1135 event = SNDRV_CTL_EVENT_MASK_INFO;
1136 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1137 ctl->put(ctl, val); /* toggle */
1138 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1140 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1141 snd_ctl_notify(cm->card, event, &ctl->id);
1144 kfree(val);
1145 cm->mixer_insensitive = 1;
1147 return 0;
1151 /* restore the previously saved mixer status */
1152 static void restore_mixer_state(struct cmipci *cm)
1154 if (cm->mixer_insensitive) {
1155 struct snd_ctl_elem_value *val;
1156 unsigned int i;
1158 val = kmalloc(sizeof(*val), GFP_KERNEL);
1159 if (!val)
1160 return;
1161 cm->mixer_insensitive = 0; /* at first clear this;
1162 otherwise the changes will be ignored */
1163 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1164 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1165 if (ctl) {
1166 int event;
1168 memset(val, 0, sizeof(*val));
1169 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1170 ctl->get(ctl, val);
1171 event = SNDRV_CTL_EVENT_MASK_INFO;
1172 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1173 val->value.integer.value[0] = cm->mixer_res_status[i];
1174 ctl->put(ctl, val);
1175 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1177 snd_ctl_notify(cm->card, event, &ctl->id);
1180 kfree(val);
1184 /* spinlock held! */
1185 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1187 if (do_ac3) {
1188 /* AC3EN for 037 */
1189 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1190 /* AC3EN for 039 */
1191 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1193 if (cm->can_ac3_hw) {
1194 /* SPD24SEL for 037, 0x02 */
1195 /* SPD24SEL for 039, 0x20, but cannot be set */
1196 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1197 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1198 } else { /* can_ac3_sw */
1199 /* SPD32SEL for 037 & 039, 0x20 */
1200 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1201 /* set 176K sample rate to fix 033 HW bug */
1202 if (cm->chip_version == 33) {
1203 if (rate >= 48000) {
1204 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1205 } else {
1206 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1211 } else {
1212 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1213 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1215 if (cm->can_ac3_hw) {
1216 /* chip model >= 37 */
1217 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1218 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1220 } else {
1221 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1222 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1224 } else {
1225 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1226 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1227 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1232 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1234 int rate, err;
1236 rate = subs->runtime->rate;
1238 if (up && do_ac3)
1239 if ((err = save_mixer_state(cm)) < 0)
1240 return err;
1242 spin_lock_irq(&cm->reg_lock);
1243 cm->spdif_playback_avail = up;
1244 if (up) {
1245 /* they are controlled via "IEC958 Output Switch" */
1246 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1247 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1248 if (cm->spdif_playback_enabled)
1249 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1250 setup_ac3(cm, subs, do_ac3, rate);
1252 if (rate == 48000 || rate == 96000)
1253 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1254 else
1255 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1256 if (rate > 48000)
1257 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1258 else
1259 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1260 } else {
1261 /* they are controlled via "IEC958 Output Switch" */
1262 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1263 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1264 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1265 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1266 setup_ac3(cm, subs, 0, 0);
1268 spin_unlock_irq(&cm->reg_lock);
1269 return 0;
1274 * preparation
1277 /* playback - enable spdif only on the certain condition */
1278 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1280 struct cmipci *cm = snd_pcm_substream_chip(substream);
1281 int rate = substream->runtime->rate;
1282 int err, do_spdif, do_ac3 = 0;
1284 do_spdif = (rate >= 44100 &&
1285 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1286 substream->runtime->channels == 2);
1287 if (do_spdif && cm->can_ac3_hw)
1288 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1289 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1290 return err;
1291 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1294 /* playback (via device #2) - enable spdif always */
1295 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1297 struct cmipci *cm = snd_pcm_substream_chip(substream);
1298 int err, do_ac3;
1300 if (cm->can_ac3_hw)
1301 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1302 else
1303 do_ac3 = 1; /* doesn't matter */
1304 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1305 return err;
1306 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310 * Apparently, the samples last played on channel A stay in some buffer, even
1311 * after the channel is reset, and get added to the data for the rear DACs when
1312 * playing a multichannel stream on channel B. This is likely to generate
1313 * wraparounds and thus distortions.
1314 * To avoid this, we play at least one zero sample after the actual stream has
1315 * stopped.
1317 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1319 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1320 unsigned int reg, val;
1322 if (rec->needs_silencing && runtime && runtime->dma_area) {
1323 /* set up a small silence buffer */
1324 memset(runtime->dma_area, 0, PAGE_SIZE);
1325 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1326 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1327 snd_cmipci_write(cm, reg, val);
1329 /* configure for 16 bits, 2 channels, 8 kHz */
1330 if (runtime->channels > 2)
1331 set_dac_channels(cm, rec, 2);
1332 spin_lock_irq(&cm->reg_lock);
1333 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1334 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1335 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1336 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1337 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1338 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1339 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1340 if (cm->chip_version == 68) {
1341 val &= ~(CM_CH0_SRATE_88K << (rec->ch * 2));
1342 val &= ~(CM_CH0_SRATE_96K << (rec->ch * 2));
1344 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1346 /* start stream (we don't need interrupts) */
1347 cm->ctrl |= CM_CHEN0 << rec->ch;
1348 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1349 spin_unlock_irq(&cm->reg_lock);
1351 msleep(1);
1353 /* stop and reset stream */
1354 spin_lock_irq(&cm->reg_lock);
1355 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1356 val = CM_RST_CH0 << rec->ch;
1357 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1358 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1359 spin_unlock_irq(&cm->reg_lock);
1361 rec->needs_silencing = 0;
1365 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1367 struct cmipci *cm = snd_pcm_substream_chip(substream);
1368 setup_spdif_playback(cm, substream, 0, 0);
1369 restore_mixer_state(cm);
1370 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1371 return snd_cmipci_hw_free(substream);
1374 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1376 struct cmipci *cm = snd_pcm_substream_chip(substream);
1377 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1378 return snd_cmipci_hw_free(substream);
1381 /* capture */
1382 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1384 struct cmipci *cm = snd_pcm_substream_chip(substream);
1385 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1388 /* capture with spdif (via device #2) */
1389 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1391 struct cmipci *cm = snd_pcm_substream_chip(substream);
1393 spin_lock_irq(&cm->reg_lock);
1394 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1395 spin_unlock_irq(&cm->reg_lock);
1397 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1402 struct cmipci *cm = snd_pcm_substream_chip(subs);
1404 spin_lock_irq(&cm->reg_lock);
1405 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406 spin_unlock_irq(&cm->reg_lock);
1408 return snd_cmipci_hw_free(subs);
1413 * interrupt handler
1415 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417 struct cmipci *cm = dev_id;
1418 unsigned int status, mask = 0;
1420 /* fastpath out, to ease interrupt sharing */
1421 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1422 if (!(status & CM_INTR))
1423 return IRQ_NONE;
1425 /* acknowledge interrupt */
1426 spin_lock(&cm->reg_lock);
1427 if (status & CM_CHINT0)
1428 mask |= CM_CH0_INT_EN;
1429 if (status & CM_CHINT1)
1430 mask |= CM_CH1_INT_EN;
1431 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1432 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1433 spin_unlock(&cm->reg_lock);
1435 if (cm->rmidi && (status & CM_UARTINT))
1436 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1438 if (cm->pcm) {
1439 if ((status & CM_CHINT0) && cm->channel[0].running)
1440 snd_pcm_period_elapsed(cm->channel[0].substream);
1441 if ((status & CM_CHINT1) && cm->channel[1].running)
1442 snd_pcm_period_elapsed(cm->channel[1].substream);
1444 return IRQ_HANDLED;
1448 * h/w infos
1451 /* playback on channel A */
1452 static struct snd_pcm_hardware snd_cmipci_playback =
1454 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1455 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1456 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1457 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1458 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1459 .rate_min = 5512,
1460 .rate_max = 48000,
1461 .channels_min = 1,
1462 .channels_max = 2,
1463 .buffer_bytes_max = (128*1024),
1464 .period_bytes_min = 64,
1465 .period_bytes_max = (128*1024),
1466 .periods_min = 2,
1467 .periods_max = 1024,
1468 .fifo_size = 0,
1471 /* capture on channel B */
1472 static struct snd_pcm_hardware snd_cmipci_capture =
1474 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1475 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1476 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1477 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1478 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1479 .rate_min = 5512,
1480 .rate_max = 48000,
1481 .channels_min = 1,
1482 .channels_max = 2,
1483 .buffer_bytes_max = (128*1024),
1484 .period_bytes_min = 64,
1485 .period_bytes_max = (128*1024),
1486 .periods_min = 2,
1487 .periods_max = 1024,
1488 .fifo_size = 0,
1491 /* playback on channel B - stereo 16bit only? */
1492 static struct snd_pcm_hardware snd_cmipci_playback2 =
1494 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1495 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1496 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1497 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1498 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1499 .rate_min = 5512,
1500 .rate_max = 48000,
1501 .channels_min = 2,
1502 .channels_max = 2,
1503 .buffer_bytes_max = (128*1024),
1504 .period_bytes_min = 64,
1505 .period_bytes_max = (128*1024),
1506 .periods_min = 2,
1507 .periods_max = 1024,
1508 .fifo_size = 0,
1511 /* spdif playback on channel A */
1512 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1515 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1516 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1517 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1518 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1519 .rate_min = 44100,
1520 .rate_max = 48000,
1521 .channels_min = 2,
1522 .channels_max = 2,
1523 .buffer_bytes_max = (128*1024),
1524 .period_bytes_min = 64,
1525 .period_bytes_max = (128*1024),
1526 .periods_min = 2,
1527 .periods_max = 1024,
1528 .fifo_size = 0,
1531 /* spdif playback on channel A (32bit, IEC958 subframes) */
1532 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1535 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1536 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1537 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1538 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1539 .rate_min = 44100,
1540 .rate_max = 48000,
1541 .channels_min = 2,
1542 .channels_max = 2,
1543 .buffer_bytes_max = (128*1024),
1544 .period_bytes_min = 64,
1545 .period_bytes_max = (128*1024),
1546 .periods_min = 2,
1547 .periods_max = 1024,
1548 .fifo_size = 0,
1551 /* spdif capture on channel B */
1552 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1555 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1556 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1557 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1558 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1559 .rate_min = 44100,
1560 .rate_max = 48000,
1561 .channels_min = 2,
1562 .channels_max = 2,
1563 .buffer_bytes_max = (128*1024),
1564 .period_bytes_min = 64,
1565 .period_bytes_max = (128*1024),
1566 .periods_min = 2,
1567 .periods_max = 1024,
1568 .fifo_size = 0,
1572 * check device open/close
1574 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1576 int ch = mode & CM_OPEN_CH_MASK;
1578 /* FIXME: a file should wait until the device becomes free
1579 * when it's opened on blocking mode. however, since the current
1580 * pcm framework doesn't pass file pointer before actually opened,
1581 * we can't know whether blocking mode or not in open callback..
1583 mutex_lock(&cm->open_mutex);
1584 if (cm->opened[ch]) {
1585 mutex_unlock(&cm->open_mutex);
1586 return -EBUSY;
1588 cm->opened[ch] = mode;
1589 cm->channel[ch].substream = subs;
1590 if (! (mode & CM_OPEN_DAC)) {
1591 /* disable dual DAC mode */
1592 cm->channel[ch].is_dac = 0;
1593 spin_lock_irq(&cm->reg_lock);
1594 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1595 spin_unlock_irq(&cm->reg_lock);
1597 mutex_unlock(&cm->open_mutex);
1598 return 0;
1601 static void close_device_check(struct cmipci *cm, int mode)
1603 int ch = mode & CM_OPEN_CH_MASK;
1605 mutex_lock(&cm->open_mutex);
1606 if (cm->opened[ch] == mode) {
1607 if (cm->channel[ch].substream) {
1608 snd_cmipci_ch_reset(cm, ch);
1609 cm->channel[ch].running = 0;
1610 cm->channel[ch].substream = NULL;
1612 cm->opened[ch] = 0;
1613 if (! cm->channel[ch].is_dac) {
1614 /* enable dual DAC mode again */
1615 cm->channel[ch].is_dac = 1;
1616 spin_lock_irq(&cm->reg_lock);
1617 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1618 spin_unlock_irq(&cm->reg_lock);
1621 mutex_unlock(&cm->open_mutex);
1627 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1629 struct cmipci *cm = snd_pcm_substream_chip(substream);
1630 struct snd_pcm_runtime *runtime = substream->runtime;
1631 int err;
1633 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1634 return err;
1635 runtime->hw = snd_cmipci_playback;
1636 if (cm->chip_version == 68) {
1637 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1638 SNDRV_PCM_RATE_96000;
1639 runtime->hw.rate_max = 96000;
1641 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1642 cm->dig_pcm_status = cm->dig_status;
1643 return 0;
1646 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1648 struct cmipci *cm = snd_pcm_substream_chip(substream);
1649 struct snd_pcm_runtime *runtime = substream->runtime;
1650 int err;
1652 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1653 return err;
1654 runtime->hw = snd_cmipci_capture;
1655 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1656 runtime->hw.rate_min = 41000;
1657 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1659 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1660 return 0;
1663 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1665 struct cmipci *cm = snd_pcm_substream_chip(substream);
1666 struct snd_pcm_runtime *runtime = substream->runtime;
1667 int err;
1669 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1670 return err;
1671 runtime->hw = snd_cmipci_playback2;
1672 mutex_lock(&cm->open_mutex);
1673 if (! cm->opened[CM_CH_PLAY]) {
1674 if (cm->can_multi_ch) {
1675 runtime->hw.channels_max = cm->max_channels;
1676 if (cm->max_channels == 4)
1677 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1678 else if (cm->max_channels == 6)
1679 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1680 else if (cm->max_channels == 8)
1681 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1684 mutex_unlock(&cm->open_mutex);
1685 if (cm->chip_version == 68) {
1686 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1687 SNDRV_PCM_RATE_96000;
1688 runtime->hw.rate_max = 96000;
1690 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1691 return 0;
1694 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1696 struct cmipci *cm = snd_pcm_substream_chip(substream);
1697 struct snd_pcm_runtime *runtime = substream->runtime;
1698 int err;
1700 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1701 return err;
1702 if (cm->can_ac3_hw) {
1703 runtime->hw = snd_cmipci_playback_spdif;
1704 if (cm->chip_version >= 37) {
1705 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1706 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1708 if (cm->chip_version == 68) {
1709 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1710 SNDRV_PCM_RATE_96000;
1711 runtime->hw.rate_max = 96000;
1713 } else {
1714 runtime->hw = snd_cmipci_playback_iec958_subframe;
1716 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1717 cm->dig_pcm_status = cm->dig_status;
1718 return 0;
1721 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1723 struct cmipci *cm = snd_pcm_substream_chip(substream);
1724 struct snd_pcm_runtime *runtime = substream->runtime;
1725 int err;
1727 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1728 return err;
1729 runtime->hw = snd_cmipci_capture_spdif;
1730 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1731 return 0;
1738 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1740 struct cmipci *cm = snd_pcm_substream_chip(substream);
1741 close_device_check(cm, CM_OPEN_PLAYBACK);
1742 return 0;
1745 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1747 struct cmipci *cm = snd_pcm_substream_chip(substream);
1748 close_device_check(cm, CM_OPEN_CAPTURE);
1749 return 0;
1752 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1754 struct cmipci *cm = snd_pcm_substream_chip(substream);
1755 close_device_check(cm, CM_OPEN_PLAYBACK2);
1756 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1757 return 0;
1760 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1762 struct cmipci *cm = snd_pcm_substream_chip(substream);
1763 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1764 return 0;
1767 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1769 struct cmipci *cm = snd_pcm_substream_chip(substream);
1770 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1771 return 0;
1778 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1779 .open = snd_cmipci_playback_open,
1780 .close = snd_cmipci_playback_close,
1781 .ioctl = snd_pcm_lib_ioctl,
1782 .hw_params = snd_cmipci_hw_params,
1783 .hw_free = snd_cmipci_playback_hw_free,
1784 .prepare = snd_cmipci_playback_prepare,
1785 .trigger = snd_cmipci_playback_trigger,
1786 .pointer = snd_cmipci_playback_pointer,
1789 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1790 .open = snd_cmipci_capture_open,
1791 .close = snd_cmipci_capture_close,
1792 .ioctl = snd_pcm_lib_ioctl,
1793 .hw_params = snd_cmipci_hw_params,
1794 .hw_free = snd_cmipci_hw_free,
1795 .prepare = snd_cmipci_capture_prepare,
1796 .trigger = snd_cmipci_capture_trigger,
1797 .pointer = snd_cmipci_capture_pointer,
1800 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1801 .open = snd_cmipci_playback2_open,
1802 .close = snd_cmipci_playback2_close,
1803 .ioctl = snd_pcm_lib_ioctl,
1804 .hw_params = snd_cmipci_playback2_hw_params,
1805 .hw_free = snd_cmipci_playback2_hw_free,
1806 .prepare = snd_cmipci_capture_prepare, /* channel B */
1807 .trigger = snd_cmipci_capture_trigger, /* channel B */
1808 .pointer = snd_cmipci_capture_pointer, /* channel B */
1811 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1812 .open = snd_cmipci_playback_spdif_open,
1813 .close = snd_cmipci_playback_spdif_close,
1814 .ioctl = snd_pcm_lib_ioctl,
1815 .hw_params = snd_cmipci_hw_params,
1816 .hw_free = snd_cmipci_playback_hw_free,
1817 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1818 .trigger = snd_cmipci_playback_trigger,
1819 .pointer = snd_cmipci_playback_pointer,
1822 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1823 .open = snd_cmipci_capture_spdif_open,
1824 .close = snd_cmipci_capture_spdif_close,
1825 .ioctl = snd_pcm_lib_ioctl,
1826 .hw_params = snd_cmipci_hw_params,
1827 .hw_free = snd_cmipci_capture_spdif_hw_free,
1828 .prepare = snd_cmipci_capture_spdif_prepare,
1829 .trigger = snd_cmipci_capture_trigger,
1830 .pointer = snd_cmipci_capture_pointer,
1837 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1839 struct snd_pcm *pcm;
1840 int err;
1842 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1843 if (err < 0)
1844 return err;
1846 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1847 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1849 pcm->private_data = cm;
1850 pcm->info_flags = 0;
1851 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1852 cm->pcm = pcm;
1854 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1855 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1857 return 0;
1860 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1862 struct snd_pcm *pcm;
1863 int err;
1865 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1866 if (err < 0)
1867 return err;
1869 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1871 pcm->private_data = cm;
1872 pcm->info_flags = 0;
1873 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1874 cm->pcm2 = pcm;
1876 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1877 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1879 return 0;
1882 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1884 struct snd_pcm *pcm;
1885 int err;
1887 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1888 if (err < 0)
1889 return err;
1891 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1892 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1894 pcm->private_data = cm;
1895 pcm->info_flags = 0;
1896 strcpy(pcm->name, "C-Media PCI IEC958");
1897 cm->pcm_spdif = pcm;
1899 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1900 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1902 return 0;
1906 * mixer interface:
1907 * - CM8338/8738 has a compatible mixer interface with SB16, but
1908 * lack of some elements like tone control, i/o gain and AGC.
1909 * - Access to native registers:
1910 * - A 3D switch
1911 * - Output mute switches
1914 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1916 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1917 outb(data, s->iobase + CM_REG_SB16_DATA);
1920 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1922 unsigned char v;
1924 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1925 v = inb(s->iobase + CM_REG_SB16_DATA);
1926 return v;
1930 * general mixer element
1932 struct cmipci_sb_reg {
1933 unsigned int left_reg, right_reg;
1934 unsigned int left_shift, right_shift;
1935 unsigned int mask;
1936 unsigned int invert: 1;
1937 unsigned int stereo: 1;
1940 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1941 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1943 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1944 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1945 .info = snd_cmipci_info_volume, \
1946 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1947 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1950 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1951 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1952 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1953 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1955 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1957 r->left_reg = val & 0xff;
1958 r->right_reg = (val >> 8) & 0xff;
1959 r->left_shift = (val >> 16) & 0x07;
1960 r->right_shift = (val >> 19) & 0x07;
1961 r->invert = (val >> 22) & 1;
1962 r->stereo = (val >> 23) & 1;
1963 r->mask = (val >> 24) & 0xff;
1966 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1967 struct snd_ctl_elem_info *uinfo)
1969 struct cmipci_sb_reg reg;
1971 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1972 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1973 uinfo->count = reg.stereo + 1;
1974 uinfo->value.integer.min = 0;
1975 uinfo->value.integer.max = reg.mask;
1976 return 0;
1979 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1980 struct snd_ctl_elem_value *ucontrol)
1982 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1983 struct cmipci_sb_reg reg;
1984 int val;
1986 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1987 spin_lock_irq(&cm->reg_lock);
1988 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1989 if (reg.invert)
1990 val = reg.mask - val;
1991 ucontrol->value.integer.value[0] = val;
1992 if (reg.stereo) {
1993 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1994 if (reg.invert)
1995 val = reg.mask - val;
1996 ucontrol->value.integer.value[1] = val;
1998 spin_unlock_irq(&cm->reg_lock);
1999 return 0;
2002 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2003 struct snd_ctl_elem_value *ucontrol)
2005 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2006 struct cmipci_sb_reg reg;
2007 int change;
2008 int left, right, oleft, oright;
2010 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2011 left = ucontrol->value.integer.value[0] & reg.mask;
2012 if (reg.invert)
2013 left = reg.mask - left;
2014 left <<= reg.left_shift;
2015 if (reg.stereo) {
2016 right = ucontrol->value.integer.value[1] & reg.mask;
2017 if (reg.invert)
2018 right = reg.mask - right;
2019 right <<= reg.right_shift;
2020 } else
2021 right = 0;
2022 spin_lock_irq(&cm->reg_lock);
2023 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2024 left |= oleft & ~(reg.mask << reg.left_shift);
2025 change = left != oleft;
2026 if (reg.stereo) {
2027 if (reg.left_reg != reg.right_reg) {
2028 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2029 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2030 } else
2031 oright = left;
2032 right |= oright & ~(reg.mask << reg.right_shift);
2033 change |= right != oright;
2034 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2035 } else
2036 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2037 spin_unlock_irq(&cm->reg_lock);
2038 return change;
2042 * input route (left,right) -> (left,right)
2044 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2045 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2046 .info = snd_cmipci_info_input_sw, \
2047 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2048 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2051 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2052 struct snd_ctl_elem_info *uinfo)
2054 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2055 uinfo->count = 4;
2056 uinfo->value.integer.min = 0;
2057 uinfo->value.integer.max = 1;
2058 return 0;
2061 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2062 struct snd_ctl_elem_value *ucontrol)
2064 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2065 struct cmipci_sb_reg reg;
2066 int val1, val2;
2068 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2069 spin_lock_irq(&cm->reg_lock);
2070 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2071 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2072 spin_unlock_irq(&cm->reg_lock);
2073 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2074 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2075 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2076 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2077 return 0;
2080 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2081 struct snd_ctl_elem_value *ucontrol)
2083 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2084 struct cmipci_sb_reg reg;
2085 int change;
2086 int val1, val2, oval1, oval2;
2088 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2089 spin_lock_irq(&cm->reg_lock);
2090 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2091 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2092 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2093 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2094 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2095 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2096 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2097 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2098 change = val1 != oval1 || val2 != oval2;
2099 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2100 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2101 spin_unlock_irq(&cm->reg_lock);
2102 return change;
2106 * native mixer switches/volumes
2109 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2110 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2111 .info = snd_cmipci_info_native_mixer, \
2112 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2113 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2116 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2117 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2118 .info = snd_cmipci_info_native_mixer, \
2119 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2120 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2123 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2124 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2125 .info = snd_cmipci_info_native_mixer, \
2126 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2127 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2130 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2131 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2132 .info = snd_cmipci_info_native_mixer, \
2133 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2134 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2137 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2138 struct snd_ctl_elem_info *uinfo)
2140 struct cmipci_sb_reg reg;
2142 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2143 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2144 uinfo->count = reg.stereo + 1;
2145 uinfo->value.integer.min = 0;
2146 uinfo->value.integer.max = reg.mask;
2147 return 0;
2151 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2152 struct snd_ctl_elem_value *ucontrol)
2154 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2155 struct cmipci_sb_reg reg;
2156 unsigned char oreg, val;
2158 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2159 spin_lock_irq(&cm->reg_lock);
2160 oreg = inb(cm->iobase + reg.left_reg);
2161 val = (oreg >> reg.left_shift) & reg.mask;
2162 if (reg.invert)
2163 val = reg.mask - val;
2164 ucontrol->value.integer.value[0] = val;
2165 if (reg.stereo) {
2166 val = (oreg >> reg.right_shift) & reg.mask;
2167 if (reg.invert)
2168 val = reg.mask - val;
2169 ucontrol->value.integer.value[1] = val;
2171 spin_unlock_irq(&cm->reg_lock);
2172 return 0;
2175 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2176 struct snd_ctl_elem_value *ucontrol)
2178 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2179 struct cmipci_sb_reg reg;
2180 unsigned char oreg, nreg, val;
2182 cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2183 spin_lock_irq(&cm->reg_lock);
2184 oreg = inb(cm->iobase + reg.left_reg);
2185 val = ucontrol->value.integer.value[0] & reg.mask;
2186 if (reg.invert)
2187 val = reg.mask - val;
2188 nreg = oreg & ~(reg.mask << reg.left_shift);
2189 nreg |= (val << reg.left_shift);
2190 if (reg.stereo) {
2191 val = ucontrol->value.integer.value[1] & reg.mask;
2192 if (reg.invert)
2193 val = reg.mask - val;
2194 nreg &= ~(reg.mask << reg.right_shift);
2195 nreg |= (val << reg.right_shift);
2197 outb(nreg, cm->iobase + reg.left_reg);
2198 spin_unlock_irq(&cm->reg_lock);
2199 return (nreg != oreg);
2203 * special case - check mixer sensitivity
2205 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2206 struct snd_ctl_elem_value *ucontrol)
2208 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2209 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2212 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2213 struct snd_ctl_elem_value *ucontrol)
2215 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2216 if (cm->mixer_insensitive) {
2217 /* ignored */
2218 return 0;
2220 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2224 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2225 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2226 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2227 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2228 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2229 { /* switch with sensitivity */
2230 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2231 .name = "PCM Playback Switch",
2232 .info = snd_cmipci_info_native_mixer,
2233 .get = snd_cmipci_get_native_mixer_sensitive,
2234 .put = snd_cmipci_put_native_mixer_sensitive,
2235 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2237 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2238 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2239 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2240 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2241 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2242 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2243 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2244 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2245 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2246 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2247 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2248 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2249 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2250 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2251 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2252 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2253 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2254 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2255 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2256 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2257 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2258 CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2259 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2263 * other switches
2266 struct cmipci_switch_args {
2267 int reg; /* register index */
2268 unsigned int mask; /* mask bits */
2269 unsigned int mask_on; /* mask bits to turn on */
2270 unsigned int is_byte: 1; /* byte access? */
2271 unsigned int ac3_sensitive: 1; /* access forbidden during
2272 * non-audio operation?
2276 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2278 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2279 struct snd_ctl_elem_value *ucontrol,
2280 struct cmipci_switch_args *args)
2282 unsigned int val;
2283 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2285 spin_lock_irq(&cm->reg_lock);
2286 if (args->ac3_sensitive && cm->mixer_insensitive) {
2287 ucontrol->value.integer.value[0] = 0;
2288 spin_unlock_irq(&cm->reg_lock);
2289 return 0;
2291 if (args->is_byte)
2292 val = inb(cm->iobase + args->reg);
2293 else
2294 val = snd_cmipci_read(cm, args->reg);
2295 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2296 spin_unlock_irq(&cm->reg_lock);
2297 return 0;
2300 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2301 struct snd_ctl_elem_value *ucontrol)
2303 struct cmipci_switch_args *args;
2304 args = (struct cmipci_switch_args *)kcontrol->private_value;
2305 snd_assert(args != NULL, return -EINVAL);
2306 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2309 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2310 struct snd_ctl_elem_value *ucontrol,
2311 struct cmipci_switch_args *args)
2313 unsigned int val;
2314 int change;
2315 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2317 spin_lock_irq(&cm->reg_lock);
2318 if (args->ac3_sensitive && cm->mixer_insensitive) {
2319 /* ignored */
2320 spin_unlock_irq(&cm->reg_lock);
2321 return 0;
2323 if (args->is_byte)
2324 val = inb(cm->iobase + args->reg);
2325 else
2326 val = snd_cmipci_read(cm, args->reg);
2327 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2328 args->mask_on : (args->mask & ~args->mask_on));
2329 if (change) {
2330 val &= ~args->mask;
2331 if (ucontrol->value.integer.value[0])
2332 val |= args->mask_on;
2333 else
2334 val |= (args->mask & ~args->mask_on);
2335 if (args->is_byte)
2336 outb((unsigned char)val, cm->iobase + args->reg);
2337 else
2338 snd_cmipci_write(cm, args->reg, val);
2340 spin_unlock_irq(&cm->reg_lock);
2341 return change;
2344 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2345 struct snd_ctl_elem_value *ucontrol)
2347 struct cmipci_switch_args *args;
2348 args = (struct cmipci_switch_args *)kcontrol->private_value;
2349 snd_assert(args != NULL, return -EINVAL);
2350 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2353 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2354 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2355 .reg = xreg, \
2356 .mask = xmask, \
2357 .mask_on = xmask_on, \
2358 .is_byte = xis_byte, \
2359 .ac3_sensitive = xac3, \
2362 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2363 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2365 #if 0 /* these will be controlled in pcm device */
2366 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2367 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2368 #endif
2369 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2370 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2371 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2372 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2373 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2374 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2375 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2376 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2377 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2378 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2379 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2380 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2381 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2382 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2383 #if CM_CH_PLAY == 1
2384 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2385 #else
2386 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2387 #endif
2388 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2389 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2390 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2391 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2392 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2394 #define DEFINE_SWITCH(sname, stype, sarg) \
2395 { .name = sname, \
2396 .iface = stype, \
2397 .info = snd_cmipci_uswitch_info, \
2398 .get = snd_cmipci_uswitch_get, \
2399 .put = snd_cmipci_uswitch_put, \
2400 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2403 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2404 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2408 * callbacks for spdif output switch
2409 * needs toggle two registers..
2411 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2412 struct snd_ctl_elem_value *ucontrol)
2414 int changed;
2415 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2416 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2417 return changed;
2420 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2421 struct snd_ctl_elem_value *ucontrol)
2423 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2424 int changed;
2425 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2426 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2427 if (changed) {
2428 if (ucontrol->value.integer.value[0]) {
2429 if (chip->spdif_playback_avail)
2430 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2431 } else {
2432 if (chip->spdif_playback_avail)
2433 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2436 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2437 return changed;
2441 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2442 struct snd_ctl_elem_info *uinfo)
2444 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2445 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2446 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2447 uinfo->count = 1;
2448 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2449 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2450 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2451 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2452 return 0;
2455 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2457 unsigned int val;
2458 if (cm->chip_version >= 39) {
2459 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2460 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2461 return 2;
2463 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2464 if (val & CM_REAR2LIN)
2465 return 1;
2466 return 0;
2469 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2470 struct snd_ctl_elem_value *ucontrol)
2472 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2474 spin_lock_irq(&cm->reg_lock);
2475 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2476 spin_unlock_irq(&cm->reg_lock);
2477 return 0;
2480 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2481 struct snd_ctl_elem_value *ucontrol)
2483 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2484 int change;
2486 spin_lock_irq(&cm->reg_lock);
2487 if (ucontrol->value.enumerated.item[0] == 2)
2488 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2489 else
2490 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2491 if (ucontrol->value.enumerated.item[0] == 1)
2492 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2493 else
2494 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2495 spin_unlock_irq(&cm->reg_lock);
2496 return change;
2499 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2500 struct snd_ctl_elem_info *uinfo)
2502 static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2503 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2504 uinfo->count = 1;
2505 uinfo->value.enumerated.items = 2;
2506 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2507 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2508 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2509 return 0;
2512 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2513 struct snd_ctl_elem_value *ucontrol)
2515 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516 /* same bit as spdi_phase */
2517 spin_lock_irq(&cm->reg_lock);
2518 ucontrol->value.enumerated.item[0] =
2519 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2520 spin_unlock_irq(&cm->reg_lock);
2521 return 0;
2524 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2525 struct snd_ctl_elem_value *ucontrol)
2527 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2528 int change;
2530 spin_lock_irq(&cm->reg_lock);
2531 if (ucontrol->value.enumerated.item[0])
2532 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2533 else
2534 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2535 spin_unlock_irq(&cm->reg_lock);
2536 return change;
2539 /* both for CM8338/8738 */
2540 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2541 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2543 .name = "Line-In Mode",
2544 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2545 .info = snd_cmipci_line_in_mode_info,
2546 .get = snd_cmipci_line_in_mode_get,
2547 .put = snd_cmipci_line_in_mode_put,
2551 /* for non-multichannel chips */
2552 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2553 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2555 /* only for CM8738 */
2556 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2557 #if 0 /* controlled in pcm device */
2558 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2559 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2560 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2561 #endif
2562 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2563 { .name = "IEC958 Output Switch",
2564 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2565 .info = snd_cmipci_uswitch_info,
2566 .get = snd_cmipci_spdout_enable_get,
2567 .put = snd_cmipci_spdout_enable_put,
2569 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2570 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2571 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2572 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2573 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2574 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2577 /* only for model 033/037 */
2578 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2579 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2580 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2581 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2584 /* only for model 039 or later */
2585 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2586 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2587 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2589 .name = "Mic-In Mode",
2590 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2591 .info = snd_cmipci_mic_in_mode_info,
2592 .get = snd_cmipci_mic_in_mode_get,
2593 .put = snd_cmipci_mic_in_mode_put,
2597 /* card control switches */
2598 static struct snd_kcontrol_new snd_cmipci_control_switches[] __devinitdata = {
2599 // DEFINE_CARD_SWITCH("Joystick", joystick), /* now module option */
2600 DEFINE_CARD_SWITCH("Modem", modem),
2604 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2606 struct snd_card *card;
2607 struct snd_kcontrol_new *sw;
2608 struct snd_kcontrol *kctl;
2609 unsigned int idx;
2610 int err;
2612 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL);
2614 card = cm->card;
2616 strcpy(card->mixername, "CMedia PCI");
2618 spin_lock_irq(&cm->reg_lock);
2619 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */
2620 spin_unlock_irq(&cm->reg_lock);
2622 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2623 if (cm->chip_version == 68) { // 8768 has no PCM volume
2624 if (!strcmp(snd_cmipci_mixers[idx].name,
2625 "PCM Playback Volume"))
2626 continue;
2628 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2629 return err;
2632 /* mixer switches */
2633 sw = snd_cmipci_mixer_switches;
2634 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2635 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2636 if (err < 0)
2637 return err;
2639 if (! cm->can_multi_ch) {
2640 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2641 if (err < 0)
2642 return err;
2644 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2645 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2646 sw = snd_cmipci_8738_mixer_switches;
2647 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2648 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2649 if (err < 0)
2650 return err;
2652 if (cm->can_ac3_hw) {
2653 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2654 return err;
2655 kctl->id.device = pcm_spdif_device;
2656 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2657 return err;
2658 kctl->id.device = pcm_spdif_device;
2659 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2660 return err;
2661 kctl->id.device = pcm_spdif_device;
2663 if (cm->chip_version <= 37) {
2664 sw = snd_cmipci_old_mixer_switches;
2665 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2666 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2667 if (err < 0)
2668 return err;
2672 if (cm->chip_version >= 39) {
2673 sw = snd_cmipci_extra_mixer_switches;
2674 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2675 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2676 if (err < 0)
2677 return err;
2681 /* card switches */
2682 sw = snd_cmipci_control_switches;
2683 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_control_switches); idx++, sw++) {
2684 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2685 if (err < 0)
2686 return err;
2689 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2690 struct snd_ctl_elem_id id;
2691 struct snd_kcontrol *ctl;
2692 memset(&id, 0, sizeof(id));
2693 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2694 strcpy(id.name, cm_saved_mixer[idx].name);
2695 if ((ctl = snd_ctl_find_id(cm->card, &id)) != NULL)
2696 cm->mixer_res_ctl[idx] = ctl;
2699 return 0;
2704 * proc interface
2707 #ifdef CONFIG_PROC_FS
2708 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2709 struct snd_info_buffer *buffer)
2711 struct cmipci *cm = entry->private_data;
2712 int i, v;
2714 snd_iprintf(buffer, "%s\n", cm->card->longname);
2715 for (i = 0; i < 0x94; i++) {
2716 if (i == 0x28)
2717 i = 0x90;
2718 v = inb(cm->iobase + i);
2719 if (i % 4 == 0)
2720 snd_iprintf(buffer, "\n%02x:", i);
2721 snd_iprintf(buffer, " %02x", v);
2723 snd_iprintf(buffer, "\n");
2726 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2728 struct snd_info_entry *entry;
2730 if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2731 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2733 #else /* !CONFIG_PROC_FS */
2734 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2735 #endif
2738 static struct pci_device_id snd_cmipci_ids[] = {
2739 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2740 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2741 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2742 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2743 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2744 {0,},
2749 * check chip version and capabilities
2750 * driver name is modified according to the chip model
2752 static void __devinit query_chip(struct cmipci *cm)
2754 unsigned int detect;
2756 /* check reg 0Ch, bit 24-31 */
2757 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2758 if (! detect) {
2759 /* check reg 08h, bit 24-28 */
2760 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2761 switch (detect) {
2762 case 0:
2763 cm->chip_version = 33;
2764 if (cm->do_soft_ac3)
2765 cm->can_ac3_sw = 1;
2766 else
2767 cm->can_ac3_hw = 1;
2768 break;
2769 case CM_CHIP_037:
2770 cm->chip_version = 37;
2771 cm->can_ac3_hw = 1;
2772 break;
2773 default:
2774 cm->chip_version = 39;
2775 cm->can_ac3_hw = 1;
2776 break;
2778 cm->max_channels = 2;
2779 } else {
2780 if (detect & CM_CHIP_039) {
2781 cm->chip_version = 39;
2782 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2783 cm->max_channels = 6;
2784 else
2785 cm->max_channels = 4;
2786 } else if (detect & CM_CHIP_8768) {
2787 cm->chip_version = 68;
2788 cm->max_channels = 8;
2789 } else {
2790 cm->chip_version = 55;
2791 cm->max_channels = 6;
2793 cm->can_ac3_hw = 1;
2794 cm->can_multi_ch = 1;
2798 #ifdef SUPPORT_JOYSTICK
2799 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2801 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2802 struct gameport *gp;
2803 struct resource *r = NULL;
2804 int i, io_port = 0;
2806 if (joystick_port[dev] == 0)
2807 return -ENODEV;
2809 if (joystick_port[dev] == 1) { /* auto-detect */
2810 for (i = 0; ports[i]; i++) {
2811 io_port = ports[i];
2812 r = request_region(io_port, 1, "CMIPCI gameport");
2813 if (r)
2814 break;
2816 } else {
2817 io_port = joystick_port[dev];
2818 r = request_region(io_port, 1, "CMIPCI gameport");
2821 if (!r) {
2822 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2823 return -EBUSY;
2826 cm->gameport = gp = gameport_allocate_port();
2827 if (!gp) {
2828 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2829 release_and_free_resource(r);
2830 return -ENOMEM;
2832 gameport_set_name(gp, "C-Media Gameport");
2833 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2834 gameport_set_dev_parent(gp, &cm->pci->dev);
2835 gp->io = io_port;
2836 gameport_set_port_data(gp, r);
2838 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2840 gameport_register_port(cm->gameport);
2842 return 0;
2845 static void snd_cmipci_free_gameport(struct cmipci *cm)
2847 if (cm->gameport) {
2848 struct resource *r = gameport_get_port_data(cm->gameport);
2850 gameport_unregister_port(cm->gameport);
2851 cm->gameport = NULL;
2853 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2854 release_and_free_resource(r);
2857 #else
2858 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2859 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2860 #endif
2862 static int snd_cmipci_free(struct cmipci *cm)
2864 if (cm->irq >= 0) {
2865 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2866 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2867 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
2868 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2869 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2870 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2871 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2873 /* reset mixer */
2874 snd_cmipci_mixer_write(cm, 0, 0);
2876 synchronize_irq(cm->irq);
2878 free_irq(cm->irq, cm);
2881 snd_cmipci_free_gameport(cm);
2882 pci_release_regions(cm->pci);
2883 pci_disable_device(cm->pci);
2884 kfree(cm);
2885 return 0;
2888 static int snd_cmipci_dev_free(struct snd_device *device)
2890 struct cmipci *cm = device->device_data;
2891 return snd_cmipci_free(cm);
2894 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2896 long iosynth;
2897 unsigned int val;
2898 struct snd_opl3 *opl3;
2899 int err;
2901 if (!fm_port)
2902 goto disable_fm;
2904 if (cm->chip_version >= 39) {
2905 /* first try FM regs in PCI port range */
2906 iosynth = cm->iobase + CM_REG_FM_PCI;
2907 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2908 OPL3_HW_OPL3, 1, &opl3);
2909 } else {
2910 err = -EIO;
2912 if (err < 0) {
2913 /* then try legacy ports */
2914 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2915 iosynth = fm_port;
2916 switch (iosynth) {
2917 case 0x3E8: val |= CM_FMSEL_3E8; break;
2918 case 0x3E0: val |= CM_FMSEL_3E0; break;
2919 case 0x3C8: val |= CM_FMSEL_3C8; break;
2920 case 0x388: val |= CM_FMSEL_388; break;
2921 default:
2922 goto disable_fm;
2924 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2925 /* enable FM */
2926 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2928 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2929 OPL3_HW_OPL3, 0, &opl3) < 0) {
2930 printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2931 "skipping...\n", iosynth);
2932 goto disable_fm;
2935 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2936 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2937 return err;
2939 return 0;
2941 disable_fm:
2942 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2943 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2944 return 0;
2947 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2948 int dev, struct cmipci **rcmipci)
2950 struct cmipci *cm;
2951 int err;
2952 static struct snd_device_ops ops = {
2953 .dev_free = snd_cmipci_dev_free,
2955 unsigned int val;
2956 long iomidi;
2957 int integrated_midi = 0;
2958 char modelstr[16];
2959 int pcm_index, pcm_spdif_index;
2960 static struct pci_device_id intel_82437vx[] = {
2961 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2962 { },
2965 *rcmipci = NULL;
2967 if ((err = pci_enable_device(pci)) < 0)
2968 return err;
2970 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2971 if (cm == NULL) {
2972 pci_disable_device(pci);
2973 return -ENOMEM;
2976 spin_lock_init(&cm->reg_lock);
2977 mutex_init(&cm->open_mutex);
2978 cm->device = pci->device;
2979 cm->card = card;
2980 cm->pci = pci;
2981 cm->irq = -1;
2982 cm->channel[0].ch = 0;
2983 cm->channel[1].ch = 1;
2984 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2986 if ((err = pci_request_regions(pci, card->driver)) < 0) {
2987 kfree(cm);
2988 pci_disable_device(pci);
2989 return err;
2991 cm->iobase = pci_resource_start(pci, 0);
2993 if (request_irq(pci->irq, snd_cmipci_interrupt,
2994 IRQF_SHARED, card->driver, cm)) {
2995 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2996 snd_cmipci_free(cm);
2997 return -EBUSY;
2999 cm->irq = pci->irq;
3001 pci_set_master(cm->pci);
3004 * check chip version, max channels and capabilities
3007 cm->chip_version = 0;
3008 cm->max_channels = 2;
3009 cm->do_soft_ac3 = soft_ac3[dev];
3011 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3012 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3013 query_chip(cm);
3014 /* added -MCx suffix for chip supporting multi-channels */
3015 if (cm->can_multi_ch)
3016 sprintf(cm->card->driver + strlen(cm->card->driver),
3017 "-MC%d", cm->max_channels);
3018 else if (cm->can_ac3_sw)
3019 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3021 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3022 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3024 #if CM_CH_PLAY == 1
3025 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3026 #else
3027 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3028 #endif
3030 /* initialize codec registers */
3031 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3032 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3033 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */
3034 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3035 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3036 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
3037 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3039 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3040 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3041 #if CM_CH_PLAY == 1
3042 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3043 #else
3044 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3045 #endif
3046 if (cm->chip_version) {
3047 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3048 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3050 /* Set Bus Master Request */
3051 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3053 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3054 switch (pci->device) {
3055 case PCI_DEVICE_ID_CMEDIA_CM8738:
3056 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3057 if (!pci_dev_present(intel_82437vx))
3058 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3059 break;
3060 default:
3061 break;
3064 if (cm->chip_version < 68) {
3065 val = pci->device < 0x110 ? 8338 : 8738;
3066 } else {
3067 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3068 case 0:
3069 val = 8769;
3070 break;
3071 case 2:
3072 val = 8762;
3073 break;
3074 default:
3075 switch ((pci->subsystem_vendor << 16) |
3076 pci->subsystem_device) {
3077 case 0x13f69761:
3078 case 0x584d3741:
3079 case 0x584d3751:
3080 case 0x584d3761:
3081 case 0x584d3771:
3082 case 0x72848384:
3083 val = 8770;
3084 break;
3085 default:
3086 val = 8768;
3087 break;
3091 sprintf(card->shortname, "C-Media CMI%d", val);
3092 if (cm->chip_version < 68)
3093 sprintf(modelstr, " (model %d)", cm->chip_version);
3094 else
3095 modelstr[0] = '\0';
3096 sprintf(card->longname, "%s%s at %#lx, irq %i",
3097 card->shortname, modelstr, cm->iobase, cm->irq);
3099 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3100 snd_cmipci_free(cm);
3101 return err;
3104 if (cm->chip_version >= 39) {
3105 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3106 if (val != 0x00 && val != 0xff) {
3107 iomidi = cm->iobase + CM_REG_MPU_PCI;
3108 integrated_midi = 1;
3111 if (!integrated_midi) {
3112 val = 0;
3113 iomidi = mpu_port[dev];
3114 switch (iomidi) {
3115 case 0x320: val = CM_VMPU_320; break;
3116 case 0x310: val = CM_VMPU_310; break;
3117 case 0x300: val = CM_VMPU_300; break;
3118 case 0x330: val = CM_VMPU_330; break;
3119 default:
3120 iomidi = 0; break;
3122 if (iomidi > 0) {
3123 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3124 /* enable UART */
3125 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3126 if (inb(iomidi + 1) == 0xff) {
3127 snd_printk(KERN_ERR "cannot enable MPU-401 port"
3128 " at %#lx\n", iomidi);
3129 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3130 CM_UART_EN);
3131 iomidi = 0;
3136 if (cm->chip_version < 68) {
3137 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3138 if (err < 0)
3139 return err;
3142 /* reset mixer */
3143 snd_cmipci_mixer_write(cm, 0, 0);
3145 snd_cmipci_proc_init(cm);
3147 /* create pcm devices */
3148 pcm_index = pcm_spdif_index = 0;
3149 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3150 return err;
3151 pcm_index++;
3152 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3153 return err;
3154 pcm_index++;
3155 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3156 pcm_spdif_index = pcm_index;
3157 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3158 return err;
3161 /* create mixer interface & switches */
3162 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3163 return err;
3165 if (iomidi > 0) {
3166 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3167 iomidi,
3168 (integrated_midi ?
3169 MPU401_INFO_INTEGRATED : 0),
3170 cm->irq, 0, &cm->rmidi)) < 0) {
3171 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3175 #ifdef USE_VAR48KRATE
3176 for (val = 0; val < ARRAY_SIZE(rates); val++)
3177 snd_cmipci_set_pll(cm, rates[val], val);
3180 * (Re-)Enable external switch spdo_48k
3182 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3183 #endif /* USE_VAR48KRATE */
3185 if (snd_cmipci_create_gameport(cm, dev) < 0)
3186 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3188 snd_card_set_dev(card, &pci->dev);
3190 *rcmipci = cm;
3191 return 0;
3197 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3199 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3200 const struct pci_device_id *pci_id)
3202 static int dev;
3203 struct snd_card *card;
3204 struct cmipci *cm;
3205 int err;
3207 if (dev >= SNDRV_CARDS)
3208 return -ENODEV;
3209 if (! enable[dev]) {
3210 dev++;
3211 return -ENOENT;
3214 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
3215 if (card == NULL)
3216 return -ENOMEM;
3218 switch (pci->device) {
3219 case PCI_DEVICE_ID_CMEDIA_CM8738:
3220 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3221 strcpy(card->driver, "CMI8738");
3222 break;
3223 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3224 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3225 strcpy(card->driver, "CMI8338");
3226 break;
3227 default:
3228 strcpy(card->driver, "CMIPCI");
3229 break;
3232 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3233 snd_card_free(card);
3234 return err;
3236 card->private_data = cm;
3238 if ((err = snd_card_register(card)) < 0) {
3239 snd_card_free(card);
3240 return err;
3242 pci_set_drvdata(pci, card);
3243 dev++;
3244 return 0;
3248 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3250 snd_card_free(pci_get_drvdata(pci));
3251 pci_set_drvdata(pci, NULL);
3255 #ifdef CONFIG_PM
3257 * power management
3259 static unsigned char saved_regs[] = {
3260 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3261 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3262 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3263 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3264 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3267 static unsigned char saved_mixers[] = {
3268 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3269 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3270 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3271 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3272 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3273 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3274 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3275 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3278 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3280 struct snd_card *card = pci_get_drvdata(pci);
3281 struct cmipci *cm = card->private_data;
3282 int i;
3284 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3286 snd_pcm_suspend_all(cm->pcm);
3287 snd_pcm_suspend_all(cm->pcm2);
3288 snd_pcm_suspend_all(cm->pcm_spdif);
3290 /* save registers */
3291 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3292 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3293 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3294 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3296 /* disable ints */
3297 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3299 pci_disable_device(pci);
3300 pci_save_state(pci);
3301 pci_set_power_state(pci, pci_choose_state(pci, state));
3302 return 0;
3305 static int snd_cmipci_resume(struct pci_dev *pci)
3307 struct snd_card *card = pci_get_drvdata(pci);
3308 struct cmipci *cm = card->private_data;
3309 int i;
3311 pci_set_power_state(pci, PCI_D0);
3312 pci_restore_state(pci);
3313 if (pci_enable_device(pci) < 0) {
3314 printk(KERN_ERR "cmipci: pci_enable_device failed, "
3315 "disabling device\n");
3316 snd_card_disconnect(card);
3317 return -EIO;
3319 pci_set_master(pci);
3321 /* reset / initialize to a sane state */
3322 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3323 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3324 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3325 snd_cmipci_mixer_write(cm, 0, 0);
3327 /* restore registers */
3328 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3329 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3330 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3331 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3333 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3334 return 0;
3336 #endif /* CONFIG_PM */
3338 static struct pci_driver driver = {
3339 .name = "C-Media PCI",
3340 .id_table = snd_cmipci_ids,
3341 .probe = snd_cmipci_probe,
3342 .remove = __devexit_p(snd_cmipci_remove),
3343 #ifdef CONFIG_PM
3344 .suspend = snd_cmipci_suspend,
3345 .resume = snd_cmipci_resume,
3346 #endif
3349 static int __init alsa_card_cmipci_init(void)
3351 return pci_register_driver(&driver);
3354 static void __exit alsa_card_cmipci_exit(void)
3356 pci_unregister_driver(&driver);
3359 module_init(alsa_card_cmipci_init)
3360 module_exit(alsa_card_cmipci_exit)