ndelay(): switch to C function to avoid 64-bit division
[linux-2.6/verdex.git] / mm / page_alloc.c
blobe76cf94725c9dcb9851d091434fac30888265c53
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
49 #include <asm/tlbflush.h>
50 #include <asm/div64.h>
51 #include "internal.h"
54 * Array of node states.
56 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
57 [N_POSSIBLE] = NODE_MASK_ALL,
58 [N_ONLINE] = { { [0] = 1UL } },
59 #ifndef CONFIG_NUMA
60 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
61 #ifdef CONFIG_HIGHMEM
62 [N_HIGH_MEMORY] = { { [0] = 1UL } },
63 #endif
64 [N_CPU] = { { [0] = 1UL } },
65 #endif /* NUMA */
67 EXPORT_SYMBOL(node_states);
69 unsigned long totalram_pages __read_mostly;
70 unsigned long totalreserve_pages __read_mostly;
71 long nr_swap_pages;
72 int percpu_pagelist_fraction;
74 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75 int pageblock_order __read_mostly;
76 #endif
78 static void __free_pages_ok(struct page *page, unsigned int order);
81 * results with 256, 32 in the lowmem_reserve sysctl:
82 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83 * 1G machine -> (16M dma, 784M normal, 224M high)
84 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 * TBD: should special case ZONE_DMA32 machines here - in those we normally
89 * don't need any ZONE_NORMAL reservation
91 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
92 #ifdef CONFIG_ZONE_DMA
93 256,
94 #endif
95 #ifdef CONFIG_ZONE_DMA32
96 256,
97 #endif
98 #ifdef CONFIG_HIGHMEM
99 32,
100 #endif
104 EXPORT_SYMBOL(totalram_pages);
106 static char * const zone_names[MAX_NR_ZONES] = {
107 #ifdef CONFIG_ZONE_DMA
108 "DMA",
109 #endif
110 #ifdef CONFIG_ZONE_DMA32
111 "DMA32",
112 #endif
113 "Normal",
114 #ifdef CONFIG_HIGHMEM
115 "HighMem",
116 #endif
117 "Movable",
120 int min_free_kbytes = 1024;
122 unsigned long __meminitdata nr_kernel_pages;
123 unsigned long __meminitdata nr_all_pages;
124 static unsigned long __meminitdata dma_reserve;
126 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129 * ranges of memory (RAM) that may be registered with add_active_range().
130 * Ranges passed to add_active_range() will be merged if possible
131 * so the number of times add_active_range() can be called is
132 * related to the number of nodes and the number of holes
134 #ifdef CONFIG_MAX_ACTIVE_REGIONS
135 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137 #else
138 #if MAX_NUMNODES >= 32
139 /* If there can be many nodes, allow up to 50 holes per node */
140 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141 #else
142 /* By default, allow up to 256 distinct regions */
143 #define MAX_ACTIVE_REGIONS 256
144 #endif
145 #endif
147 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148 static int __meminitdata nr_nodemap_entries;
149 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
151 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
154 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155 unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 EXPORT_SYMBOL(nr_node_ids);
167 #endif
169 int page_group_by_mobility_disabled __read_mostly;
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 set_pageblock_flags_group(page, (unsigned long)migratetype,
174 PB_migrate, PB_migrate_end);
177 #ifdef CONFIG_DEBUG_VM
178 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 int ret = 0;
181 unsigned seq;
182 unsigned long pfn = page_to_pfn(page);
184 do {
185 seq = zone_span_seqbegin(zone);
186 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187 ret = 1;
188 else if (pfn < zone->zone_start_pfn)
189 ret = 1;
190 } while (zone_span_seqretry(zone, seq));
192 return ret;
195 static int page_is_consistent(struct zone *zone, struct page *page)
197 if (!pfn_valid_within(page_to_pfn(page)))
198 return 0;
199 if (zone != page_zone(page))
200 return 0;
202 return 1;
205 * Temporary debugging check for pages not lying within a given zone.
207 static int bad_range(struct zone *zone, struct page *page)
209 if (page_outside_zone_boundaries(zone, page))
210 return 1;
211 if (!page_is_consistent(zone, page))
212 return 1;
214 return 0;
216 #else
217 static inline int bad_range(struct zone *zone, struct page *page)
219 return 0;
221 #endif
223 static void bad_page(struct page *page)
225 printk(KERN_EMERG "Bad page state in process '%s'\n"
226 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
227 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
228 KERN_EMERG "Backtrace:\n",
229 current->comm, page, (int)(2*sizeof(unsigned long)),
230 (unsigned long)page->flags, page->mapping,
231 page_mapcount(page), page_count(page));
232 dump_stack();
233 page->flags &= ~(1 << PG_lru |
234 1 << PG_private |
235 1 << PG_locked |
236 1 << PG_active |
237 1 << PG_dirty |
238 1 << PG_reclaim |
239 1 << PG_slab |
240 1 << PG_swapcache |
241 1 << PG_writeback |
242 1 << PG_buddy );
243 set_page_count(page, 0);
244 reset_page_mapcount(page);
245 page->mapping = NULL;
246 add_taint(TAINT_BAD_PAGE);
250 * Higher-order pages are called "compound pages". They are structured thusly:
252 * The first PAGE_SIZE page is called the "head page".
254 * The remaining PAGE_SIZE pages are called "tail pages".
256 * All pages have PG_compound set. All pages have their ->private pointing at
257 * the head page (even the head page has this).
259 * The first tail page's ->lru.next holds the address of the compound page's
260 * put_page() function. Its ->lru.prev holds the order of allocation.
261 * This usage means that zero-order pages may not be compound.
264 static void free_compound_page(struct page *page)
266 __free_pages_ok(page, compound_order(page));
269 static void prep_compound_page(struct page *page, unsigned long order)
271 int i;
272 int nr_pages = 1 << order;
274 set_compound_page_dtor(page, free_compound_page);
275 set_compound_order(page, order);
276 __SetPageHead(page);
277 for (i = 1; i < nr_pages; i++) {
278 struct page *p = page + i;
280 __SetPageTail(p);
281 p->first_page = page;
285 static void destroy_compound_page(struct page *page, unsigned long order)
287 int i;
288 int nr_pages = 1 << order;
290 if (unlikely(compound_order(page) != order))
291 bad_page(page);
293 if (unlikely(!PageHead(page)))
294 bad_page(page);
295 __ClearPageHead(page);
296 for (i = 1; i < nr_pages; i++) {
297 struct page *p = page + i;
299 if (unlikely(!PageTail(p) |
300 (p->first_page != page)))
301 bad_page(page);
302 __ClearPageTail(p);
306 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
308 int i;
311 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
312 * and __GFP_HIGHMEM from hard or soft interrupt context.
314 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
315 for (i = 0; i < (1 << order); i++)
316 clear_highpage(page + i);
319 static inline void set_page_order(struct page *page, int order)
321 set_page_private(page, order);
322 __SetPageBuddy(page);
325 static inline void rmv_page_order(struct page *page)
327 __ClearPageBuddy(page);
328 set_page_private(page, 0);
332 * Locate the struct page for both the matching buddy in our
333 * pair (buddy1) and the combined O(n+1) page they form (page).
335 * 1) Any buddy B1 will have an order O twin B2 which satisfies
336 * the following equation:
337 * B2 = B1 ^ (1 << O)
338 * For example, if the starting buddy (buddy2) is #8 its order
339 * 1 buddy is #10:
340 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
342 * 2) Any buddy B will have an order O+1 parent P which
343 * satisfies the following equation:
344 * P = B & ~(1 << O)
346 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
348 static inline struct page *
349 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
351 unsigned long buddy_idx = page_idx ^ (1 << order);
353 return page + (buddy_idx - page_idx);
356 static inline unsigned long
357 __find_combined_index(unsigned long page_idx, unsigned int order)
359 return (page_idx & ~(1 << order));
363 * This function checks whether a page is free && is the buddy
364 * we can do coalesce a page and its buddy if
365 * (a) the buddy is not in a hole &&
366 * (b) the buddy is in the buddy system &&
367 * (c) a page and its buddy have the same order &&
368 * (d) a page and its buddy are in the same zone.
370 * For recording whether a page is in the buddy system, we use PG_buddy.
371 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
373 * For recording page's order, we use page_private(page).
375 static inline int page_is_buddy(struct page *page, struct page *buddy,
376 int order)
378 if (!pfn_valid_within(page_to_pfn(buddy)))
379 return 0;
381 if (page_zone_id(page) != page_zone_id(buddy))
382 return 0;
384 if (PageBuddy(buddy) && page_order(buddy) == order) {
385 BUG_ON(page_count(buddy) != 0);
386 return 1;
388 return 0;
392 * Freeing function for a buddy system allocator.
394 * The concept of a buddy system is to maintain direct-mapped table
395 * (containing bit values) for memory blocks of various "orders".
396 * The bottom level table contains the map for the smallest allocatable
397 * units of memory (here, pages), and each level above it describes
398 * pairs of units from the levels below, hence, "buddies".
399 * At a high level, all that happens here is marking the table entry
400 * at the bottom level available, and propagating the changes upward
401 * as necessary, plus some accounting needed to play nicely with other
402 * parts of the VM system.
403 * At each level, we keep a list of pages, which are heads of continuous
404 * free pages of length of (1 << order) and marked with PG_buddy. Page's
405 * order is recorded in page_private(page) field.
406 * So when we are allocating or freeing one, we can derive the state of the
407 * other. That is, if we allocate a small block, and both were
408 * free, the remainder of the region must be split into blocks.
409 * If a block is freed, and its buddy is also free, then this
410 * triggers coalescing into a block of larger size.
412 * -- wli
415 static inline void __free_one_page(struct page *page,
416 struct zone *zone, unsigned int order)
418 unsigned long page_idx;
419 int order_size = 1 << order;
420 int migratetype = get_pageblock_migratetype(page);
422 if (unlikely(PageCompound(page)))
423 destroy_compound_page(page, order);
425 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
427 VM_BUG_ON(page_idx & (order_size - 1));
428 VM_BUG_ON(bad_range(zone, page));
430 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
431 while (order < MAX_ORDER-1) {
432 unsigned long combined_idx;
433 struct page *buddy;
435 buddy = __page_find_buddy(page, page_idx, order);
436 if (!page_is_buddy(page, buddy, order))
437 break; /* Move the buddy up one level. */
439 list_del(&buddy->lru);
440 zone->free_area[order].nr_free--;
441 rmv_page_order(buddy);
442 combined_idx = __find_combined_index(page_idx, order);
443 page = page + (combined_idx - page_idx);
444 page_idx = combined_idx;
445 order++;
447 set_page_order(page, order);
448 list_add(&page->lru,
449 &zone->free_area[order].free_list[migratetype]);
450 zone->free_area[order].nr_free++;
453 static inline int free_pages_check(struct page *page)
455 if (unlikely(page_mapcount(page) |
456 (page->mapping != NULL) |
457 (page_count(page) != 0) |
458 (page->flags & (
459 1 << PG_lru |
460 1 << PG_private |
461 1 << PG_locked |
462 1 << PG_active |
463 1 << PG_slab |
464 1 << PG_swapcache |
465 1 << PG_writeback |
466 1 << PG_reserved |
467 1 << PG_buddy ))))
468 bad_page(page);
469 if (PageDirty(page))
470 __ClearPageDirty(page);
472 * For now, we report if PG_reserved was found set, but do not
473 * clear it, and do not free the page. But we shall soon need
474 * to do more, for when the ZERO_PAGE count wraps negative.
476 return PageReserved(page);
480 * Frees a list of pages.
481 * Assumes all pages on list are in same zone, and of same order.
482 * count is the number of pages to free.
484 * If the zone was previously in an "all pages pinned" state then look to
485 * see if this freeing clears that state.
487 * And clear the zone's pages_scanned counter, to hold off the "all pages are
488 * pinned" detection logic.
490 static void free_pages_bulk(struct zone *zone, int count,
491 struct list_head *list, int order)
493 spin_lock(&zone->lock);
494 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
495 zone->pages_scanned = 0;
496 while (count--) {
497 struct page *page;
499 VM_BUG_ON(list_empty(list));
500 page = list_entry(list->prev, struct page, lru);
501 /* have to delete it as __free_one_page list manipulates */
502 list_del(&page->lru);
503 __free_one_page(page, zone, order);
505 spin_unlock(&zone->lock);
508 static void free_one_page(struct zone *zone, struct page *page, int order)
510 spin_lock(&zone->lock);
511 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
512 zone->pages_scanned = 0;
513 __free_one_page(page, zone, order);
514 spin_unlock(&zone->lock);
517 static void __free_pages_ok(struct page *page, unsigned int order)
519 unsigned long flags;
520 int i;
521 int reserved = 0;
523 for (i = 0 ; i < (1 << order) ; ++i)
524 reserved += free_pages_check(page + i);
525 if (reserved)
526 return;
528 if (!PageHighMem(page))
529 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
530 arch_free_page(page, order);
531 kernel_map_pages(page, 1 << order, 0);
533 local_irq_save(flags);
534 __count_vm_events(PGFREE, 1 << order);
535 free_one_page(page_zone(page), page, order);
536 local_irq_restore(flags);
540 * permit the bootmem allocator to evade page validation on high-order frees
542 void __init __free_pages_bootmem(struct page *page, unsigned int order)
544 if (order == 0) {
545 __ClearPageReserved(page);
546 set_page_count(page, 0);
547 set_page_refcounted(page);
548 __free_page(page);
549 } else {
550 int loop;
552 prefetchw(page);
553 for (loop = 0; loop < BITS_PER_LONG; loop++) {
554 struct page *p = &page[loop];
556 if (loop + 1 < BITS_PER_LONG)
557 prefetchw(p + 1);
558 __ClearPageReserved(p);
559 set_page_count(p, 0);
562 set_page_refcounted(page);
563 __free_pages(page, order);
569 * The order of subdivision here is critical for the IO subsystem.
570 * Please do not alter this order without good reasons and regression
571 * testing. Specifically, as large blocks of memory are subdivided,
572 * the order in which smaller blocks are delivered depends on the order
573 * they're subdivided in this function. This is the primary factor
574 * influencing the order in which pages are delivered to the IO
575 * subsystem according to empirical testing, and this is also justified
576 * by considering the behavior of a buddy system containing a single
577 * large block of memory acted on by a series of small allocations.
578 * This behavior is a critical factor in sglist merging's success.
580 * -- wli
582 static inline void expand(struct zone *zone, struct page *page,
583 int low, int high, struct free_area *area,
584 int migratetype)
586 unsigned long size = 1 << high;
588 while (high > low) {
589 area--;
590 high--;
591 size >>= 1;
592 VM_BUG_ON(bad_range(zone, &page[size]));
593 list_add(&page[size].lru, &area->free_list[migratetype]);
594 area->nr_free++;
595 set_page_order(&page[size], high);
600 * This page is about to be returned from the page allocator
602 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
604 if (unlikely(page_mapcount(page) |
605 (page->mapping != NULL) |
606 (page_count(page) != 0) |
607 (page->flags & (
608 1 << PG_lru |
609 1 << PG_private |
610 1 << PG_locked |
611 1 << PG_active |
612 1 << PG_dirty |
613 1 << PG_slab |
614 1 << PG_swapcache |
615 1 << PG_writeback |
616 1 << PG_reserved |
617 1 << PG_buddy ))))
618 bad_page(page);
621 * For now, we report if PG_reserved was found set, but do not
622 * clear it, and do not allocate the page: as a safety net.
624 if (PageReserved(page))
625 return 1;
627 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
628 1 << PG_referenced | 1 << PG_arch_1 |
629 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
630 set_page_private(page, 0);
631 set_page_refcounted(page);
633 arch_alloc_page(page, order);
634 kernel_map_pages(page, 1 << order, 1);
636 if (gfp_flags & __GFP_ZERO)
637 prep_zero_page(page, order, gfp_flags);
639 if (order && (gfp_flags & __GFP_COMP))
640 prep_compound_page(page, order);
642 return 0;
646 * Go through the free lists for the given migratetype and remove
647 * the smallest available page from the freelists
649 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
650 int migratetype)
652 unsigned int current_order;
653 struct free_area * area;
654 struct page *page;
656 /* Find a page of the appropriate size in the preferred list */
657 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
658 area = &(zone->free_area[current_order]);
659 if (list_empty(&area->free_list[migratetype]))
660 continue;
662 page = list_entry(area->free_list[migratetype].next,
663 struct page, lru);
664 list_del(&page->lru);
665 rmv_page_order(page);
666 area->nr_free--;
667 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
668 expand(zone, page, order, current_order, area, migratetype);
669 return page;
672 return NULL;
677 * This array describes the order lists are fallen back to when
678 * the free lists for the desirable migrate type are depleted
680 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
681 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
682 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
683 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
684 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
688 * Move the free pages in a range to the free lists of the requested type.
689 * Note that start_page and end_pages are not aligned on a pageblock
690 * boundary. If alignment is required, use move_freepages_block()
692 int move_freepages(struct zone *zone,
693 struct page *start_page, struct page *end_page,
694 int migratetype)
696 struct page *page;
697 unsigned long order;
698 int pages_moved = 0;
700 #ifndef CONFIG_HOLES_IN_ZONE
702 * page_zone is not safe to call in this context when
703 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
704 * anyway as we check zone boundaries in move_freepages_block().
705 * Remove at a later date when no bug reports exist related to
706 * grouping pages by mobility
708 BUG_ON(page_zone(start_page) != page_zone(end_page));
709 #endif
711 for (page = start_page; page <= end_page;) {
712 if (!pfn_valid_within(page_to_pfn(page))) {
713 page++;
714 continue;
717 if (!PageBuddy(page)) {
718 page++;
719 continue;
722 order = page_order(page);
723 list_del(&page->lru);
724 list_add(&page->lru,
725 &zone->free_area[order].free_list[migratetype]);
726 page += 1 << order;
727 pages_moved += 1 << order;
730 return pages_moved;
733 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
735 unsigned long start_pfn, end_pfn;
736 struct page *start_page, *end_page;
738 start_pfn = page_to_pfn(page);
739 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
740 start_page = pfn_to_page(start_pfn);
741 end_page = start_page + pageblock_nr_pages - 1;
742 end_pfn = start_pfn + pageblock_nr_pages - 1;
744 /* Do not cross zone boundaries */
745 if (start_pfn < zone->zone_start_pfn)
746 start_page = page;
747 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
748 return 0;
750 return move_freepages(zone, start_page, end_page, migratetype);
753 /* Remove an element from the buddy allocator from the fallback list */
754 static struct page *__rmqueue_fallback(struct zone *zone, int order,
755 int start_migratetype)
757 struct free_area * area;
758 int current_order;
759 struct page *page;
760 int migratetype, i;
762 /* Find the largest possible block of pages in the other list */
763 for (current_order = MAX_ORDER-1; current_order >= order;
764 --current_order) {
765 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
766 migratetype = fallbacks[start_migratetype][i];
768 /* MIGRATE_RESERVE handled later if necessary */
769 if (migratetype == MIGRATE_RESERVE)
770 continue;
772 area = &(zone->free_area[current_order]);
773 if (list_empty(&area->free_list[migratetype]))
774 continue;
776 page = list_entry(area->free_list[migratetype].next,
777 struct page, lru);
778 area->nr_free--;
781 * If breaking a large block of pages, move all free
782 * pages to the preferred allocation list. If falling
783 * back for a reclaimable kernel allocation, be more
784 * agressive about taking ownership of free pages
786 if (unlikely(current_order >= (pageblock_order >> 1)) ||
787 start_migratetype == MIGRATE_RECLAIMABLE) {
788 unsigned long pages;
789 pages = move_freepages_block(zone, page,
790 start_migratetype);
792 /* Claim the whole block if over half of it is free */
793 if (pages >= (1 << (pageblock_order-1)))
794 set_pageblock_migratetype(page,
795 start_migratetype);
797 migratetype = start_migratetype;
800 /* Remove the page from the freelists */
801 list_del(&page->lru);
802 rmv_page_order(page);
803 __mod_zone_page_state(zone, NR_FREE_PAGES,
804 -(1UL << order));
806 if (current_order == pageblock_order)
807 set_pageblock_migratetype(page,
808 start_migratetype);
810 expand(zone, page, order, current_order, area, migratetype);
811 return page;
815 /* Use MIGRATE_RESERVE rather than fail an allocation */
816 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
820 * Do the hard work of removing an element from the buddy allocator.
821 * Call me with the zone->lock already held.
823 static struct page *__rmqueue(struct zone *zone, unsigned int order,
824 int migratetype)
826 struct page *page;
828 page = __rmqueue_smallest(zone, order, migratetype);
830 if (unlikely(!page))
831 page = __rmqueue_fallback(zone, order, migratetype);
833 return page;
837 * Obtain a specified number of elements from the buddy allocator, all under
838 * a single hold of the lock, for efficiency. Add them to the supplied list.
839 * Returns the number of new pages which were placed at *list.
841 static int rmqueue_bulk(struct zone *zone, unsigned int order,
842 unsigned long count, struct list_head *list,
843 int migratetype)
845 int i;
847 spin_lock(&zone->lock);
848 for (i = 0; i < count; ++i) {
849 struct page *page = __rmqueue(zone, order, migratetype);
850 if (unlikely(page == NULL))
851 break;
854 * Split buddy pages returned by expand() are received here
855 * in physical page order. The page is added to the callers and
856 * list and the list head then moves forward. From the callers
857 * perspective, the linked list is ordered by page number in
858 * some conditions. This is useful for IO devices that can
859 * merge IO requests if the physical pages are ordered
860 * properly.
862 list_add(&page->lru, list);
863 set_page_private(page, migratetype);
864 list = &page->lru;
866 spin_unlock(&zone->lock);
867 return i;
870 #ifdef CONFIG_NUMA
872 * Called from the vmstat counter updater to drain pagesets of this
873 * currently executing processor on remote nodes after they have
874 * expired.
876 * Note that this function must be called with the thread pinned to
877 * a single processor.
879 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
881 unsigned long flags;
882 int to_drain;
884 local_irq_save(flags);
885 if (pcp->count >= pcp->batch)
886 to_drain = pcp->batch;
887 else
888 to_drain = pcp->count;
889 free_pages_bulk(zone, to_drain, &pcp->list, 0);
890 pcp->count -= to_drain;
891 local_irq_restore(flags);
893 #endif
896 * Drain pages of the indicated processor.
898 * The processor must either be the current processor and the
899 * thread pinned to the current processor or a processor that
900 * is not online.
902 static void drain_pages(unsigned int cpu)
904 unsigned long flags;
905 struct zone *zone;
907 for_each_zone(zone) {
908 struct per_cpu_pageset *pset;
909 struct per_cpu_pages *pcp;
911 if (!populated_zone(zone))
912 continue;
914 pset = zone_pcp(zone, cpu);
916 pcp = &pset->pcp;
917 local_irq_save(flags);
918 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
919 pcp->count = 0;
920 local_irq_restore(flags);
925 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
927 void drain_local_pages(void *arg)
929 drain_pages(smp_processor_id());
933 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
935 void drain_all_pages(void)
937 on_each_cpu(drain_local_pages, NULL, 0, 1);
940 #ifdef CONFIG_HIBERNATION
942 void mark_free_pages(struct zone *zone)
944 unsigned long pfn, max_zone_pfn;
945 unsigned long flags;
946 int order, t;
947 struct list_head *curr;
949 if (!zone->spanned_pages)
950 return;
952 spin_lock_irqsave(&zone->lock, flags);
954 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
955 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
956 if (pfn_valid(pfn)) {
957 struct page *page = pfn_to_page(pfn);
959 if (!swsusp_page_is_forbidden(page))
960 swsusp_unset_page_free(page);
963 for_each_migratetype_order(order, t) {
964 list_for_each(curr, &zone->free_area[order].free_list[t]) {
965 unsigned long i;
967 pfn = page_to_pfn(list_entry(curr, struct page, lru));
968 for (i = 0; i < (1UL << order); i++)
969 swsusp_set_page_free(pfn_to_page(pfn + i));
972 spin_unlock_irqrestore(&zone->lock, flags);
974 #endif /* CONFIG_PM */
977 * Free a 0-order page
979 static void free_hot_cold_page(struct page *page, int cold)
981 struct zone *zone = page_zone(page);
982 struct per_cpu_pages *pcp;
983 unsigned long flags;
985 if (PageAnon(page))
986 page->mapping = NULL;
987 if (free_pages_check(page))
988 return;
990 if (!PageHighMem(page))
991 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
992 VM_BUG_ON(page_get_page_cgroup(page));
993 arch_free_page(page, 0);
994 kernel_map_pages(page, 1, 0);
996 pcp = &zone_pcp(zone, get_cpu())->pcp;
997 local_irq_save(flags);
998 __count_vm_event(PGFREE);
999 if (cold)
1000 list_add_tail(&page->lru, &pcp->list);
1001 else
1002 list_add(&page->lru, &pcp->list);
1003 set_page_private(page, get_pageblock_migratetype(page));
1004 pcp->count++;
1005 if (pcp->count >= pcp->high) {
1006 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1007 pcp->count -= pcp->batch;
1009 local_irq_restore(flags);
1010 put_cpu();
1013 void free_hot_page(struct page *page)
1015 free_hot_cold_page(page, 0);
1018 void free_cold_page(struct page *page)
1020 free_hot_cold_page(page, 1);
1024 * split_page takes a non-compound higher-order page, and splits it into
1025 * n (1<<order) sub-pages: page[0..n]
1026 * Each sub-page must be freed individually.
1028 * Note: this is probably too low level an operation for use in drivers.
1029 * Please consult with lkml before using this in your driver.
1031 void split_page(struct page *page, unsigned int order)
1033 int i;
1035 VM_BUG_ON(PageCompound(page));
1036 VM_BUG_ON(!page_count(page));
1037 for (i = 1; i < (1 << order); i++)
1038 set_page_refcounted(page + i);
1042 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1043 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1044 * or two.
1046 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1047 struct zone *zone, int order, gfp_t gfp_flags)
1049 unsigned long flags;
1050 struct page *page;
1051 int cold = !!(gfp_flags & __GFP_COLD);
1052 int cpu;
1053 int migratetype = allocflags_to_migratetype(gfp_flags);
1055 again:
1056 cpu = get_cpu();
1057 if (likely(order == 0)) {
1058 struct per_cpu_pages *pcp;
1060 pcp = &zone_pcp(zone, cpu)->pcp;
1061 local_irq_save(flags);
1062 if (!pcp->count) {
1063 pcp->count = rmqueue_bulk(zone, 0,
1064 pcp->batch, &pcp->list, migratetype);
1065 if (unlikely(!pcp->count))
1066 goto failed;
1069 /* Find a page of the appropriate migrate type */
1070 if (cold) {
1071 list_for_each_entry_reverse(page, &pcp->list, lru)
1072 if (page_private(page) == migratetype)
1073 break;
1074 } else {
1075 list_for_each_entry(page, &pcp->list, lru)
1076 if (page_private(page) == migratetype)
1077 break;
1080 /* Allocate more to the pcp list if necessary */
1081 if (unlikely(&page->lru == &pcp->list)) {
1082 pcp->count += rmqueue_bulk(zone, 0,
1083 pcp->batch, &pcp->list, migratetype);
1084 page = list_entry(pcp->list.next, struct page, lru);
1087 list_del(&page->lru);
1088 pcp->count--;
1089 } else {
1090 spin_lock_irqsave(&zone->lock, flags);
1091 page = __rmqueue(zone, order, migratetype);
1092 spin_unlock(&zone->lock);
1093 if (!page)
1094 goto failed;
1097 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1098 zone_statistics(zonelist, zone);
1099 local_irq_restore(flags);
1100 put_cpu();
1102 VM_BUG_ON(bad_range(zone, page));
1103 if (prep_new_page(page, order, gfp_flags))
1104 goto again;
1105 return page;
1107 failed:
1108 local_irq_restore(flags);
1109 put_cpu();
1110 return NULL;
1113 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1114 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1115 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1116 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1117 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1118 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1119 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1121 #ifdef CONFIG_FAIL_PAGE_ALLOC
1123 static struct fail_page_alloc_attr {
1124 struct fault_attr attr;
1126 u32 ignore_gfp_highmem;
1127 u32 ignore_gfp_wait;
1128 u32 min_order;
1130 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1132 struct dentry *ignore_gfp_highmem_file;
1133 struct dentry *ignore_gfp_wait_file;
1134 struct dentry *min_order_file;
1136 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1138 } fail_page_alloc = {
1139 .attr = FAULT_ATTR_INITIALIZER,
1140 .ignore_gfp_wait = 1,
1141 .ignore_gfp_highmem = 1,
1142 .min_order = 1,
1145 static int __init setup_fail_page_alloc(char *str)
1147 return setup_fault_attr(&fail_page_alloc.attr, str);
1149 __setup("fail_page_alloc=", setup_fail_page_alloc);
1151 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1153 if (order < fail_page_alloc.min_order)
1154 return 0;
1155 if (gfp_mask & __GFP_NOFAIL)
1156 return 0;
1157 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1158 return 0;
1159 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1160 return 0;
1162 return should_fail(&fail_page_alloc.attr, 1 << order);
1165 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1167 static int __init fail_page_alloc_debugfs(void)
1169 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1170 struct dentry *dir;
1171 int err;
1173 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1174 "fail_page_alloc");
1175 if (err)
1176 return err;
1177 dir = fail_page_alloc.attr.dentries.dir;
1179 fail_page_alloc.ignore_gfp_wait_file =
1180 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1181 &fail_page_alloc.ignore_gfp_wait);
1183 fail_page_alloc.ignore_gfp_highmem_file =
1184 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1185 &fail_page_alloc.ignore_gfp_highmem);
1186 fail_page_alloc.min_order_file =
1187 debugfs_create_u32("min-order", mode, dir,
1188 &fail_page_alloc.min_order);
1190 if (!fail_page_alloc.ignore_gfp_wait_file ||
1191 !fail_page_alloc.ignore_gfp_highmem_file ||
1192 !fail_page_alloc.min_order_file) {
1193 err = -ENOMEM;
1194 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1195 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1196 debugfs_remove(fail_page_alloc.min_order_file);
1197 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1200 return err;
1203 late_initcall(fail_page_alloc_debugfs);
1205 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1207 #else /* CONFIG_FAIL_PAGE_ALLOC */
1209 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1211 return 0;
1214 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1217 * Return 1 if free pages are above 'mark'. This takes into account the order
1218 * of the allocation.
1220 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1221 int classzone_idx, int alloc_flags)
1223 /* free_pages my go negative - that's OK */
1224 long min = mark;
1225 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1226 int o;
1228 if (alloc_flags & ALLOC_HIGH)
1229 min -= min / 2;
1230 if (alloc_flags & ALLOC_HARDER)
1231 min -= min / 4;
1233 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1234 return 0;
1235 for (o = 0; o < order; o++) {
1236 /* At the next order, this order's pages become unavailable */
1237 free_pages -= z->free_area[o].nr_free << o;
1239 /* Require fewer higher order pages to be free */
1240 min >>= 1;
1242 if (free_pages <= min)
1243 return 0;
1245 return 1;
1248 #ifdef CONFIG_NUMA
1250 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1251 * skip over zones that are not allowed by the cpuset, or that have
1252 * been recently (in last second) found to be nearly full. See further
1253 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1254 * that have to skip over a lot of full or unallowed zones.
1256 * If the zonelist cache is present in the passed in zonelist, then
1257 * returns a pointer to the allowed node mask (either the current
1258 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1260 * If the zonelist cache is not available for this zonelist, does
1261 * nothing and returns NULL.
1263 * If the fullzones BITMAP in the zonelist cache is stale (more than
1264 * a second since last zap'd) then we zap it out (clear its bits.)
1266 * We hold off even calling zlc_setup, until after we've checked the
1267 * first zone in the zonelist, on the theory that most allocations will
1268 * be satisfied from that first zone, so best to examine that zone as
1269 * quickly as we can.
1271 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1273 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1274 nodemask_t *allowednodes; /* zonelist_cache approximation */
1276 zlc = zonelist->zlcache_ptr;
1277 if (!zlc)
1278 return NULL;
1280 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1281 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1282 zlc->last_full_zap = jiffies;
1285 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1286 &cpuset_current_mems_allowed :
1287 &node_states[N_HIGH_MEMORY];
1288 return allowednodes;
1292 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1293 * if it is worth looking at further for free memory:
1294 * 1) Check that the zone isn't thought to be full (doesn't have its
1295 * bit set in the zonelist_cache fullzones BITMAP).
1296 * 2) Check that the zones node (obtained from the zonelist_cache
1297 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1298 * Return true (non-zero) if zone is worth looking at further, or
1299 * else return false (zero) if it is not.
1301 * This check -ignores- the distinction between various watermarks,
1302 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1303 * found to be full for any variation of these watermarks, it will
1304 * be considered full for up to one second by all requests, unless
1305 * we are so low on memory on all allowed nodes that we are forced
1306 * into the second scan of the zonelist.
1308 * In the second scan we ignore this zonelist cache and exactly
1309 * apply the watermarks to all zones, even it is slower to do so.
1310 * We are low on memory in the second scan, and should leave no stone
1311 * unturned looking for a free page.
1313 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1314 nodemask_t *allowednodes)
1316 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1317 int i; /* index of *z in zonelist zones */
1318 int n; /* node that zone *z is on */
1320 zlc = zonelist->zlcache_ptr;
1321 if (!zlc)
1322 return 1;
1324 i = z - zonelist->zones;
1325 n = zlc->z_to_n[i];
1327 /* This zone is worth trying if it is allowed but not full */
1328 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1332 * Given 'z' scanning a zonelist, set the corresponding bit in
1333 * zlc->fullzones, so that subsequent attempts to allocate a page
1334 * from that zone don't waste time re-examining it.
1336 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1338 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1339 int i; /* index of *z in zonelist zones */
1341 zlc = zonelist->zlcache_ptr;
1342 if (!zlc)
1343 return;
1345 i = z - zonelist->zones;
1347 set_bit(i, zlc->fullzones);
1350 #else /* CONFIG_NUMA */
1352 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1354 return NULL;
1357 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1358 nodemask_t *allowednodes)
1360 return 1;
1363 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1366 #endif /* CONFIG_NUMA */
1369 * get_page_from_freelist goes through the zonelist trying to allocate
1370 * a page.
1372 static struct page *
1373 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1374 struct zonelist *zonelist, int alloc_flags)
1376 struct zone **z;
1377 struct page *page = NULL;
1378 int classzone_idx = zone_idx(zonelist->zones[0]);
1379 struct zone *zone;
1380 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1381 int zlc_active = 0; /* set if using zonelist_cache */
1382 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1383 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1385 zonelist_scan:
1387 * Scan zonelist, looking for a zone with enough free.
1388 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1390 z = zonelist->zones;
1392 do {
1394 * In NUMA, this could be a policy zonelist which contains
1395 * zones that may not be allowed by the current gfp_mask.
1396 * Check the zone is allowed by the current flags
1398 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1399 if (highest_zoneidx == -1)
1400 highest_zoneidx = gfp_zone(gfp_mask);
1401 if (zone_idx(*z) > highest_zoneidx)
1402 continue;
1405 if (NUMA_BUILD && zlc_active &&
1406 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1407 continue;
1408 zone = *z;
1409 if ((alloc_flags & ALLOC_CPUSET) &&
1410 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1411 goto try_next_zone;
1413 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1414 unsigned long mark;
1415 if (alloc_flags & ALLOC_WMARK_MIN)
1416 mark = zone->pages_min;
1417 else if (alloc_flags & ALLOC_WMARK_LOW)
1418 mark = zone->pages_low;
1419 else
1420 mark = zone->pages_high;
1421 if (!zone_watermark_ok(zone, order, mark,
1422 classzone_idx, alloc_flags)) {
1423 if (!zone_reclaim_mode ||
1424 !zone_reclaim(zone, gfp_mask, order))
1425 goto this_zone_full;
1429 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1430 if (page)
1431 break;
1432 this_zone_full:
1433 if (NUMA_BUILD)
1434 zlc_mark_zone_full(zonelist, z);
1435 try_next_zone:
1436 if (NUMA_BUILD && !did_zlc_setup) {
1437 /* we do zlc_setup after the first zone is tried */
1438 allowednodes = zlc_setup(zonelist, alloc_flags);
1439 zlc_active = 1;
1440 did_zlc_setup = 1;
1442 } while (*(++z) != NULL);
1444 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1445 /* Disable zlc cache for second zonelist scan */
1446 zlc_active = 0;
1447 goto zonelist_scan;
1449 return page;
1453 * This is the 'heart' of the zoned buddy allocator.
1455 struct page *
1456 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1457 struct zonelist *zonelist)
1459 const gfp_t wait = gfp_mask & __GFP_WAIT;
1460 struct zone **z;
1461 struct page *page;
1462 struct reclaim_state reclaim_state;
1463 struct task_struct *p = current;
1464 int do_retry;
1465 int alloc_flags;
1466 int did_some_progress;
1468 might_sleep_if(wait);
1470 if (should_fail_alloc_page(gfp_mask, order))
1471 return NULL;
1473 restart:
1474 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1476 if (unlikely(*z == NULL)) {
1478 * Happens if we have an empty zonelist as a result of
1479 * GFP_THISNODE being used on a memoryless node
1481 return NULL;
1484 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1485 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1486 if (page)
1487 goto got_pg;
1490 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1491 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1492 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1493 * using a larger set of nodes after it has established that the
1494 * allowed per node queues are empty and that nodes are
1495 * over allocated.
1497 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1498 goto nopage;
1500 for (z = zonelist->zones; *z; z++)
1501 wakeup_kswapd(*z, order);
1504 * OK, we're below the kswapd watermark and have kicked background
1505 * reclaim. Now things get more complex, so set up alloc_flags according
1506 * to how we want to proceed.
1508 * The caller may dip into page reserves a bit more if the caller
1509 * cannot run direct reclaim, or if the caller has realtime scheduling
1510 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1511 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1513 alloc_flags = ALLOC_WMARK_MIN;
1514 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1515 alloc_flags |= ALLOC_HARDER;
1516 if (gfp_mask & __GFP_HIGH)
1517 alloc_flags |= ALLOC_HIGH;
1518 if (wait)
1519 alloc_flags |= ALLOC_CPUSET;
1522 * Go through the zonelist again. Let __GFP_HIGH and allocations
1523 * coming from realtime tasks go deeper into reserves.
1525 * This is the last chance, in general, before the goto nopage.
1526 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1527 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1529 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1530 if (page)
1531 goto got_pg;
1533 /* This allocation should allow future memory freeing. */
1535 rebalance:
1536 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1537 && !in_interrupt()) {
1538 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1539 nofail_alloc:
1540 /* go through the zonelist yet again, ignoring mins */
1541 page = get_page_from_freelist(gfp_mask, order,
1542 zonelist, ALLOC_NO_WATERMARKS);
1543 if (page)
1544 goto got_pg;
1545 if (gfp_mask & __GFP_NOFAIL) {
1546 congestion_wait(WRITE, HZ/50);
1547 goto nofail_alloc;
1550 goto nopage;
1553 /* Atomic allocations - we can't balance anything */
1554 if (!wait)
1555 goto nopage;
1557 cond_resched();
1559 /* We now go into synchronous reclaim */
1560 cpuset_memory_pressure_bump();
1561 p->flags |= PF_MEMALLOC;
1562 reclaim_state.reclaimed_slab = 0;
1563 p->reclaim_state = &reclaim_state;
1565 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1567 p->reclaim_state = NULL;
1568 p->flags &= ~PF_MEMALLOC;
1570 cond_resched();
1572 if (order != 0)
1573 drain_all_pages();
1575 if (likely(did_some_progress)) {
1576 page = get_page_from_freelist(gfp_mask, order,
1577 zonelist, alloc_flags);
1578 if (page)
1579 goto got_pg;
1580 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1581 if (!try_set_zone_oom(zonelist)) {
1582 schedule_timeout_uninterruptible(1);
1583 goto restart;
1587 * Go through the zonelist yet one more time, keep
1588 * very high watermark here, this is only to catch
1589 * a parallel oom killing, we must fail if we're still
1590 * under heavy pressure.
1592 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1593 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1594 if (page) {
1595 clear_zonelist_oom(zonelist);
1596 goto got_pg;
1599 /* The OOM killer will not help higher order allocs so fail */
1600 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1601 clear_zonelist_oom(zonelist);
1602 goto nopage;
1605 out_of_memory(zonelist, gfp_mask, order);
1606 clear_zonelist_oom(zonelist);
1607 goto restart;
1611 * Don't let big-order allocations loop unless the caller explicitly
1612 * requests that. Wait for some write requests to complete then retry.
1614 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1615 * <= 3, but that may not be true in other implementations.
1617 do_retry = 0;
1618 if (!(gfp_mask & __GFP_NORETRY)) {
1619 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1620 (gfp_mask & __GFP_REPEAT))
1621 do_retry = 1;
1622 if (gfp_mask & __GFP_NOFAIL)
1623 do_retry = 1;
1625 if (do_retry) {
1626 congestion_wait(WRITE, HZ/50);
1627 goto rebalance;
1630 nopage:
1631 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1632 printk(KERN_WARNING "%s: page allocation failure."
1633 " order:%d, mode:0x%x\n",
1634 p->comm, order, gfp_mask);
1635 dump_stack();
1636 show_mem();
1638 got_pg:
1639 return page;
1642 EXPORT_SYMBOL(__alloc_pages);
1645 * Common helper functions.
1647 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1649 struct page * page;
1650 page = alloc_pages(gfp_mask, order);
1651 if (!page)
1652 return 0;
1653 return (unsigned long) page_address(page);
1656 EXPORT_SYMBOL(__get_free_pages);
1658 unsigned long get_zeroed_page(gfp_t gfp_mask)
1660 struct page * page;
1663 * get_zeroed_page() returns a 32-bit address, which cannot represent
1664 * a highmem page
1666 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1668 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1669 if (page)
1670 return (unsigned long) page_address(page);
1671 return 0;
1674 EXPORT_SYMBOL(get_zeroed_page);
1676 void __pagevec_free(struct pagevec *pvec)
1678 int i = pagevec_count(pvec);
1680 while (--i >= 0)
1681 free_hot_cold_page(pvec->pages[i], pvec->cold);
1684 void __free_pages(struct page *page, unsigned int order)
1686 if (put_page_testzero(page)) {
1687 if (order == 0)
1688 free_hot_page(page);
1689 else
1690 __free_pages_ok(page, order);
1694 EXPORT_SYMBOL(__free_pages);
1696 void free_pages(unsigned long addr, unsigned int order)
1698 if (addr != 0) {
1699 VM_BUG_ON(!virt_addr_valid((void *)addr));
1700 __free_pages(virt_to_page((void *)addr), order);
1704 EXPORT_SYMBOL(free_pages);
1706 static unsigned int nr_free_zone_pages(int offset)
1708 /* Just pick one node, since fallback list is circular */
1709 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1710 unsigned int sum = 0;
1712 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1713 struct zone **zonep = zonelist->zones;
1714 struct zone *zone;
1716 for (zone = *zonep++; zone; zone = *zonep++) {
1717 unsigned long size = zone->present_pages;
1718 unsigned long high = zone->pages_high;
1719 if (size > high)
1720 sum += size - high;
1723 return sum;
1727 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1729 unsigned int nr_free_buffer_pages(void)
1731 return nr_free_zone_pages(gfp_zone(GFP_USER));
1733 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1736 * Amount of free RAM allocatable within all zones
1738 unsigned int nr_free_pagecache_pages(void)
1740 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1743 static inline void show_node(struct zone *zone)
1745 if (NUMA_BUILD)
1746 printk("Node %d ", zone_to_nid(zone));
1749 void si_meminfo(struct sysinfo *val)
1751 val->totalram = totalram_pages;
1752 val->sharedram = 0;
1753 val->freeram = global_page_state(NR_FREE_PAGES);
1754 val->bufferram = nr_blockdev_pages();
1755 val->totalhigh = totalhigh_pages;
1756 val->freehigh = nr_free_highpages();
1757 val->mem_unit = PAGE_SIZE;
1760 EXPORT_SYMBOL(si_meminfo);
1762 #ifdef CONFIG_NUMA
1763 void si_meminfo_node(struct sysinfo *val, int nid)
1765 pg_data_t *pgdat = NODE_DATA(nid);
1767 val->totalram = pgdat->node_present_pages;
1768 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1769 #ifdef CONFIG_HIGHMEM
1770 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1771 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1772 NR_FREE_PAGES);
1773 #else
1774 val->totalhigh = 0;
1775 val->freehigh = 0;
1776 #endif
1777 val->mem_unit = PAGE_SIZE;
1779 #endif
1781 #define K(x) ((x) << (PAGE_SHIFT-10))
1784 * Show free area list (used inside shift_scroll-lock stuff)
1785 * We also calculate the percentage fragmentation. We do this by counting the
1786 * memory on each free list with the exception of the first item on the list.
1788 void show_free_areas(void)
1790 int cpu;
1791 struct zone *zone;
1793 for_each_zone(zone) {
1794 if (!populated_zone(zone))
1795 continue;
1797 show_node(zone);
1798 printk("%s per-cpu:\n", zone->name);
1800 for_each_online_cpu(cpu) {
1801 struct per_cpu_pageset *pageset;
1803 pageset = zone_pcp(zone, cpu);
1805 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1806 cpu, pageset->pcp.high,
1807 pageset->pcp.batch, pageset->pcp.count);
1811 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1812 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1813 global_page_state(NR_ACTIVE),
1814 global_page_state(NR_INACTIVE),
1815 global_page_state(NR_FILE_DIRTY),
1816 global_page_state(NR_WRITEBACK),
1817 global_page_state(NR_UNSTABLE_NFS),
1818 global_page_state(NR_FREE_PAGES),
1819 global_page_state(NR_SLAB_RECLAIMABLE) +
1820 global_page_state(NR_SLAB_UNRECLAIMABLE),
1821 global_page_state(NR_FILE_MAPPED),
1822 global_page_state(NR_PAGETABLE),
1823 global_page_state(NR_BOUNCE));
1825 for_each_zone(zone) {
1826 int i;
1828 if (!populated_zone(zone))
1829 continue;
1831 show_node(zone);
1832 printk("%s"
1833 " free:%lukB"
1834 " min:%lukB"
1835 " low:%lukB"
1836 " high:%lukB"
1837 " active:%lukB"
1838 " inactive:%lukB"
1839 " present:%lukB"
1840 " pages_scanned:%lu"
1841 " all_unreclaimable? %s"
1842 "\n",
1843 zone->name,
1844 K(zone_page_state(zone, NR_FREE_PAGES)),
1845 K(zone->pages_min),
1846 K(zone->pages_low),
1847 K(zone->pages_high),
1848 K(zone_page_state(zone, NR_ACTIVE)),
1849 K(zone_page_state(zone, NR_INACTIVE)),
1850 K(zone->present_pages),
1851 zone->pages_scanned,
1852 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1854 printk("lowmem_reserve[]:");
1855 for (i = 0; i < MAX_NR_ZONES; i++)
1856 printk(" %lu", zone->lowmem_reserve[i]);
1857 printk("\n");
1860 for_each_zone(zone) {
1861 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1863 if (!populated_zone(zone))
1864 continue;
1866 show_node(zone);
1867 printk("%s: ", zone->name);
1869 spin_lock_irqsave(&zone->lock, flags);
1870 for (order = 0; order < MAX_ORDER; order++) {
1871 nr[order] = zone->free_area[order].nr_free;
1872 total += nr[order] << order;
1874 spin_unlock_irqrestore(&zone->lock, flags);
1875 for (order = 0; order < MAX_ORDER; order++)
1876 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1877 printk("= %lukB\n", K(total));
1880 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1882 show_swap_cache_info();
1886 * Builds allocation fallback zone lists.
1888 * Add all populated zones of a node to the zonelist.
1890 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1891 int nr_zones, enum zone_type zone_type)
1893 struct zone *zone;
1895 BUG_ON(zone_type >= MAX_NR_ZONES);
1896 zone_type++;
1898 do {
1899 zone_type--;
1900 zone = pgdat->node_zones + zone_type;
1901 if (populated_zone(zone)) {
1902 zonelist->zones[nr_zones++] = zone;
1903 check_highest_zone(zone_type);
1906 } while (zone_type);
1907 return nr_zones;
1912 * zonelist_order:
1913 * 0 = automatic detection of better ordering.
1914 * 1 = order by ([node] distance, -zonetype)
1915 * 2 = order by (-zonetype, [node] distance)
1917 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1918 * the same zonelist. So only NUMA can configure this param.
1920 #define ZONELIST_ORDER_DEFAULT 0
1921 #define ZONELIST_ORDER_NODE 1
1922 #define ZONELIST_ORDER_ZONE 2
1924 /* zonelist order in the kernel.
1925 * set_zonelist_order() will set this to NODE or ZONE.
1927 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1928 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1931 #ifdef CONFIG_NUMA
1932 /* The value user specified ....changed by config */
1933 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1934 /* string for sysctl */
1935 #define NUMA_ZONELIST_ORDER_LEN 16
1936 char numa_zonelist_order[16] = "default";
1939 * interface for configure zonelist ordering.
1940 * command line option "numa_zonelist_order"
1941 * = "[dD]efault - default, automatic configuration.
1942 * = "[nN]ode - order by node locality, then by zone within node
1943 * = "[zZ]one - order by zone, then by locality within zone
1946 static int __parse_numa_zonelist_order(char *s)
1948 if (*s == 'd' || *s == 'D') {
1949 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1950 } else if (*s == 'n' || *s == 'N') {
1951 user_zonelist_order = ZONELIST_ORDER_NODE;
1952 } else if (*s == 'z' || *s == 'Z') {
1953 user_zonelist_order = ZONELIST_ORDER_ZONE;
1954 } else {
1955 printk(KERN_WARNING
1956 "Ignoring invalid numa_zonelist_order value: "
1957 "%s\n", s);
1958 return -EINVAL;
1960 return 0;
1963 static __init int setup_numa_zonelist_order(char *s)
1965 if (s)
1966 return __parse_numa_zonelist_order(s);
1967 return 0;
1969 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1972 * sysctl handler for numa_zonelist_order
1974 int numa_zonelist_order_handler(ctl_table *table, int write,
1975 struct file *file, void __user *buffer, size_t *length,
1976 loff_t *ppos)
1978 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1979 int ret;
1981 if (write)
1982 strncpy(saved_string, (char*)table->data,
1983 NUMA_ZONELIST_ORDER_LEN);
1984 ret = proc_dostring(table, write, file, buffer, length, ppos);
1985 if (ret)
1986 return ret;
1987 if (write) {
1988 int oldval = user_zonelist_order;
1989 if (__parse_numa_zonelist_order((char*)table->data)) {
1991 * bogus value. restore saved string
1993 strncpy((char*)table->data, saved_string,
1994 NUMA_ZONELIST_ORDER_LEN);
1995 user_zonelist_order = oldval;
1996 } else if (oldval != user_zonelist_order)
1997 build_all_zonelists();
1999 return 0;
2003 #define MAX_NODE_LOAD (num_online_nodes())
2004 static int node_load[MAX_NUMNODES];
2007 * find_next_best_node - find the next node that should appear in a given node's fallback list
2008 * @node: node whose fallback list we're appending
2009 * @used_node_mask: nodemask_t of already used nodes
2011 * We use a number of factors to determine which is the next node that should
2012 * appear on a given node's fallback list. The node should not have appeared
2013 * already in @node's fallback list, and it should be the next closest node
2014 * according to the distance array (which contains arbitrary distance values
2015 * from each node to each node in the system), and should also prefer nodes
2016 * with no CPUs, since presumably they'll have very little allocation pressure
2017 * on them otherwise.
2018 * It returns -1 if no node is found.
2020 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2022 int n, val;
2023 int min_val = INT_MAX;
2024 int best_node = -1;
2026 /* Use the local node if we haven't already */
2027 if (!node_isset(node, *used_node_mask)) {
2028 node_set(node, *used_node_mask);
2029 return node;
2032 for_each_node_state(n, N_HIGH_MEMORY) {
2033 cpumask_t tmp;
2035 /* Don't want a node to appear more than once */
2036 if (node_isset(n, *used_node_mask))
2037 continue;
2039 /* Use the distance array to find the distance */
2040 val = node_distance(node, n);
2042 /* Penalize nodes under us ("prefer the next node") */
2043 val += (n < node);
2045 /* Give preference to headless and unused nodes */
2046 tmp = node_to_cpumask(n);
2047 if (!cpus_empty(tmp))
2048 val += PENALTY_FOR_NODE_WITH_CPUS;
2050 /* Slight preference for less loaded node */
2051 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2052 val += node_load[n];
2054 if (val < min_val) {
2055 min_val = val;
2056 best_node = n;
2060 if (best_node >= 0)
2061 node_set(best_node, *used_node_mask);
2063 return best_node;
2068 * Build zonelists ordered by node and zones within node.
2069 * This results in maximum locality--normal zone overflows into local
2070 * DMA zone, if any--but risks exhausting DMA zone.
2072 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2074 enum zone_type i;
2075 int j;
2076 struct zonelist *zonelist;
2078 for (i = 0; i < MAX_NR_ZONES; i++) {
2079 zonelist = pgdat->node_zonelists + i;
2080 for (j = 0; zonelist->zones[j] != NULL; j++)
2082 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2083 zonelist->zones[j] = NULL;
2088 * Build gfp_thisnode zonelists
2090 static void build_thisnode_zonelists(pg_data_t *pgdat)
2092 enum zone_type i;
2093 int j;
2094 struct zonelist *zonelist;
2096 for (i = 0; i < MAX_NR_ZONES; i++) {
2097 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2098 j = build_zonelists_node(pgdat, zonelist, 0, i);
2099 zonelist->zones[j] = NULL;
2104 * Build zonelists ordered by zone and nodes within zones.
2105 * This results in conserving DMA zone[s] until all Normal memory is
2106 * exhausted, but results in overflowing to remote node while memory
2107 * may still exist in local DMA zone.
2109 static int node_order[MAX_NUMNODES];
2111 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2113 enum zone_type i;
2114 int pos, j, node;
2115 int zone_type; /* needs to be signed */
2116 struct zone *z;
2117 struct zonelist *zonelist;
2119 for (i = 0; i < MAX_NR_ZONES; i++) {
2120 zonelist = pgdat->node_zonelists + i;
2121 pos = 0;
2122 for (zone_type = i; zone_type >= 0; zone_type--) {
2123 for (j = 0; j < nr_nodes; j++) {
2124 node = node_order[j];
2125 z = &NODE_DATA(node)->node_zones[zone_type];
2126 if (populated_zone(z)) {
2127 zonelist->zones[pos++] = z;
2128 check_highest_zone(zone_type);
2132 zonelist->zones[pos] = NULL;
2136 static int default_zonelist_order(void)
2138 int nid, zone_type;
2139 unsigned long low_kmem_size,total_size;
2140 struct zone *z;
2141 int average_size;
2143 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2144 * If they are really small and used heavily, the system can fall
2145 * into OOM very easily.
2146 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2148 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2149 low_kmem_size = 0;
2150 total_size = 0;
2151 for_each_online_node(nid) {
2152 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2153 z = &NODE_DATA(nid)->node_zones[zone_type];
2154 if (populated_zone(z)) {
2155 if (zone_type < ZONE_NORMAL)
2156 low_kmem_size += z->present_pages;
2157 total_size += z->present_pages;
2161 if (!low_kmem_size || /* there are no DMA area. */
2162 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2163 return ZONELIST_ORDER_NODE;
2165 * look into each node's config.
2166 * If there is a node whose DMA/DMA32 memory is very big area on
2167 * local memory, NODE_ORDER may be suitable.
2169 average_size = total_size /
2170 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2171 for_each_online_node(nid) {
2172 low_kmem_size = 0;
2173 total_size = 0;
2174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2175 z = &NODE_DATA(nid)->node_zones[zone_type];
2176 if (populated_zone(z)) {
2177 if (zone_type < ZONE_NORMAL)
2178 low_kmem_size += z->present_pages;
2179 total_size += z->present_pages;
2182 if (low_kmem_size &&
2183 total_size > average_size && /* ignore small node */
2184 low_kmem_size > total_size * 70/100)
2185 return ZONELIST_ORDER_NODE;
2187 return ZONELIST_ORDER_ZONE;
2190 static void set_zonelist_order(void)
2192 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2193 current_zonelist_order = default_zonelist_order();
2194 else
2195 current_zonelist_order = user_zonelist_order;
2198 static void build_zonelists(pg_data_t *pgdat)
2200 int j, node, load;
2201 enum zone_type i;
2202 nodemask_t used_mask;
2203 int local_node, prev_node;
2204 struct zonelist *zonelist;
2205 int order = current_zonelist_order;
2207 /* initialize zonelists */
2208 for (i = 0; i < MAX_ZONELISTS; i++) {
2209 zonelist = pgdat->node_zonelists + i;
2210 zonelist->zones[0] = NULL;
2213 /* NUMA-aware ordering of nodes */
2214 local_node = pgdat->node_id;
2215 load = num_online_nodes();
2216 prev_node = local_node;
2217 nodes_clear(used_mask);
2219 memset(node_load, 0, sizeof(node_load));
2220 memset(node_order, 0, sizeof(node_order));
2221 j = 0;
2223 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2224 int distance = node_distance(local_node, node);
2227 * If another node is sufficiently far away then it is better
2228 * to reclaim pages in a zone before going off node.
2230 if (distance > RECLAIM_DISTANCE)
2231 zone_reclaim_mode = 1;
2234 * We don't want to pressure a particular node.
2235 * So adding penalty to the first node in same
2236 * distance group to make it round-robin.
2238 if (distance != node_distance(local_node, prev_node))
2239 node_load[node] = load;
2241 prev_node = node;
2242 load--;
2243 if (order == ZONELIST_ORDER_NODE)
2244 build_zonelists_in_node_order(pgdat, node);
2245 else
2246 node_order[j++] = node; /* remember order */
2249 if (order == ZONELIST_ORDER_ZONE) {
2250 /* calculate node order -- i.e., DMA last! */
2251 build_zonelists_in_zone_order(pgdat, j);
2254 build_thisnode_zonelists(pgdat);
2257 /* Construct the zonelist performance cache - see further mmzone.h */
2258 static void build_zonelist_cache(pg_data_t *pgdat)
2260 int i;
2262 for (i = 0; i < MAX_NR_ZONES; i++) {
2263 struct zonelist *zonelist;
2264 struct zonelist_cache *zlc;
2265 struct zone **z;
2267 zonelist = pgdat->node_zonelists + i;
2268 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2269 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2270 for (z = zonelist->zones; *z; z++)
2271 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2276 #else /* CONFIG_NUMA */
2278 static void set_zonelist_order(void)
2280 current_zonelist_order = ZONELIST_ORDER_ZONE;
2283 static void build_zonelists(pg_data_t *pgdat)
2285 int node, local_node;
2286 enum zone_type i,j;
2288 local_node = pgdat->node_id;
2289 for (i = 0; i < MAX_NR_ZONES; i++) {
2290 struct zonelist *zonelist;
2292 zonelist = pgdat->node_zonelists + i;
2294 j = build_zonelists_node(pgdat, zonelist, 0, i);
2296 * Now we build the zonelist so that it contains the zones
2297 * of all the other nodes.
2298 * We don't want to pressure a particular node, so when
2299 * building the zones for node N, we make sure that the
2300 * zones coming right after the local ones are those from
2301 * node N+1 (modulo N)
2303 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2304 if (!node_online(node))
2305 continue;
2306 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2308 for (node = 0; node < local_node; node++) {
2309 if (!node_online(node))
2310 continue;
2311 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2314 zonelist->zones[j] = NULL;
2318 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2319 static void build_zonelist_cache(pg_data_t *pgdat)
2321 int i;
2323 for (i = 0; i < MAX_NR_ZONES; i++)
2324 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2327 #endif /* CONFIG_NUMA */
2329 /* return values int ....just for stop_machine_run() */
2330 static int __build_all_zonelists(void *dummy)
2332 int nid;
2334 for_each_online_node(nid) {
2335 pg_data_t *pgdat = NODE_DATA(nid);
2337 build_zonelists(pgdat);
2338 build_zonelist_cache(pgdat);
2340 return 0;
2343 void build_all_zonelists(void)
2345 set_zonelist_order();
2347 if (system_state == SYSTEM_BOOTING) {
2348 __build_all_zonelists(NULL);
2349 cpuset_init_current_mems_allowed();
2350 } else {
2351 /* we have to stop all cpus to guarantee there is no user
2352 of zonelist */
2353 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2354 /* cpuset refresh routine should be here */
2356 vm_total_pages = nr_free_pagecache_pages();
2358 * Disable grouping by mobility if the number of pages in the
2359 * system is too low to allow the mechanism to work. It would be
2360 * more accurate, but expensive to check per-zone. This check is
2361 * made on memory-hotadd so a system can start with mobility
2362 * disabled and enable it later
2364 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2365 page_group_by_mobility_disabled = 1;
2366 else
2367 page_group_by_mobility_disabled = 0;
2369 printk("Built %i zonelists in %s order, mobility grouping %s. "
2370 "Total pages: %ld\n",
2371 num_online_nodes(),
2372 zonelist_order_name[current_zonelist_order],
2373 page_group_by_mobility_disabled ? "off" : "on",
2374 vm_total_pages);
2375 #ifdef CONFIG_NUMA
2376 printk("Policy zone: %s\n", zone_names[policy_zone]);
2377 #endif
2381 * Helper functions to size the waitqueue hash table.
2382 * Essentially these want to choose hash table sizes sufficiently
2383 * large so that collisions trying to wait on pages are rare.
2384 * But in fact, the number of active page waitqueues on typical
2385 * systems is ridiculously low, less than 200. So this is even
2386 * conservative, even though it seems large.
2388 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2389 * waitqueues, i.e. the size of the waitq table given the number of pages.
2391 #define PAGES_PER_WAITQUEUE 256
2393 #ifndef CONFIG_MEMORY_HOTPLUG
2394 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2396 unsigned long size = 1;
2398 pages /= PAGES_PER_WAITQUEUE;
2400 while (size < pages)
2401 size <<= 1;
2404 * Once we have dozens or even hundreds of threads sleeping
2405 * on IO we've got bigger problems than wait queue collision.
2406 * Limit the size of the wait table to a reasonable size.
2408 size = min(size, 4096UL);
2410 return max(size, 4UL);
2412 #else
2414 * A zone's size might be changed by hot-add, so it is not possible to determine
2415 * a suitable size for its wait_table. So we use the maximum size now.
2417 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2419 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2420 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2421 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2423 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2424 * or more by the traditional way. (See above). It equals:
2426 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2427 * ia64(16K page size) : = ( 8G + 4M)byte.
2428 * powerpc (64K page size) : = (32G +16M)byte.
2430 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2432 return 4096UL;
2434 #endif
2437 * This is an integer logarithm so that shifts can be used later
2438 * to extract the more random high bits from the multiplicative
2439 * hash function before the remainder is taken.
2441 static inline unsigned long wait_table_bits(unsigned long size)
2443 return ffz(~size);
2446 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2449 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2450 * of blocks reserved is based on zone->pages_min. The memory within the
2451 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2452 * higher will lead to a bigger reserve which will get freed as contiguous
2453 * blocks as reclaim kicks in
2455 static void setup_zone_migrate_reserve(struct zone *zone)
2457 unsigned long start_pfn, pfn, end_pfn;
2458 struct page *page;
2459 unsigned long reserve, block_migratetype;
2461 /* Get the start pfn, end pfn and the number of blocks to reserve */
2462 start_pfn = zone->zone_start_pfn;
2463 end_pfn = start_pfn + zone->spanned_pages;
2464 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2465 pageblock_order;
2467 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2468 if (!pfn_valid(pfn))
2469 continue;
2470 page = pfn_to_page(pfn);
2472 /* Blocks with reserved pages will never free, skip them. */
2473 if (PageReserved(page))
2474 continue;
2476 block_migratetype = get_pageblock_migratetype(page);
2478 /* If this block is reserved, account for it */
2479 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2480 reserve--;
2481 continue;
2484 /* Suitable for reserving if this block is movable */
2485 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2486 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2487 move_freepages_block(zone, page, MIGRATE_RESERVE);
2488 reserve--;
2489 continue;
2493 * If the reserve is met and this is a previous reserved block,
2494 * take it back
2496 if (block_migratetype == MIGRATE_RESERVE) {
2497 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2498 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2504 * Initially all pages are reserved - free ones are freed
2505 * up by free_all_bootmem() once the early boot process is
2506 * done. Non-atomic initialization, single-pass.
2508 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2509 unsigned long start_pfn, enum memmap_context context)
2511 struct page *page;
2512 unsigned long end_pfn = start_pfn + size;
2513 unsigned long pfn;
2515 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2517 * There can be holes in boot-time mem_map[]s
2518 * handed to this function. They do not
2519 * exist on hotplugged memory.
2521 if (context == MEMMAP_EARLY) {
2522 if (!early_pfn_valid(pfn))
2523 continue;
2524 if (!early_pfn_in_nid(pfn, nid))
2525 continue;
2527 page = pfn_to_page(pfn);
2528 set_page_links(page, zone, nid, pfn);
2529 init_page_count(page);
2530 reset_page_mapcount(page);
2531 page_assign_page_cgroup(page, NULL);
2532 SetPageReserved(page);
2535 * Mark the block movable so that blocks are reserved for
2536 * movable at startup. This will force kernel allocations
2537 * to reserve their blocks rather than leaking throughout
2538 * the address space during boot when many long-lived
2539 * kernel allocations are made. Later some blocks near
2540 * the start are marked MIGRATE_RESERVE by
2541 * setup_zone_migrate_reserve()
2543 if ((pfn & (pageblock_nr_pages-1)))
2544 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2546 INIT_LIST_HEAD(&page->lru);
2547 #ifdef WANT_PAGE_VIRTUAL
2548 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2549 if (!is_highmem_idx(zone))
2550 set_page_address(page, __va(pfn << PAGE_SHIFT));
2551 #endif
2555 static void __meminit zone_init_free_lists(struct zone *zone)
2557 int order, t;
2558 for_each_migratetype_order(order, t) {
2559 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2560 zone->free_area[order].nr_free = 0;
2564 #ifndef __HAVE_ARCH_MEMMAP_INIT
2565 #define memmap_init(size, nid, zone, start_pfn) \
2566 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2567 #endif
2569 static int zone_batchsize(struct zone *zone)
2571 int batch;
2574 * The per-cpu-pages pools are set to around 1000th of the
2575 * size of the zone. But no more than 1/2 of a meg.
2577 * OK, so we don't know how big the cache is. So guess.
2579 batch = zone->present_pages / 1024;
2580 if (batch * PAGE_SIZE > 512 * 1024)
2581 batch = (512 * 1024) / PAGE_SIZE;
2582 batch /= 4; /* We effectively *= 4 below */
2583 if (batch < 1)
2584 batch = 1;
2587 * Clamp the batch to a 2^n - 1 value. Having a power
2588 * of 2 value was found to be more likely to have
2589 * suboptimal cache aliasing properties in some cases.
2591 * For example if 2 tasks are alternately allocating
2592 * batches of pages, one task can end up with a lot
2593 * of pages of one half of the possible page colors
2594 * and the other with pages of the other colors.
2596 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2598 return batch;
2601 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2603 struct per_cpu_pages *pcp;
2605 memset(p, 0, sizeof(*p));
2607 pcp = &p->pcp;
2608 pcp->count = 0;
2609 pcp->high = 6 * batch;
2610 pcp->batch = max(1UL, 1 * batch);
2611 INIT_LIST_HEAD(&pcp->list);
2615 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2616 * to the value high for the pageset p.
2619 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2620 unsigned long high)
2622 struct per_cpu_pages *pcp;
2624 pcp = &p->pcp;
2625 pcp->high = high;
2626 pcp->batch = max(1UL, high/4);
2627 if ((high/4) > (PAGE_SHIFT * 8))
2628 pcp->batch = PAGE_SHIFT * 8;
2632 #ifdef CONFIG_NUMA
2634 * Boot pageset table. One per cpu which is going to be used for all
2635 * zones and all nodes. The parameters will be set in such a way
2636 * that an item put on a list will immediately be handed over to
2637 * the buddy list. This is safe since pageset manipulation is done
2638 * with interrupts disabled.
2640 * Some NUMA counter updates may also be caught by the boot pagesets.
2642 * The boot_pagesets must be kept even after bootup is complete for
2643 * unused processors and/or zones. They do play a role for bootstrapping
2644 * hotplugged processors.
2646 * zoneinfo_show() and maybe other functions do
2647 * not check if the processor is online before following the pageset pointer.
2648 * Other parts of the kernel may not check if the zone is available.
2650 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2653 * Dynamically allocate memory for the
2654 * per cpu pageset array in struct zone.
2656 static int __cpuinit process_zones(int cpu)
2658 struct zone *zone, *dzone;
2659 int node = cpu_to_node(cpu);
2661 node_set_state(node, N_CPU); /* this node has a cpu */
2663 for_each_zone(zone) {
2665 if (!populated_zone(zone))
2666 continue;
2668 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2669 GFP_KERNEL, node);
2670 if (!zone_pcp(zone, cpu))
2671 goto bad;
2673 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2675 if (percpu_pagelist_fraction)
2676 setup_pagelist_highmark(zone_pcp(zone, cpu),
2677 (zone->present_pages / percpu_pagelist_fraction));
2680 return 0;
2681 bad:
2682 for_each_zone(dzone) {
2683 if (!populated_zone(dzone))
2684 continue;
2685 if (dzone == zone)
2686 break;
2687 kfree(zone_pcp(dzone, cpu));
2688 zone_pcp(dzone, cpu) = NULL;
2690 return -ENOMEM;
2693 static inline void free_zone_pagesets(int cpu)
2695 struct zone *zone;
2697 for_each_zone(zone) {
2698 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2700 /* Free per_cpu_pageset if it is slab allocated */
2701 if (pset != &boot_pageset[cpu])
2702 kfree(pset);
2703 zone_pcp(zone, cpu) = NULL;
2707 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2708 unsigned long action,
2709 void *hcpu)
2711 int cpu = (long)hcpu;
2712 int ret = NOTIFY_OK;
2714 switch (action) {
2715 case CPU_UP_PREPARE:
2716 case CPU_UP_PREPARE_FROZEN:
2717 if (process_zones(cpu))
2718 ret = NOTIFY_BAD;
2719 break;
2720 case CPU_UP_CANCELED:
2721 case CPU_UP_CANCELED_FROZEN:
2722 case CPU_DEAD:
2723 case CPU_DEAD_FROZEN:
2724 free_zone_pagesets(cpu);
2725 break;
2726 default:
2727 break;
2729 return ret;
2732 static struct notifier_block __cpuinitdata pageset_notifier =
2733 { &pageset_cpuup_callback, NULL, 0 };
2735 void __init setup_per_cpu_pageset(void)
2737 int err;
2739 /* Initialize per_cpu_pageset for cpu 0.
2740 * A cpuup callback will do this for every cpu
2741 * as it comes online
2743 err = process_zones(smp_processor_id());
2744 BUG_ON(err);
2745 register_cpu_notifier(&pageset_notifier);
2748 #endif
2750 static noinline __init_refok
2751 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2753 int i;
2754 struct pglist_data *pgdat = zone->zone_pgdat;
2755 size_t alloc_size;
2758 * The per-page waitqueue mechanism uses hashed waitqueues
2759 * per zone.
2761 zone->wait_table_hash_nr_entries =
2762 wait_table_hash_nr_entries(zone_size_pages);
2763 zone->wait_table_bits =
2764 wait_table_bits(zone->wait_table_hash_nr_entries);
2765 alloc_size = zone->wait_table_hash_nr_entries
2766 * sizeof(wait_queue_head_t);
2768 if (system_state == SYSTEM_BOOTING) {
2769 zone->wait_table = (wait_queue_head_t *)
2770 alloc_bootmem_node(pgdat, alloc_size);
2771 } else {
2773 * This case means that a zone whose size was 0 gets new memory
2774 * via memory hot-add.
2775 * But it may be the case that a new node was hot-added. In
2776 * this case vmalloc() will not be able to use this new node's
2777 * memory - this wait_table must be initialized to use this new
2778 * node itself as well.
2779 * To use this new node's memory, further consideration will be
2780 * necessary.
2782 zone->wait_table = vmalloc(alloc_size);
2784 if (!zone->wait_table)
2785 return -ENOMEM;
2787 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2788 init_waitqueue_head(zone->wait_table + i);
2790 return 0;
2793 static __meminit void zone_pcp_init(struct zone *zone)
2795 int cpu;
2796 unsigned long batch = zone_batchsize(zone);
2798 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2799 #ifdef CONFIG_NUMA
2800 /* Early boot. Slab allocator not functional yet */
2801 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2802 setup_pageset(&boot_pageset[cpu],0);
2803 #else
2804 setup_pageset(zone_pcp(zone,cpu), batch);
2805 #endif
2807 if (zone->present_pages)
2808 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2809 zone->name, zone->present_pages, batch);
2812 __meminit int init_currently_empty_zone(struct zone *zone,
2813 unsigned long zone_start_pfn,
2814 unsigned long size,
2815 enum memmap_context context)
2817 struct pglist_data *pgdat = zone->zone_pgdat;
2818 int ret;
2819 ret = zone_wait_table_init(zone, size);
2820 if (ret)
2821 return ret;
2822 pgdat->nr_zones = zone_idx(zone) + 1;
2824 zone->zone_start_pfn = zone_start_pfn;
2826 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2828 zone_init_free_lists(zone);
2830 return 0;
2833 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2835 * Basic iterator support. Return the first range of PFNs for a node
2836 * Note: nid == MAX_NUMNODES returns first region regardless of node
2838 static int __meminit first_active_region_index_in_nid(int nid)
2840 int i;
2842 for (i = 0; i < nr_nodemap_entries; i++)
2843 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2844 return i;
2846 return -1;
2850 * Basic iterator support. Return the next active range of PFNs for a node
2851 * Note: nid == MAX_NUMNODES returns next region regardless of node
2853 static int __meminit next_active_region_index_in_nid(int index, int nid)
2855 for (index = index + 1; index < nr_nodemap_entries; index++)
2856 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2857 return index;
2859 return -1;
2862 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2864 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2865 * Architectures may implement their own version but if add_active_range()
2866 * was used and there are no special requirements, this is a convenient
2867 * alternative
2869 int __meminit early_pfn_to_nid(unsigned long pfn)
2871 int i;
2873 for (i = 0; i < nr_nodemap_entries; i++) {
2874 unsigned long start_pfn = early_node_map[i].start_pfn;
2875 unsigned long end_pfn = early_node_map[i].end_pfn;
2877 if (start_pfn <= pfn && pfn < end_pfn)
2878 return early_node_map[i].nid;
2881 return 0;
2883 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2885 /* Basic iterator support to walk early_node_map[] */
2886 #define for_each_active_range_index_in_nid(i, nid) \
2887 for (i = first_active_region_index_in_nid(nid); i != -1; \
2888 i = next_active_region_index_in_nid(i, nid))
2891 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2892 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2893 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2895 * If an architecture guarantees that all ranges registered with
2896 * add_active_ranges() contain no holes and may be freed, this
2897 * this function may be used instead of calling free_bootmem() manually.
2899 void __init free_bootmem_with_active_regions(int nid,
2900 unsigned long max_low_pfn)
2902 int i;
2904 for_each_active_range_index_in_nid(i, nid) {
2905 unsigned long size_pages = 0;
2906 unsigned long end_pfn = early_node_map[i].end_pfn;
2908 if (early_node_map[i].start_pfn >= max_low_pfn)
2909 continue;
2911 if (end_pfn > max_low_pfn)
2912 end_pfn = max_low_pfn;
2914 size_pages = end_pfn - early_node_map[i].start_pfn;
2915 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2916 PFN_PHYS(early_node_map[i].start_pfn),
2917 size_pages << PAGE_SHIFT);
2922 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2923 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2925 * If an architecture guarantees that all ranges registered with
2926 * add_active_ranges() contain no holes and may be freed, this
2927 * function may be used instead of calling memory_present() manually.
2929 void __init sparse_memory_present_with_active_regions(int nid)
2931 int i;
2933 for_each_active_range_index_in_nid(i, nid)
2934 memory_present(early_node_map[i].nid,
2935 early_node_map[i].start_pfn,
2936 early_node_map[i].end_pfn);
2940 * push_node_boundaries - Push node boundaries to at least the requested boundary
2941 * @nid: The nid of the node to push the boundary for
2942 * @start_pfn: The start pfn of the node
2943 * @end_pfn: The end pfn of the node
2945 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2946 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2947 * be hotplugged even though no physical memory exists. This function allows
2948 * an arch to push out the node boundaries so mem_map is allocated that can
2949 * be used later.
2951 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2952 void __init push_node_boundaries(unsigned int nid,
2953 unsigned long start_pfn, unsigned long end_pfn)
2955 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2956 nid, start_pfn, end_pfn);
2958 /* Initialise the boundary for this node if necessary */
2959 if (node_boundary_end_pfn[nid] == 0)
2960 node_boundary_start_pfn[nid] = -1UL;
2962 /* Update the boundaries */
2963 if (node_boundary_start_pfn[nid] > start_pfn)
2964 node_boundary_start_pfn[nid] = start_pfn;
2965 if (node_boundary_end_pfn[nid] < end_pfn)
2966 node_boundary_end_pfn[nid] = end_pfn;
2969 /* If necessary, push the node boundary out for reserve hotadd */
2970 static void __meminit account_node_boundary(unsigned int nid,
2971 unsigned long *start_pfn, unsigned long *end_pfn)
2973 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2974 nid, *start_pfn, *end_pfn);
2976 /* Return if boundary information has not been provided */
2977 if (node_boundary_end_pfn[nid] == 0)
2978 return;
2980 /* Check the boundaries and update if necessary */
2981 if (node_boundary_start_pfn[nid] < *start_pfn)
2982 *start_pfn = node_boundary_start_pfn[nid];
2983 if (node_boundary_end_pfn[nid] > *end_pfn)
2984 *end_pfn = node_boundary_end_pfn[nid];
2986 #else
2987 void __init push_node_boundaries(unsigned int nid,
2988 unsigned long start_pfn, unsigned long end_pfn) {}
2990 static void __meminit account_node_boundary(unsigned int nid,
2991 unsigned long *start_pfn, unsigned long *end_pfn) {}
2992 #endif
2996 * get_pfn_range_for_nid - Return the start and end page frames for a node
2997 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2998 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2999 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3001 * It returns the start and end page frame of a node based on information
3002 * provided by an arch calling add_active_range(). If called for a node
3003 * with no available memory, a warning is printed and the start and end
3004 * PFNs will be 0.
3006 void __meminit get_pfn_range_for_nid(unsigned int nid,
3007 unsigned long *start_pfn, unsigned long *end_pfn)
3009 int i;
3010 *start_pfn = -1UL;
3011 *end_pfn = 0;
3013 for_each_active_range_index_in_nid(i, nid) {
3014 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3015 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3018 if (*start_pfn == -1UL)
3019 *start_pfn = 0;
3021 /* Push the node boundaries out if requested */
3022 account_node_boundary(nid, start_pfn, end_pfn);
3026 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3027 * assumption is made that zones within a node are ordered in monotonic
3028 * increasing memory addresses so that the "highest" populated zone is used
3030 void __init find_usable_zone_for_movable(void)
3032 int zone_index;
3033 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3034 if (zone_index == ZONE_MOVABLE)
3035 continue;
3037 if (arch_zone_highest_possible_pfn[zone_index] >
3038 arch_zone_lowest_possible_pfn[zone_index])
3039 break;
3042 VM_BUG_ON(zone_index == -1);
3043 movable_zone = zone_index;
3047 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3048 * because it is sized independant of architecture. Unlike the other zones,
3049 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3050 * in each node depending on the size of each node and how evenly kernelcore
3051 * is distributed. This helper function adjusts the zone ranges
3052 * provided by the architecture for a given node by using the end of the
3053 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3054 * zones within a node are in order of monotonic increases memory addresses
3056 void __meminit adjust_zone_range_for_zone_movable(int nid,
3057 unsigned long zone_type,
3058 unsigned long node_start_pfn,
3059 unsigned long node_end_pfn,
3060 unsigned long *zone_start_pfn,
3061 unsigned long *zone_end_pfn)
3063 /* Only adjust if ZONE_MOVABLE is on this node */
3064 if (zone_movable_pfn[nid]) {
3065 /* Size ZONE_MOVABLE */
3066 if (zone_type == ZONE_MOVABLE) {
3067 *zone_start_pfn = zone_movable_pfn[nid];
3068 *zone_end_pfn = min(node_end_pfn,
3069 arch_zone_highest_possible_pfn[movable_zone]);
3071 /* Adjust for ZONE_MOVABLE starting within this range */
3072 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3073 *zone_end_pfn > zone_movable_pfn[nid]) {
3074 *zone_end_pfn = zone_movable_pfn[nid];
3076 /* Check if this whole range is within ZONE_MOVABLE */
3077 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3078 *zone_start_pfn = *zone_end_pfn;
3083 * Return the number of pages a zone spans in a node, including holes
3084 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3086 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3087 unsigned long zone_type,
3088 unsigned long *ignored)
3090 unsigned long node_start_pfn, node_end_pfn;
3091 unsigned long zone_start_pfn, zone_end_pfn;
3093 /* Get the start and end of the node and zone */
3094 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3095 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3096 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3097 adjust_zone_range_for_zone_movable(nid, zone_type,
3098 node_start_pfn, node_end_pfn,
3099 &zone_start_pfn, &zone_end_pfn);
3101 /* Check that this node has pages within the zone's required range */
3102 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3103 return 0;
3105 /* Move the zone boundaries inside the node if necessary */
3106 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3107 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3109 /* Return the spanned pages */
3110 return zone_end_pfn - zone_start_pfn;
3114 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3115 * then all holes in the requested range will be accounted for.
3117 unsigned long __meminit __absent_pages_in_range(int nid,
3118 unsigned long range_start_pfn,
3119 unsigned long range_end_pfn)
3121 int i = 0;
3122 unsigned long prev_end_pfn = 0, hole_pages = 0;
3123 unsigned long start_pfn;
3125 /* Find the end_pfn of the first active range of pfns in the node */
3126 i = first_active_region_index_in_nid(nid);
3127 if (i == -1)
3128 return 0;
3130 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3132 /* Account for ranges before physical memory on this node */
3133 if (early_node_map[i].start_pfn > range_start_pfn)
3134 hole_pages = prev_end_pfn - range_start_pfn;
3136 /* Find all holes for the zone within the node */
3137 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3139 /* No need to continue if prev_end_pfn is outside the zone */
3140 if (prev_end_pfn >= range_end_pfn)
3141 break;
3143 /* Make sure the end of the zone is not within the hole */
3144 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3145 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3147 /* Update the hole size cound and move on */
3148 if (start_pfn > range_start_pfn) {
3149 BUG_ON(prev_end_pfn > start_pfn);
3150 hole_pages += start_pfn - prev_end_pfn;
3152 prev_end_pfn = early_node_map[i].end_pfn;
3155 /* Account for ranges past physical memory on this node */
3156 if (range_end_pfn > prev_end_pfn)
3157 hole_pages += range_end_pfn -
3158 max(range_start_pfn, prev_end_pfn);
3160 return hole_pages;
3164 * absent_pages_in_range - Return number of page frames in holes within a range
3165 * @start_pfn: The start PFN to start searching for holes
3166 * @end_pfn: The end PFN to stop searching for holes
3168 * It returns the number of pages frames in memory holes within a range.
3170 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3171 unsigned long end_pfn)
3173 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3176 /* Return the number of page frames in holes in a zone on a node */
3177 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3178 unsigned long zone_type,
3179 unsigned long *ignored)
3181 unsigned long node_start_pfn, node_end_pfn;
3182 unsigned long zone_start_pfn, zone_end_pfn;
3184 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3185 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3186 node_start_pfn);
3187 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3188 node_end_pfn);
3190 adjust_zone_range_for_zone_movable(nid, zone_type,
3191 node_start_pfn, node_end_pfn,
3192 &zone_start_pfn, &zone_end_pfn);
3193 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3196 #else
3197 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3198 unsigned long zone_type,
3199 unsigned long *zones_size)
3201 return zones_size[zone_type];
3204 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3205 unsigned long zone_type,
3206 unsigned long *zholes_size)
3208 if (!zholes_size)
3209 return 0;
3211 return zholes_size[zone_type];
3214 #endif
3216 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3217 unsigned long *zones_size, unsigned long *zholes_size)
3219 unsigned long realtotalpages, totalpages = 0;
3220 enum zone_type i;
3222 for (i = 0; i < MAX_NR_ZONES; i++)
3223 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3224 zones_size);
3225 pgdat->node_spanned_pages = totalpages;
3227 realtotalpages = totalpages;
3228 for (i = 0; i < MAX_NR_ZONES; i++)
3229 realtotalpages -=
3230 zone_absent_pages_in_node(pgdat->node_id, i,
3231 zholes_size);
3232 pgdat->node_present_pages = realtotalpages;
3233 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3234 realtotalpages);
3237 #ifndef CONFIG_SPARSEMEM
3239 * Calculate the size of the zone->blockflags rounded to an unsigned long
3240 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3241 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3242 * round what is now in bits to nearest long in bits, then return it in
3243 * bytes.
3245 static unsigned long __init usemap_size(unsigned long zonesize)
3247 unsigned long usemapsize;
3249 usemapsize = roundup(zonesize, pageblock_nr_pages);
3250 usemapsize = usemapsize >> pageblock_order;
3251 usemapsize *= NR_PAGEBLOCK_BITS;
3252 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3254 return usemapsize / 8;
3257 static void __init setup_usemap(struct pglist_data *pgdat,
3258 struct zone *zone, unsigned long zonesize)
3260 unsigned long usemapsize = usemap_size(zonesize);
3261 zone->pageblock_flags = NULL;
3262 if (usemapsize) {
3263 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3264 memset(zone->pageblock_flags, 0, usemapsize);
3267 #else
3268 static void inline setup_usemap(struct pglist_data *pgdat,
3269 struct zone *zone, unsigned long zonesize) {}
3270 #endif /* CONFIG_SPARSEMEM */
3272 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3274 /* Return a sensible default order for the pageblock size. */
3275 static inline int pageblock_default_order(void)
3277 if (HPAGE_SHIFT > PAGE_SHIFT)
3278 return HUGETLB_PAGE_ORDER;
3280 return MAX_ORDER-1;
3283 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3284 static inline void __init set_pageblock_order(unsigned int order)
3286 /* Check that pageblock_nr_pages has not already been setup */
3287 if (pageblock_order)
3288 return;
3291 * Assume the largest contiguous order of interest is a huge page.
3292 * This value may be variable depending on boot parameters on IA64
3294 pageblock_order = order;
3296 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3299 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3300 * and pageblock_default_order() are unused as pageblock_order is set
3301 * at compile-time. See include/linux/pageblock-flags.h for the values of
3302 * pageblock_order based on the kernel config
3304 static inline int pageblock_default_order(unsigned int order)
3306 return MAX_ORDER-1;
3308 #define set_pageblock_order(x) do {} while (0)
3310 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3313 * Set up the zone data structures:
3314 * - mark all pages reserved
3315 * - mark all memory queues empty
3316 * - clear the memory bitmaps
3318 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3319 unsigned long *zones_size, unsigned long *zholes_size)
3321 enum zone_type j;
3322 int nid = pgdat->node_id;
3323 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3324 int ret;
3326 pgdat_resize_init(pgdat);
3327 pgdat->nr_zones = 0;
3328 init_waitqueue_head(&pgdat->kswapd_wait);
3329 pgdat->kswapd_max_order = 0;
3331 for (j = 0; j < MAX_NR_ZONES; j++) {
3332 struct zone *zone = pgdat->node_zones + j;
3333 unsigned long size, realsize, memmap_pages;
3335 size = zone_spanned_pages_in_node(nid, j, zones_size);
3336 realsize = size - zone_absent_pages_in_node(nid, j,
3337 zholes_size);
3340 * Adjust realsize so that it accounts for how much memory
3341 * is used by this zone for memmap. This affects the watermark
3342 * and per-cpu initialisations
3344 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3345 if (realsize >= memmap_pages) {
3346 realsize -= memmap_pages;
3347 printk(KERN_DEBUG
3348 " %s zone: %lu pages used for memmap\n",
3349 zone_names[j], memmap_pages);
3350 } else
3351 printk(KERN_WARNING
3352 " %s zone: %lu pages exceeds realsize %lu\n",
3353 zone_names[j], memmap_pages, realsize);
3355 /* Account for reserved pages */
3356 if (j == 0 && realsize > dma_reserve) {
3357 realsize -= dma_reserve;
3358 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3359 zone_names[0], dma_reserve);
3362 if (!is_highmem_idx(j))
3363 nr_kernel_pages += realsize;
3364 nr_all_pages += realsize;
3366 zone->spanned_pages = size;
3367 zone->present_pages = realsize;
3368 #ifdef CONFIG_NUMA
3369 zone->node = nid;
3370 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3371 / 100;
3372 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3373 #endif
3374 zone->name = zone_names[j];
3375 spin_lock_init(&zone->lock);
3376 spin_lock_init(&zone->lru_lock);
3377 zone_seqlock_init(zone);
3378 zone->zone_pgdat = pgdat;
3380 zone->prev_priority = DEF_PRIORITY;
3382 zone_pcp_init(zone);
3383 INIT_LIST_HEAD(&zone->active_list);
3384 INIT_LIST_HEAD(&zone->inactive_list);
3385 zone->nr_scan_active = 0;
3386 zone->nr_scan_inactive = 0;
3387 zap_zone_vm_stats(zone);
3388 zone->flags = 0;
3389 if (!size)
3390 continue;
3392 set_pageblock_order(pageblock_default_order());
3393 setup_usemap(pgdat, zone, size);
3394 ret = init_currently_empty_zone(zone, zone_start_pfn,
3395 size, MEMMAP_EARLY);
3396 BUG_ON(ret);
3397 zone_start_pfn += size;
3401 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3403 /* Skip empty nodes */
3404 if (!pgdat->node_spanned_pages)
3405 return;
3407 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3408 /* ia64 gets its own node_mem_map, before this, without bootmem */
3409 if (!pgdat->node_mem_map) {
3410 unsigned long size, start, end;
3411 struct page *map;
3414 * The zone's endpoints aren't required to be MAX_ORDER
3415 * aligned but the node_mem_map endpoints must be in order
3416 * for the buddy allocator to function correctly.
3418 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3419 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3420 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3421 size = (end - start) * sizeof(struct page);
3422 map = alloc_remap(pgdat->node_id, size);
3423 if (!map)
3424 map = alloc_bootmem_node(pgdat, size);
3425 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3427 #ifndef CONFIG_NEED_MULTIPLE_NODES
3429 * With no DISCONTIG, the global mem_map is just set as node 0's
3431 if (pgdat == NODE_DATA(0)) {
3432 mem_map = NODE_DATA(0)->node_mem_map;
3433 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3434 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3435 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3436 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3438 #endif
3439 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3442 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3443 unsigned long *zones_size, unsigned long node_start_pfn,
3444 unsigned long *zholes_size)
3446 pgdat->node_id = nid;
3447 pgdat->node_start_pfn = node_start_pfn;
3448 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3450 alloc_node_mem_map(pgdat);
3452 free_area_init_core(pgdat, zones_size, zholes_size);
3455 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3457 #if MAX_NUMNODES > 1
3459 * Figure out the number of possible node ids.
3461 static void __init setup_nr_node_ids(void)
3463 unsigned int node;
3464 unsigned int highest = 0;
3466 for_each_node_mask(node, node_possible_map)
3467 highest = node;
3468 nr_node_ids = highest + 1;
3470 #else
3471 static inline void setup_nr_node_ids(void)
3474 #endif
3477 * add_active_range - Register a range of PFNs backed by physical memory
3478 * @nid: The node ID the range resides on
3479 * @start_pfn: The start PFN of the available physical memory
3480 * @end_pfn: The end PFN of the available physical memory
3482 * These ranges are stored in an early_node_map[] and later used by
3483 * free_area_init_nodes() to calculate zone sizes and holes. If the
3484 * range spans a memory hole, it is up to the architecture to ensure
3485 * the memory is not freed by the bootmem allocator. If possible
3486 * the range being registered will be merged with existing ranges.
3488 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3489 unsigned long end_pfn)
3491 int i;
3493 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3494 "%d entries of %d used\n",
3495 nid, start_pfn, end_pfn,
3496 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3498 /* Merge with existing active regions if possible */
3499 for (i = 0; i < nr_nodemap_entries; i++) {
3500 if (early_node_map[i].nid != nid)
3501 continue;
3503 /* Skip if an existing region covers this new one */
3504 if (start_pfn >= early_node_map[i].start_pfn &&
3505 end_pfn <= early_node_map[i].end_pfn)
3506 return;
3508 /* Merge forward if suitable */
3509 if (start_pfn <= early_node_map[i].end_pfn &&
3510 end_pfn > early_node_map[i].end_pfn) {
3511 early_node_map[i].end_pfn = end_pfn;
3512 return;
3515 /* Merge backward if suitable */
3516 if (start_pfn < early_node_map[i].end_pfn &&
3517 end_pfn >= early_node_map[i].start_pfn) {
3518 early_node_map[i].start_pfn = start_pfn;
3519 return;
3523 /* Check that early_node_map is large enough */
3524 if (i >= MAX_ACTIVE_REGIONS) {
3525 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3526 MAX_ACTIVE_REGIONS);
3527 return;
3530 early_node_map[i].nid = nid;
3531 early_node_map[i].start_pfn = start_pfn;
3532 early_node_map[i].end_pfn = end_pfn;
3533 nr_nodemap_entries = i + 1;
3537 * shrink_active_range - Shrink an existing registered range of PFNs
3538 * @nid: The node id the range is on that should be shrunk
3539 * @old_end_pfn: The old end PFN of the range
3540 * @new_end_pfn: The new PFN of the range
3542 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3543 * The map is kept at the end physical page range that has already been
3544 * registered with add_active_range(). This function allows an arch to shrink
3545 * an existing registered range.
3547 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3548 unsigned long new_end_pfn)
3550 int i;
3552 /* Find the old active region end and shrink */
3553 for_each_active_range_index_in_nid(i, nid)
3554 if (early_node_map[i].end_pfn == old_end_pfn) {
3555 early_node_map[i].end_pfn = new_end_pfn;
3556 break;
3561 * remove_all_active_ranges - Remove all currently registered regions
3563 * During discovery, it may be found that a table like SRAT is invalid
3564 * and an alternative discovery method must be used. This function removes
3565 * all currently registered regions.
3567 void __init remove_all_active_ranges(void)
3569 memset(early_node_map, 0, sizeof(early_node_map));
3570 nr_nodemap_entries = 0;
3571 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3572 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3573 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3574 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3577 /* Compare two active node_active_regions */
3578 static int __init cmp_node_active_region(const void *a, const void *b)
3580 struct node_active_region *arange = (struct node_active_region *)a;
3581 struct node_active_region *brange = (struct node_active_region *)b;
3583 /* Done this way to avoid overflows */
3584 if (arange->start_pfn > brange->start_pfn)
3585 return 1;
3586 if (arange->start_pfn < brange->start_pfn)
3587 return -1;
3589 return 0;
3592 /* sort the node_map by start_pfn */
3593 static void __init sort_node_map(void)
3595 sort(early_node_map, (size_t)nr_nodemap_entries,
3596 sizeof(struct node_active_region),
3597 cmp_node_active_region, NULL);
3600 /* Find the lowest pfn for a node */
3601 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3603 int i;
3604 unsigned long min_pfn = ULONG_MAX;
3606 /* Assuming a sorted map, the first range found has the starting pfn */
3607 for_each_active_range_index_in_nid(i, nid)
3608 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3610 if (min_pfn == ULONG_MAX) {
3611 printk(KERN_WARNING
3612 "Could not find start_pfn for node %lu\n", nid);
3613 return 0;
3616 return min_pfn;
3620 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3622 * It returns the minimum PFN based on information provided via
3623 * add_active_range().
3625 unsigned long __init find_min_pfn_with_active_regions(void)
3627 return find_min_pfn_for_node(MAX_NUMNODES);
3631 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3633 * It returns the maximum PFN based on information provided via
3634 * add_active_range().
3636 unsigned long __init find_max_pfn_with_active_regions(void)
3638 int i;
3639 unsigned long max_pfn = 0;
3641 for (i = 0; i < nr_nodemap_entries; i++)
3642 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3644 return max_pfn;
3648 * early_calculate_totalpages()
3649 * Sum pages in active regions for movable zone.
3650 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3652 static unsigned long __init early_calculate_totalpages(void)
3654 int i;
3655 unsigned long totalpages = 0;
3657 for (i = 0; i < nr_nodemap_entries; i++) {
3658 unsigned long pages = early_node_map[i].end_pfn -
3659 early_node_map[i].start_pfn;
3660 totalpages += pages;
3661 if (pages)
3662 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3664 return totalpages;
3668 * Find the PFN the Movable zone begins in each node. Kernel memory
3669 * is spread evenly between nodes as long as the nodes have enough
3670 * memory. When they don't, some nodes will have more kernelcore than
3671 * others
3673 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3675 int i, nid;
3676 unsigned long usable_startpfn;
3677 unsigned long kernelcore_node, kernelcore_remaining;
3678 unsigned long totalpages = early_calculate_totalpages();
3679 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3682 * If movablecore was specified, calculate what size of
3683 * kernelcore that corresponds so that memory usable for
3684 * any allocation type is evenly spread. If both kernelcore
3685 * and movablecore are specified, then the value of kernelcore
3686 * will be used for required_kernelcore if it's greater than
3687 * what movablecore would have allowed.
3689 if (required_movablecore) {
3690 unsigned long corepages;
3693 * Round-up so that ZONE_MOVABLE is at least as large as what
3694 * was requested by the user
3696 required_movablecore =
3697 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3698 corepages = totalpages - required_movablecore;
3700 required_kernelcore = max(required_kernelcore, corepages);
3703 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3704 if (!required_kernelcore)
3705 return;
3707 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3708 find_usable_zone_for_movable();
3709 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3711 restart:
3712 /* Spread kernelcore memory as evenly as possible throughout nodes */
3713 kernelcore_node = required_kernelcore / usable_nodes;
3714 for_each_node_state(nid, N_HIGH_MEMORY) {
3716 * Recalculate kernelcore_node if the division per node
3717 * now exceeds what is necessary to satisfy the requested
3718 * amount of memory for the kernel
3720 if (required_kernelcore < kernelcore_node)
3721 kernelcore_node = required_kernelcore / usable_nodes;
3724 * As the map is walked, we track how much memory is usable
3725 * by the kernel using kernelcore_remaining. When it is
3726 * 0, the rest of the node is usable by ZONE_MOVABLE
3728 kernelcore_remaining = kernelcore_node;
3730 /* Go through each range of PFNs within this node */
3731 for_each_active_range_index_in_nid(i, nid) {
3732 unsigned long start_pfn, end_pfn;
3733 unsigned long size_pages;
3735 start_pfn = max(early_node_map[i].start_pfn,
3736 zone_movable_pfn[nid]);
3737 end_pfn = early_node_map[i].end_pfn;
3738 if (start_pfn >= end_pfn)
3739 continue;
3741 /* Account for what is only usable for kernelcore */
3742 if (start_pfn < usable_startpfn) {
3743 unsigned long kernel_pages;
3744 kernel_pages = min(end_pfn, usable_startpfn)
3745 - start_pfn;
3747 kernelcore_remaining -= min(kernel_pages,
3748 kernelcore_remaining);
3749 required_kernelcore -= min(kernel_pages,
3750 required_kernelcore);
3752 /* Continue if range is now fully accounted */
3753 if (end_pfn <= usable_startpfn) {
3756 * Push zone_movable_pfn to the end so
3757 * that if we have to rebalance
3758 * kernelcore across nodes, we will
3759 * not double account here
3761 zone_movable_pfn[nid] = end_pfn;
3762 continue;
3764 start_pfn = usable_startpfn;
3768 * The usable PFN range for ZONE_MOVABLE is from
3769 * start_pfn->end_pfn. Calculate size_pages as the
3770 * number of pages used as kernelcore
3772 size_pages = end_pfn - start_pfn;
3773 if (size_pages > kernelcore_remaining)
3774 size_pages = kernelcore_remaining;
3775 zone_movable_pfn[nid] = start_pfn + size_pages;
3778 * Some kernelcore has been met, update counts and
3779 * break if the kernelcore for this node has been
3780 * satisified
3782 required_kernelcore -= min(required_kernelcore,
3783 size_pages);
3784 kernelcore_remaining -= size_pages;
3785 if (!kernelcore_remaining)
3786 break;
3791 * If there is still required_kernelcore, we do another pass with one
3792 * less node in the count. This will push zone_movable_pfn[nid] further
3793 * along on the nodes that still have memory until kernelcore is
3794 * satisified
3796 usable_nodes--;
3797 if (usable_nodes && required_kernelcore > usable_nodes)
3798 goto restart;
3800 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3801 for (nid = 0; nid < MAX_NUMNODES; nid++)
3802 zone_movable_pfn[nid] =
3803 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3806 /* Any regular memory on that node ? */
3807 static void check_for_regular_memory(pg_data_t *pgdat)
3809 #ifdef CONFIG_HIGHMEM
3810 enum zone_type zone_type;
3812 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3813 struct zone *zone = &pgdat->node_zones[zone_type];
3814 if (zone->present_pages)
3815 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3817 #endif
3821 * free_area_init_nodes - Initialise all pg_data_t and zone data
3822 * @max_zone_pfn: an array of max PFNs for each zone
3824 * This will call free_area_init_node() for each active node in the system.
3825 * Using the page ranges provided by add_active_range(), the size of each
3826 * zone in each node and their holes is calculated. If the maximum PFN
3827 * between two adjacent zones match, it is assumed that the zone is empty.
3828 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3829 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3830 * starts where the previous one ended. For example, ZONE_DMA32 starts
3831 * at arch_max_dma_pfn.
3833 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3835 unsigned long nid;
3836 enum zone_type i;
3838 /* Sort early_node_map as initialisation assumes it is sorted */
3839 sort_node_map();
3841 /* Record where the zone boundaries are */
3842 memset(arch_zone_lowest_possible_pfn, 0,
3843 sizeof(arch_zone_lowest_possible_pfn));
3844 memset(arch_zone_highest_possible_pfn, 0,
3845 sizeof(arch_zone_highest_possible_pfn));
3846 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3847 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3848 for (i = 1; i < MAX_NR_ZONES; i++) {
3849 if (i == ZONE_MOVABLE)
3850 continue;
3851 arch_zone_lowest_possible_pfn[i] =
3852 arch_zone_highest_possible_pfn[i-1];
3853 arch_zone_highest_possible_pfn[i] =
3854 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3856 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3857 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3859 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3860 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3861 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3863 /* Print out the zone ranges */
3864 printk("Zone PFN ranges:\n");
3865 for (i = 0; i < MAX_NR_ZONES; i++) {
3866 if (i == ZONE_MOVABLE)
3867 continue;
3868 printk(" %-8s %8lu -> %8lu\n",
3869 zone_names[i],
3870 arch_zone_lowest_possible_pfn[i],
3871 arch_zone_highest_possible_pfn[i]);
3874 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3875 printk("Movable zone start PFN for each node\n");
3876 for (i = 0; i < MAX_NUMNODES; i++) {
3877 if (zone_movable_pfn[i])
3878 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3881 /* Print out the early_node_map[] */
3882 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3883 for (i = 0; i < nr_nodemap_entries; i++)
3884 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3885 early_node_map[i].start_pfn,
3886 early_node_map[i].end_pfn);
3888 /* Initialise every node */
3889 setup_nr_node_ids();
3890 for_each_online_node(nid) {
3891 pg_data_t *pgdat = NODE_DATA(nid);
3892 free_area_init_node(nid, pgdat, NULL,
3893 find_min_pfn_for_node(nid), NULL);
3895 /* Any memory on that node */
3896 if (pgdat->node_present_pages)
3897 node_set_state(nid, N_HIGH_MEMORY);
3898 check_for_regular_memory(pgdat);
3902 static int __init cmdline_parse_core(char *p, unsigned long *core)
3904 unsigned long long coremem;
3905 if (!p)
3906 return -EINVAL;
3908 coremem = memparse(p, &p);
3909 *core = coremem >> PAGE_SHIFT;
3911 /* Paranoid check that UL is enough for the coremem value */
3912 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3914 return 0;
3918 * kernelcore=size sets the amount of memory for use for allocations that
3919 * cannot be reclaimed or migrated.
3921 static int __init cmdline_parse_kernelcore(char *p)
3923 return cmdline_parse_core(p, &required_kernelcore);
3927 * movablecore=size sets the amount of memory for use for allocations that
3928 * can be reclaimed or migrated.
3930 static int __init cmdline_parse_movablecore(char *p)
3932 return cmdline_parse_core(p, &required_movablecore);
3935 early_param("kernelcore", cmdline_parse_kernelcore);
3936 early_param("movablecore", cmdline_parse_movablecore);
3938 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3941 * set_dma_reserve - set the specified number of pages reserved in the first zone
3942 * @new_dma_reserve: The number of pages to mark reserved
3944 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3945 * In the DMA zone, a significant percentage may be consumed by kernel image
3946 * and other unfreeable allocations which can skew the watermarks badly. This
3947 * function may optionally be used to account for unfreeable pages in the
3948 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3949 * smaller per-cpu batchsize.
3951 void __init set_dma_reserve(unsigned long new_dma_reserve)
3953 dma_reserve = new_dma_reserve;
3956 #ifndef CONFIG_NEED_MULTIPLE_NODES
3957 static bootmem_data_t contig_bootmem_data;
3958 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3960 EXPORT_SYMBOL(contig_page_data);
3961 #endif
3963 void __init free_area_init(unsigned long *zones_size)
3965 free_area_init_node(0, NODE_DATA(0), zones_size,
3966 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3969 static int page_alloc_cpu_notify(struct notifier_block *self,
3970 unsigned long action, void *hcpu)
3972 int cpu = (unsigned long)hcpu;
3974 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3975 drain_pages(cpu);
3978 * Spill the event counters of the dead processor
3979 * into the current processors event counters.
3980 * This artificially elevates the count of the current
3981 * processor.
3983 vm_events_fold_cpu(cpu);
3986 * Zero the differential counters of the dead processor
3987 * so that the vm statistics are consistent.
3989 * This is only okay since the processor is dead and cannot
3990 * race with what we are doing.
3992 refresh_cpu_vm_stats(cpu);
3994 return NOTIFY_OK;
3997 void __init page_alloc_init(void)
3999 hotcpu_notifier(page_alloc_cpu_notify, 0);
4003 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4004 * or min_free_kbytes changes.
4006 static void calculate_totalreserve_pages(void)
4008 struct pglist_data *pgdat;
4009 unsigned long reserve_pages = 0;
4010 enum zone_type i, j;
4012 for_each_online_pgdat(pgdat) {
4013 for (i = 0; i < MAX_NR_ZONES; i++) {
4014 struct zone *zone = pgdat->node_zones + i;
4015 unsigned long max = 0;
4017 /* Find valid and maximum lowmem_reserve in the zone */
4018 for (j = i; j < MAX_NR_ZONES; j++) {
4019 if (zone->lowmem_reserve[j] > max)
4020 max = zone->lowmem_reserve[j];
4023 /* we treat pages_high as reserved pages. */
4024 max += zone->pages_high;
4026 if (max > zone->present_pages)
4027 max = zone->present_pages;
4028 reserve_pages += max;
4031 totalreserve_pages = reserve_pages;
4035 * setup_per_zone_lowmem_reserve - called whenever
4036 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4037 * has a correct pages reserved value, so an adequate number of
4038 * pages are left in the zone after a successful __alloc_pages().
4040 static void setup_per_zone_lowmem_reserve(void)
4042 struct pglist_data *pgdat;
4043 enum zone_type j, idx;
4045 for_each_online_pgdat(pgdat) {
4046 for (j = 0; j < MAX_NR_ZONES; j++) {
4047 struct zone *zone = pgdat->node_zones + j;
4048 unsigned long present_pages = zone->present_pages;
4050 zone->lowmem_reserve[j] = 0;
4052 idx = j;
4053 while (idx) {
4054 struct zone *lower_zone;
4056 idx--;
4058 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4059 sysctl_lowmem_reserve_ratio[idx] = 1;
4061 lower_zone = pgdat->node_zones + idx;
4062 lower_zone->lowmem_reserve[j] = present_pages /
4063 sysctl_lowmem_reserve_ratio[idx];
4064 present_pages += lower_zone->present_pages;
4069 /* update totalreserve_pages */
4070 calculate_totalreserve_pages();
4074 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4076 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4077 * with respect to min_free_kbytes.
4079 void setup_per_zone_pages_min(void)
4081 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4082 unsigned long lowmem_pages = 0;
4083 struct zone *zone;
4084 unsigned long flags;
4086 /* Calculate total number of !ZONE_HIGHMEM pages */
4087 for_each_zone(zone) {
4088 if (!is_highmem(zone))
4089 lowmem_pages += zone->present_pages;
4092 for_each_zone(zone) {
4093 u64 tmp;
4095 spin_lock_irqsave(&zone->lru_lock, flags);
4096 tmp = (u64)pages_min * zone->present_pages;
4097 do_div(tmp, lowmem_pages);
4098 if (is_highmem(zone)) {
4100 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4101 * need highmem pages, so cap pages_min to a small
4102 * value here.
4104 * The (pages_high-pages_low) and (pages_low-pages_min)
4105 * deltas controls asynch page reclaim, and so should
4106 * not be capped for highmem.
4108 int min_pages;
4110 min_pages = zone->present_pages / 1024;
4111 if (min_pages < SWAP_CLUSTER_MAX)
4112 min_pages = SWAP_CLUSTER_MAX;
4113 if (min_pages > 128)
4114 min_pages = 128;
4115 zone->pages_min = min_pages;
4116 } else {
4118 * If it's a lowmem zone, reserve a number of pages
4119 * proportionate to the zone's size.
4121 zone->pages_min = tmp;
4124 zone->pages_low = zone->pages_min + (tmp >> 2);
4125 zone->pages_high = zone->pages_min + (tmp >> 1);
4126 setup_zone_migrate_reserve(zone);
4127 spin_unlock_irqrestore(&zone->lru_lock, flags);
4130 /* update totalreserve_pages */
4131 calculate_totalreserve_pages();
4135 * Initialise min_free_kbytes.
4137 * For small machines we want it small (128k min). For large machines
4138 * we want it large (64MB max). But it is not linear, because network
4139 * bandwidth does not increase linearly with machine size. We use
4141 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4142 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4144 * which yields
4146 * 16MB: 512k
4147 * 32MB: 724k
4148 * 64MB: 1024k
4149 * 128MB: 1448k
4150 * 256MB: 2048k
4151 * 512MB: 2896k
4152 * 1024MB: 4096k
4153 * 2048MB: 5792k
4154 * 4096MB: 8192k
4155 * 8192MB: 11584k
4156 * 16384MB: 16384k
4158 static int __init init_per_zone_pages_min(void)
4160 unsigned long lowmem_kbytes;
4162 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4164 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4165 if (min_free_kbytes < 128)
4166 min_free_kbytes = 128;
4167 if (min_free_kbytes > 65536)
4168 min_free_kbytes = 65536;
4169 setup_per_zone_pages_min();
4170 setup_per_zone_lowmem_reserve();
4171 return 0;
4173 module_init(init_per_zone_pages_min)
4176 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4177 * that we can call two helper functions whenever min_free_kbytes
4178 * changes.
4180 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4181 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4183 proc_dointvec(table, write, file, buffer, length, ppos);
4184 if (write)
4185 setup_per_zone_pages_min();
4186 return 0;
4189 #ifdef CONFIG_NUMA
4190 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4191 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4193 struct zone *zone;
4194 int rc;
4196 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4197 if (rc)
4198 return rc;
4200 for_each_zone(zone)
4201 zone->min_unmapped_pages = (zone->present_pages *
4202 sysctl_min_unmapped_ratio) / 100;
4203 return 0;
4206 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4207 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4209 struct zone *zone;
4210 int rc;
4212 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4213 if (rc)
4214 return rc;
4216 for_each_zone(zone)
4217 zone->min_slab_pages = (zone->present_pages *
4218 sysctl_min_slab_ratio) / 100;
4219 return 0;
4221 #endif
4224 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4225 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4226 * whenever sysctl_lowmem_reserve_ratio changes.
4228 * The reserve ratio obviously has absolutely no relation with the
4229 * pages_min watermarks. The lowmem reserve ratio can only make sense
4230 * if in function of the boot time zone sizes.
4232 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4233 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4235 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4236 setup_per_zone_lowmem_reserve();
4237 return 0;
4241 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4242 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4243 * can have before it gets flushed back to buddy allocator.
4246 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4247 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4249 struct zone *zone;
4250 unsigned int cpu;
4251 int ret;
4253 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4254 if (!write || (ret == -EINVAL))
4255 return ret;
4256 for_each_zone(zone) {
4257 for_each_online_cpu(cpu) {
4258 unsigned long high;
4259 high = zone->present_pages / percpu_pagelist_fraction;
4260 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4263 return 0;
4266 int hashdist = HASHDIST_DEFAULT;
4268 #ifdef CONFIG_NUMA
4269 static int __init set_hashdist(char *str)
4271 if (!str)
4272 return 0;
4273 hashdist = simple_strtoul(str, &str, 0);
4274 return 1;
4276 __setup("hashdist=", set_hashdist);
4277 #endif
4280 * allocate a large system hash table from bootmem
4281 * - it is assumed that the hash table must contain an exact power-of-2
4282 * quantity of entries
4283 * - limit is the number of hash buckets, not the total allocation size
4285 void *__init alloc_large_system_hash(const char *tablename,
4286 unsigned long bucketsize,
4287 unsigned long numentries,
4288 int scale,
4289 int flags,
4290 unsigned int *_hash_shift,
4291 unsigned int *_hash_mask,
4292 unsigned long limit)
4294 unsigned long long max = limit;
4295 unsigned long log2qty, size;
4296 void *table = NULL;
4298 /* allow the kernel cmdline to have a say */
4299 if (!numentries) {
4300 /* round applicable memory size up to nearest megabyte */
4301 numentries = nr_kernel_pages;
4302 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4303 numentries >>= 20 - PAGE_SHIFT;
4304 numentries <<= 20 - PAGE_SHIFT;
4306 /* limit to 1 bucket per 2^scale bytes of low memory */
4307 if (scale > PAGE_SHIFT)
4308 numentries >>= (scale - PAGE_SHIFT);
4309 else
4310 numentries <<= (PAGE_SHIFT - scale);
4312 /* Make sure we've got at least a 0-order allocation.. */
4313 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4314 numentries = PAGE_SIZE / bucketsize;
4316 numentries = roundup_pow_of_two(numentries);
4318 /* limit allocation size to 1/16 total memory by default */
4319 if (max == 0) {
4320 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4321 do_div(max, bucketsize);
4324 if (numentries > max)
4325 numentries = max;
4327 log2qty = ilog2(numentries);
4329 do {
4330 size = bucketsize << log2qty;
4331 if (flags & HASH_EARLY)
4332 table = alloc_bootmem(size);
4333 else if (hashdist)
4334 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4335 else {
4336 unsigned long order;
4337 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4339 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4341 * If bucketsize is not a power-of-two, we may free
4342 * some pages at the end of hash table.
4344 if (table) {
4345 unsigned long alloc_end = (unsigned long)table +
4346 (PAGE_SIZE << order);
4347 unsigned long used = (unsigned long)table +
4348 PAGE_ALIGN(size);
4349 split_page(virt_to_page(table), order);
4350 while (used < alloc_end) {
4351 free_page(used);
4352 used += PAGE_SIZE;
4356 } while (!table && size > PAGE_SIZE && --log2qty);
4358 if (!table)
4359 panic("Failed to allocate %s hash table\n", tablename);
4361 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4362 tablename,
4363 (1U << log2qty),
4364 ilog2(size) - PAGE_SHIFT,
4365 size);
4367 if (_hash_shift)
4368 *_hash_shift = log2qty;
4369 if (_hash_mask)
4370 *_hash_mask = (1 << log2qty) - 1;
4372 return table;
4375 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4376 struct page *pfn_to_page(unsigned long pfn)
4378 return __pfn_to_page(pfn);
4380 unsigned long page_to_pfn(struct page *page)
4382 return __page_to_pfn(page);
4384 EXPORT_SYMBOL(pfn_to_page);
4385 EXPORT_SYMBOL(page_to_pfn);
4386 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4388 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4389 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4390 unsigned long pfn)
4392 #ifdef CONFIG_SPARSEMEM
4393 return __pfn_to_section(pfn)->pageblock_flags;
4394 #else
4395 return zone->pageblock_flags;
4396 #endif /* CONFIG_SPARSEMEM */
4399 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4401 #ifdef CONFIG_SPARSEMEM
4402 pfn &= (PAGES_PER_SECTION-1);
4403 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4404 #else
4405 pfn = pfn - zone->zone_start_pfn;
4406 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4407 #endif /* CONFIG_SPARSEMEM */
4411 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4412 * @page: The page within the block of interest
4413 * @start_bitidx: The first bit of interest to retrieve
4414 * @end_bitidx: The last bit of interest
4415 * returns pageblock_bits flags
4417 unsigned long get_pageblock_flags_group(struct page *page,
4418 int start_bitidx, int end_bitidx)
4420 struct zone *zone;
4421 unsigned long *bitmap;
4422 unsigned long pfn, bitidx;
4423 unsigned long flags = 0;
4424 unsigned long value = 1;
4426 zone = page_zone(page);
4427 pfn = page_to_pfn(page);
4428 bitmap = get_pageblock_bitmap(zone, pfn);
4429 bitidx = pfn_to_bitidx(zone, pfn);
4431 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4432 if (test_bit(bitidx + start_bitidx, bitmap))
4433 flags |= value;
4435 return flags;
4439 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4440 * @page: The page within the block of interest
4441 * @start_bitidx: The first bit of interest
4442 * @end_bitidx: The last bit of interest
4443 * @flags: The flags to set
4445 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4446 int start_bitidx, int end_bitidx)
4448 struct zone *zone;
4449 unsigned long *bitmap;
4450 unsigned long pfn, bitidx;
4451 unsigned long value = 1;
4453 zone = page_zone(page);
4454 pfn = page_to_pfn(page);
4455 bitmap = get_pageblock_bitmap(zone, pfn);
4456 bitidx = pfn_to_bitidx(zone, pfn);
4458 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4459 if (flags & value)
4460 __set_bit(bitidx + start_bitidx, bitmap);
4461 else
4462 __clear_bit(bitidx + start_bitidx, bitmap);
4466 * This is designed as sub function...plz see page_isolation.c also.
4467 * set/clear page block's type to be ISOLATE.
4468 * page allocater never alloc memory from ISOLATE block.
4471 int set_migratetype_isolate(struct page *page)
4473 struct zone *zone;
4474 unsigned long flags;
4475 int ret = -EBUSY;
4477 zone = page_zone(page);
4478 spin_lock_irqsave(&zone->lock, flags);
4480 * In future, more migrate types will be able to be isolation target.
4482 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4483 goto out;
4484 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4485 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4486 ret = 0;
4487 out:
4488 spin_unlock_irqrestore(&zone->lock, flags);
4489 if (!ret)
4490 drain_all_pages();
4491 return ret;
4494 void unset_migratetype_isolate(struct page *page)
4496 struct zone *zone;
4497 unsigned long flags;
4498 zone = page_zone(page);
4499 spin_lock_irqsave(&zone->lock, flags);
4500 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4501 goto out;
4502 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4503 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4504 out:
4505 spin_unlock_irqrestore(&zone->lock, flags);
4508 #ifdef CONFIG_MEMORY_HOTREMOVE
4510 * All pages in the range must be isolated before calling this.
4512 void
4513 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4515 struct page *page;
4516 struct zone *zone;
4517 int order, i;
4518 unsigned long pfn;
4519 unsigned long flags;
4520 /* find the first valid pfn */
4521 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4522 if (pfn_valid(pfn))
4523 break;
4524 if (pfn == end_pfn)
4525 return;
4526 zone = page_zone(pfn_to_page(pfn));
4527 spin_lock_irqsave(&zone->lock, flags);
4528 pfn = start_pfn;
4529 while (pfn < end_pfn) {
4530 if (!pfn_valid(pfn)) {
4531 pfn++;
4532 continue;
4534 page = pfn_to_page(pfn);
4535 BUG_ON(page_count(page));
4536 BUG_ON(!PageBuddy(page));
4537 order = page_order(page);
4538 #ifdef CONFIG_DEBUG_VM
4539 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4540 pfn, 1 << order, end_pfn);
4541 #endif
4542 list_del(&page->lru);
4543 rmv_page_order(page);
4544 zone->free_area[order].nr_free--;
4545 __mod_zone_page_state(zone, NR_FREE_PAGES,
4546 - (1UL << order));
4547 for (i = 0; i < (1 << order); i++)
4548 SetPageReserved((page+i));
4549 pfn += (1 << order);
4551 spin_unlock_irqrestore(&zone->lock, flags);
4553 #endif