2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/raid/raid10.h>
24 * RAID10 provides a combination of RAID0 and RAID1 functionality.
25 * The layout of data is defined by
28 * near_copies (stored in low byte of layout)
29 * far_copies (stored in second byte of layout)
31 * The data to be stored is divided into chunks using chunksize.
32 * Each device is divided into far_copies sections.
33 * In each section, chunks are laid out in a style similar to raid0, but
34 * near_copies copies of each chunk is stored (each on a different drive).
35 * The starting device for each section is offset near_copies from the starting
36 * device of the previous section.
37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
39 * near_copies and far_copies must be at least one, and their product is at most
44 * Number of guaranteed r10bios in case of extreme VM load:
46 #define NR_RAID10_BIOS 256
48 static void unplug_slaves(mddev_t
*mddev
);
50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags
, void *data
)
54 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
56 /* allocate a r10bio with room for raid_disks entries in the bios array */
57 r10_bio
= kmalloc(size
, gfp_flags
);
59 memset(r10_bio
, 0, size
);
61 unplug_slaves(conf
->mddev
);
66 static void r10bio_pool_free(void *r10_bio
, void *data
)
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
78 * When performing a resync, we need to read and compare, so
79 * we need as many pages are there are copies.
80 * When performing a recovery, we need 2 bios, one for read,
81 * one for write (we recover only one drive per r10buf)
84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags
, void *data
)
93 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
95 unplug_slaves(conf
->mddev
);
99 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
100 nalloc
= conf
->copies
; /* resync */
102 nalloc
= 2; /* recovery */
107 for (j
= nalloc
; j
-- ; ) {
108 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
111 r10_bio
->devs
[j
].bio
= bio
;
114 * Allocate RESYNC_PAGES data pages and attach them
117 for (j
= 0 ; j
< nalloc
; j
++) {
118 bio
= r10_bio
->devs
[j
].bio
;
119 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
120 page
= alloc_page(gfp_flags
);
124 bio
->bi_io_vec
[i
].bv_page
= page
;
132 __free_page(bio
->bi_io_vec
[i
-1].bv_page
);
134 for (i
= 0; i
< RESYNC_PAGES
; i
++)
135 __free_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
138 while ( ++j
< nalloc
)
139 bio_put(r10_bio
->devs
[j
].bio
);
140 r10bio_pool_free(r10_bio
, conf
);
144 static void r10buf_pool_free(void *__r10_bio
, void *data
)
148 r10bio_t
*r10bio
= __r10_bio
;
151 for (j
=0; j
< conf
->copies
; j
++) {
152 struct bio
*bio
= r10bio
->devs
[j
].bio
;
154 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
155 __free_page(bio
->bi_io_vec
[i
].bv_page
);
156 bio
->bi_io_vec
[i
].bv_page
= NULL
;
161 r10bio_pool_free(r10bio
, conf
);
164 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
168 for (i
= 0; i
< conf
->copies
; i
++) {
169 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
176 static inline void free_r10bio(r10bio_t
*r10_bio
)
180 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
183 * Wake up any possible resync thread that waits for the device
186 spin_lock_irqsave(&conf
->resync_lock
, flags
);
187 if (!--conf
->nr_pending
) {
188 wake_up(&conf
->wait_idle
);
189 wake_up(&conf
->wait_resume
);
191 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
193 put_all_bios(conf
, r10_bio
);
194 mempool_free(r10_bio
, conf
->r10bio_pool
);
197 static inline void put_buf(r10bio_t
*r10_bio
)
199 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
202 mempool_free(r10_bio
, conf
->r10buf_pool
);
204 spin_lock_irqsave(&conf
->resync_lock
, flags
);
208 wake_up(&conf
->wait_resume
);
209 wake_up(&conf
->wait_idle
);
211 if (!--conf
->nr_pending
) {
212 wake_up(&conf
->wait_idle
);
213 wake_up(&conf
->wait_resume
);
215 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
218 static void reschedule_retry(r10bio_t
*r10_bio
)
221 mddev_t
*mddev
= r10_bio
->mddev
;
222 conf_t
*conf
= mddev_to_conf(mddev
);
224 spin_lock_irqsave(&conf
->device_lock
, flags
);
225 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
226 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
228 md_wakeup_thread(mddev
->thread
);
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
236 static void raid_end_bio_io(r10bio_t
*r10_bio
)
238 struct bio
*bio
= r10_bio
->master_bio
;
240 bio_endio(bio
, bio
->bi_size
,
241 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
242 free_r10bio(r10_bio
);
246 * Update disk head position estimator based on IRQ completion info.
248 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
250 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
252 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
253 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
256 static int raid10_end_read_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
258 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
259 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
261 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
266 slot
= r10_bio
->read_slot
;
267 dev
= r10_bio
->devs
[slot
].devnum
;
269 * this branch is our 'one mirror IO has finished' event handler:
272 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
275 * Set R10BIO_Uptodate in our master bio, so that
276 * we will return a good error code to the higher
277 * levels even if IO on some other mirrored buffer fails.
279 * The 'master' represents the composite IO operation to
280 * user-side. So if something waits for IO, then it will
281 * wait for the 'master' bio.
283 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
285 update_head_pos(slot
, r10_bio
);
288 * we have only one bio on the read side
291 raid_end_bio_io(r10_bio
);
296 char b
[BDEVNAME_SIZE
];
297 if (printk_ratelimit())
298 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
299 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
300 reschedule_retry(r10_bio
);
303 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
307 static int raid10_end_write_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
309 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
310 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
312 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
317 for (slot
= 0; slot
< conf
->copies
; slot
++)
318 if (r10_bio
->devs
[slot
].bio
== bio
)
320 dev
= r10_bio
->devs
[slot
].devnum
;
323 * this branch is our 'one mirror IO has finished' event handler:
326 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
329 * Set R10BIO_Uptodate in our master bio, so that
330 * we will return a good error code for to the higher
331 * levels even if IO on some other mirrored buffer fails.
333 * The 'master' represents the composite IO operation to
334 * user-side. So if something waits for IO, then it will
335 * wait for the 'master' bio.
337 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
339 update_head_pos(slot
, r10_bio
);
343 * Let's see if all mirrored write operations have finished
346 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
347 md_write_end(r10_bio
->mddev
);
348 raid_end_bio_io(r10_bio
);
351 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
357 * RAID10 layout manager
358 * Aswell as the chunksize and raid_disks count, there are two
359 * parameters: near_copies and far_copies.
360 * near_copies * far_copies must be <= raid_disks.
361 * Normally one of these will be 1.
362 * If both are 1, we get raid0.
363 * If near_copies == raid_disks, we get raid1.
365 * Chunks are layed out in raid0 style with near_copies copies of the
366 * first chunk, followed by near_copies copies of the next chunk and
368 * If far_copies > 1, then after 1/far_copies of the array has been assigned
369 * as described above, we start again with a device offset of near_copies.
370 * So we effectively have another copy of the whole array further down all
371 * the drives, but with blocks on different drives.
372 * With this layout, and block is never stored twice on the one device.
374 * raid10_find_phys finds the sector offset of a given virtual sector
375 * on each device that it is on. If a block isn't on a device,
376 * that entry in the array is set to MaxSector.
378 * raid10_find_virt does the reverse mapping, from a device and a
379 * sector offset to a virtual address
382 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
392 /* now calculate first sector/dev */
393 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
394 sector
= r10bio
->sector
& conf
->chunk_mask
;
396 chunk
*= conf
->near_copies
;
398 dev
= sector_div(stripe
, conf
->raid_disks
);
400 sector
+= stripe
<< conf
->chunk_shift
;
402 /* and calculate all the others */
403 for (n
=0; n
< conf
->near_copies
; n
++) {
406 r10bio
->devs
[slot
].addr
= sector
;
407 r10bio
->devs
[slot
].devnum
= d
;
410 for (f
= 1; f
< conf
->far_copies
; f
++) {
411 d
+= conf
->near_copies
;
412 if (d
>= conf
->raid_disks
)
413 d
-= conf
->raid_disks
;
415 r10bio
->devs
[slot
].devnum
= d
;
416 r10bio
->devs
[slot
].addr
= s
;
420 if (dev
>= conf
->raid_disks
) {
422 sector
+= (conf
->chunk_mask
+ 1);
425 BUG_ON(slot
!= conf
->copies
);
428 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
430 sector_t offset
, chunk
, vchunk
;
432 while (sector
> conf
->stride
) {
433 sector
-= conf
->stride
;
434 if (dev
< conf
->near_copies
)
435 dev
+= conf
->raid_disks
- conf
->near_copies
;
437 dev
-= conf
->near_copies
;
440 offset
= sector
& conf
->chunk_mask
;
441 chunk
= sector
>> conf
->chunk_shift
;
442 vchunk
= chunk
* conf
->raid_disks
+ dev
;
443 sector_div(vchunk
, conf
->near_copies
);
444 return (vchunk
<< conf
->chunk_shift
) + offset
;
448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450 * @bio: the buffer head that's been built up so far
451 * @biovec: the request that could be merged to it.
453 * Return amount of bytes we can accept at this offset
454 * If near_copies == raid_disk, there are no striping issues,
455 * but in that case, the function isn't called at all.
457 static int raid10_mergeable_bvec(request_queue_t
*q
, struct bio
*bio
,
458 struct bio_vec
*bio_vec
)
460 mddev_t
*mddev
= q
->queuedata
;
461 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
463 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
464 unsigned int bio_sectors
= bio
->bi_size
>> 9;
466 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
467 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
468 if (max
<= bio_vec
->bv_len
&& bio_sectors
== 0)
469 return bio_vec
->bv_len
;
475 * This routine returns the disk from which the requested read should
476 * be done. There is a per-array 'next expected sequential IO' sector
477 * number - if this matches on the next IO then we use the last disk.
478 * There is also a per-disk 'last know head position' sector that is
479 * maintained from IRQ contexts, both the normal and the resync IO
480 * completion handlers update this position correctly. If there is no
481 * perfect sequential match then we pick the disk whose head is closest.
483 * If there are 2 mirrors in the same 2 devices, performance degrades
484 * because position is mirror, not device based.
486 * The rdev for the device selected will have nr_pending incremented.
490 * FIXME: possibly should rethink readbalancing and do it differently
491 * depending on near_copies / far_copies geometry.
493 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
495 const unsigned long this_sector
= r10_bio
->sector
;
496 int disk
, slot
, nslot
;
497 const int sectors
= r10_bio
->sectors
;
498 sector_t new_distance
, current_distance
;
500 raid10_find_phys(conf
, r10_bio
);
503 * Check if we can balance. We can balance on the whole
504 * device if no resync is going on, or below the resync window.
505 * We take the first readable disk when above the resync window.
507 if (conf
->mddev
->recovery_cp
< MaxSector
508 && (this_sector
+ sectors
>= conf
->next_resync
)) {
509 /* make sure that disk is operational */
511 disk
= r10_bio
->devs
[slot
].devnum
;
513 while (!conf
->mirrors
[disk
].rdev
||
514 !conf
->mirrors
[disk
].rdev
->in_sync
) {
516 if (slot
== conf
->copies
) {
521 disk
= r10_bio
->devs
[slot
].devnum
;
527 /* make sure the disk is operational */
529 disk
= r10_bio
->devs
[slot
].devnum
;
530 while (!conf
->mirrors
[disk
].rdev
||
531 !conf
->mirrors
[disk
].rdev
->in_sync
) {
533 if (slot
== conf
->copies
) {
537 disk
= r10_bio
->devs
[slot
].devnum
;
541 current_distance
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
543 /* Find the disk whose head is closest */
545 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
546 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
549 if (!conf
->mirrors
[ndisk
].rdev
||
550 !conf
->mirrors
[ndisk
].rdev
->in_sync
)
553 if (!atomic_read(&conf
->mirrors
[ndisk
].rdev
->nr_pending
)) {
558 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
559 conf
->mirrors
[ndisk
].head_position
);
560 if (new_distance
< current_distance
) {
561 current_distance
= new_distance
;
568 r10_bio
->read_slot
= slot
;
569 /* conf->next_seq_sect = this_sector + sectors;*/
571 if (disk
>= 0 && conf
->mirrors
[disk
].rdev
)
572 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
578 static void unplug_slaves(mddev_t
*mddev
)
580 conf_t
*conf
= mddev_to_conf(mddev
);
584 for (i
=0; i
<mddev
->raid_disks
; i
++) {
585 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
586 if (rdev
&& !rdev
->faulty
&& atomic_read(&rdev
->nr_pending
)) {
587 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
589 atomic_inc(&rdev
->nr_pending
);
592 if (r_queue
->unplug_fn
)
593 r_queue
->unplug_fn(r_queue
);
595 rdev_dec_pending(rdev
, mddev
);
602 static void raid10_unplug(request_queue_t
*q
)
604 unplug_slaves(q
->queuedata
);
607 static int raid10_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
608 sector_t
*error_sector
)
610 mddev_t
*mddev
= q
->queuedata
;
611 conf_t
*conf
= mddev_to_conf(mddev
);
615 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
616 mdk_rdev_t
*rdev
= conf
->mirrors
[i
].rdev
;
617 if (rdev
&& !rdev
->faulty
) {
618 struct block_device
*bdev
= rdev
->bdev
;
619 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
621 if (!r_queue
->issue_flush_fn
)
624 atomic_inc(&rdev
->nr_pending
);
626 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
628 rdev_dec_pending(rdev
, mddev
);
638 * Throttle resync depth, so that we can both get proper overlapping of
639 * requests, but are still able to handle normal requests quickly.
641 #define RESYNC_DEPTH 32
643 static void device_barrier(conf_t
*conf
, sector_t sect
)
645 spin_lock_irq(&conf
->resync_lock
);
646 wait_event_lock_irq(conf
->wait_idle
, !waitqueue_active(&conf
->wait_resume
),
647 conf
->resync_lock
, unplug_slaves(conf
->mddev
));
649 if (!conf
->barrier
++) {
650 wait_event_lock_irq(conf
->wait_idle
, !conf
->nr_pending
,
651 conf
->resync_lock
, unplug_slaves(conf
->mddev
));
652 if (conf
->nr_pending
)
655 wait_event_lock_irq(conf
->wait_resume
, conf
->barrier
< RESYNC_DEPTH
,
656 conf
->resync_lock
, unplug_slaves(conf
->mddev
));
657 conf
->next_resync
= sect
;
658 spin_unlock_irq(&conf
->resync_lock
);
661 static int make_request(request_queue_t
*q
, struct bio
* bio
)
663 mddev_t
*mddev
= q
->queuedata
;
664 conf_t
*conf
= mddev_to_conf(mddev
);
665 mirror_info_t
*mirror
;
667 struct bio
*read_bio
;
669 int chunk_sects
= conf
->chunk_mask
+ 1;
671 /* If this request crosses a chunk boundary, we need to
672 * split it. This will only happen for 1 PAGE (or less) requests.
674 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
676 conf
->near_copies
< conf
->raid_disks
)) {
678 /* Sanity check -- queue functions should prevent this happening */
679 if (bio
->bi_vcnt
!= 1 ||
682 /* This is a one page bio that upper layers
683 * refuse to split for us, so we need to split it.
685 bp
= bio_split(bio
, bio_split_pool
,
686 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
687 if (make_request(q
, &bp
->bio1
))
688 generic_make_request(&bp
->bio1
);
689 if (make_request(q
, &bp
->bio2
))
690 generic_make_request(&bp
->bio2
);
692 bio_pair_release(bp
);
695 printk("raid10_make_request bug: can't convert block across chunks"
696 " or bigger than %dk %llu %d\n", chunk_sects
/2,
697 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
699 bio_io_error(bio
, bio
->bi_size
);
703 md_write_start(mddev
, bio
);
706 * Register the new request and wait if the reconstruction
707 * thread has put up a bar for new requests.
708 * Continue immediately if no resync is active currently.
710 spin_lock_irq(&conf
->resync_lock
);
711 wait_event_lock_irq(conf
->wait_resume
, !conf
->barrier
, conf
->resync_lock
, );
713 spin_unlock_irq(&conf
->resync_lock
);
715 if (bio_data_dir(bio
)==WRITE
) {
716 disk_stat_inc(mddev
->gendisk
, writes
);
717 disk_stat_add(mddev
->gendisk
, write_sectors
, bio_sectors(bio
));
719 disk_stat_inc(mddev
->gendisk
, reads
);
720 disk_stat_add(mddev
->gendisk
, read_sectors
, bio_sectors(bio
));
723 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
725 r10_bio
->master_bio
= bio
;
726 r10_bio
->sectors
= bio
->bi_size
>> 9;
728 r10_bio
->mddev
= mddev
;
729 r10_bio
->sector
= bio
->bi_sector
;
731 if (bio_data_dir(bio
) == READ
) {
733 * read balancing logic:
735 int disk
= read_balance(conf
, r10_bio
);
736 int slot
= r10_bio
->read_slot
;
738 raid_end_bio_io(r10_bio
);
741 mirror
= conf
->mirrors
+ disk
;
743 read_bio
= bio_clone(bio
, GFP_NOIO
);
745 r10_bio
->devs
[slot
].bio
= read_bio
;
747 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
748 mirror
->rdev
->data_offset
;
749 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
750 read_bio
->bi_end_io
= raid10_end_read_request
;
751 read_bio
->bi_rw
= READ
;
752 read_bio
->bi_private
= r10_bio
;
754 generic_make_request(read_bio
);
761 /* first select target devices under spinlock and
762 * inc refcount on their rdev. Record them by setting
765 raid10_find_phys(conf
, r10_bio
);
767 for (i
= 0; i
< conf
->copies
; i
++) {
768 int d
= r10_bio
->devs
[i
].devnum
;
769 if (conf
->mirrors
[d
].rdev
&&
770 !conf
->mirrors
[d
].rdev
->faulty
) {
771 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
772 r10_bio
->devs
[i
].bio
= bio
;
774 r10_bio
->devs
[i
].bio
= NULL
;
778 atomic_set(&r10_bio
->remaining
, 1);
780 for (i
= 0; i
< conf
->copies
; i
++) {
782 int d
= r10_bio
->devs
[i
].devnum
;
783 if (!r10_bio
->devs
[i
].bio
)
786 mbio
= bio_clone(bio
, GFP_NOIO
);
787 r10_bio
->devs
[i
].bio
= mbio
;
789 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
790 conf
->mirrors
[d
].rdev
->data_offset
;
791 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
792 mbio
->bi_end_io
= raid10_end_write_request
;
794 mbio
->bi_private
= r10_bio
;
796 atomic_inc(&r10_bio
->remaining
);
797 generic_make_request(mbio
);
800 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
802 raid_end_bio_io(r10_bio
);
808 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
810 conf_t
*conf
= mddev_to_conf(mddev
);
813 if (conf
->near_copies
< conf
->raid_disks
)
814 seq_printf(seq
, " %dK chunks", mddev
->chunk_size
/1024);
815 if (conf
->near_copies
> 1)
816 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
817 if (conf
->far_copies
> 1)
818 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
820 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
821 conf
->working_disks
);
822 for (i
= 0; i
< conf
->raid_disks
; i
++)
823 seq_printf(seq
, "%s",
824 conf
->mirrors
[i
].rdev
&&
825 conf
->mirrors
[i
].rdev
->in_sync
? "U" : "_");
826 seq_printf(seq
, "]");
829 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
831 char b
[BDEVNAME_SIZE
];
832 conf_t
*conf
= mddev_to_conf(mddev
);
835 * If it is not operational, then we have already marked it as dead
836 * else if it is the last working disks, ignore the error, let the
837 * next level up know.
838 * else mark the drive as failed
841 && conf
->working_disks
== 1)
843 * Don't fail the drive, just return an IO error.
844 * The test should really be more sophisticated than
845 * "working_disks == 1", but it isn't critical, and
846 * can wait until we do more sophisticated "is the drive
847 * really dead" tests...
852 conf
->working_disks
--;
854 * if recovery is running, make sure it aborts.
856 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
861 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device. \n"
862 " Operation continuing on %d devices\n",
863 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
866 static void print_conf(conf_t
*conf
)
871 printk("RAID10 conf printout:\n");
876 printk(" --- wd:%d rd:%d\n", conf
->working_disks
,
879 for (i
= 0; i
< conf
->raid_disks
; i
++) {
880 char b
[BDEVNAME_SIZE
];
881 tmp
= conf
->mirrors
+ i
;
883 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
884 i
, !tmp
->rdev
->in_sync
, !tmp
->rdev
->faulty
,
885 bdevname(tmp
->rdev
->bdev
,b
));
889 static void close_sync(conf_t
*conf
)
891 spin_lock_irq(&conf
->resync_lock
);
892 wait_event_lock_irq(conf
->wait_resume
, !conf
->barrier
,
893 conf
->resync_lock
, unplug_slaves(conf
->mddev
));
894 spin_unlock_irq(&conf
->resync_lock
);
896 if (conf
->barrier
) BUG();
897 if (waitqueue_active(&conf
->wait_idle
)) BUG();
899 mempool_destroy(conf
->r10buf_pool
);
900 conf
->r10buf_pool
= NULL
;
903 static int raid10_spare_active(mddev_t
*mddev
)
906 conf_t
*conf
= mddev
->private;
910 * Find all non-in_sync disks within the RAID10 configuration
911 * and mark them in_sync
913 for (i
= 0; i
< conf
->raid_disks
; i
++) {
914 tmp
= conf
->mirrors
+ i
;
916 && !tmp
->rdev
->faulty
917 && !tmp
->rdev
->in_sync
) {
918 conf
->working_disks
++;
920 tmp
->rdev
->in_sync
= 1;
929 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
931 conf_t
*conf
= mddev
->private;
936 if (mddev
->recovery_cp
< MaxSector
)
937 /* only hot-add to in-sync arrays, as recovery is
938 * very different from resync
942 for (mirror
=0; mirror
< mddev
->raid_disks
; mirror
++)
943 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
945 blk_queue_stack_limits(mddev
->queue
,
946 rdev
->bdev
->bd_disk
->queue
);
947 /* as we don't honour merge_bvec_fn, we must never risk
948 * violating it, so limit ->max_sector to one PAGE, as
949 * a one page request is never in violation.
951 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
952 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
953 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
955 p
->head_position
= 0;
956 rdev
->raid_disk
= mirror
;
966 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
968 conf_t
*conf
= mddev
->private;
971 mirror_info_t
*p
= conf
->mirrors
+ number
;
977 atomic_read(&rdev
->nr_pending
)) {
983 if (atomic_read(&rdev
->nr_pending
)) {
984 /* lost the race, try later */
996 static int end_sync_read(struct bio
*bio
, unsigned int bytes_done
, int error
)
998 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
999 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1000 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
1006 for (i
=0; i
<conf
->copies
; i
++)
1007 if (r10_bio
->devs
[i
].bio
== bio
)
1009 if (i
== conf
->copies
)
1011 update_head_pos(i
, r10_bio
);
1012 d
= r10_bio
->devs
[i
].devnum
;
1014 md_error(r10_bio
->mddev
,
1015 conf
->mirrors
[d
].rdev
);
1017 /* for reconstruct, we always reschedule after a read.
1018 * for resync, only after all reads
1020 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1021 atomic_dec_and_test(&r10_bio
->remaining
)) {
1022 /* we have read all the blocks,
1023 * do the comparison in process context in raid10d
1025 reschedule_retry(r10_bio
);
1027 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1031 static int end_sync_write(struct bio
*bio
, unsigned int bytes_done
, int error
)
1033 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1034 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1035 mddev_t
*mddev
= r10_bio
->mddev
;
1036 conf_t
*conf
= mddev_to_conf(mddev
);
1042 for (i
= 0; i
< conf
->copies
; i
++)
1043 if (r10_bio
->devs
[i
].bio
== bio
)
1045 d
= r10_bio
->devs
[i
].devnum
;
1048 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1049 update_head_pos(i
, r10_bio
);
1051 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1052 if (r10_bio
->master_bio
== NULL
) {
1053 /* the primary of several recovery bios */
1054 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1058 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1063 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1068 * Note: sync and recover and handled very differently for raid10
1069 * This code is for resync.
1070 * For resync, we read through virtual addresses and read all blocks.
1071 * If there is any error, we schedule a write. The lowest numbered
1072 * drive is authoritative.
1073 * However requests come for physical address, so we need to map.
1074 * For every physical address there are raid_disks/copies virtual addresses,
1075 * which is always are least one, but is not necessarly an integer.
1076 * This means that a physical address can span multiple chunks, so we may
1077 * have to submit multiple io requests for a single sync request.
1080 * We check if all blocks are in-sync and only write to blocks that
1083 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1085 conf_t
*conf
= mddev_to_conf(mddev
);
1087 struct bio
*tbio
, *fbio
;
1089 atomic_set(&r10_bio
->remaining
, 1);
1091 /* find the first device with a block */
1092 for (i
=0; i
<conf
->copies
; i
++)
1093 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1096 if (i
== conf
->copies
)
1100 fbio
= r10_bio
->devs
[i
].bio
;
1102 /* now find blocks with errors */
1103 for (i
=first
+1 ; i
< conf
->copies
; i
++) {
1106 if (!test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1108 /* We know that the bi_io_vec layout is the same for
1109 * both 'first' and 'i', so we just compare them.
1110 * All vec entries are PAGE_SIZE;
1112 tbio
= r10_bio
->devs
[i
].bio
;
1113 vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1114 for (j
= 0; j
< vcnt
; j
++)
1115 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1116 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1121 /* Ok, we need to write this bio
1122 * First we need to fixup bv_offset, bv_len and
1123 * bi_vecs, as the read request might have corrupted these
1125 tbio
->bi_vcnt
= vcnt
;
1126 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1128 tbio
->bi_phys_segments
= 0;
1129 tbio
->bi_hw_segments
= 0;
1130 tbio
->bi_hw_front_size
= 0;
1131 tbio
->bi_hw_back_size
= 0;
1132 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1133 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1134 tbio
->bi_next
= NULL
;
1135 tbio
->bi_rw
= WRITE
;
1136 tbio
->bi_private
= r10_bio
;
1137 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1139 for (j
=0; j
< vcnt
; j
++) {
1140 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1141 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1143 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1144 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1147 tbio
->bi_end_io
= end_sync_write
;
1149 d
= r10_bio
->devs
[i
].devnum
;
1150 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1151 atomic_inc(&r10_bio
->remaining
);
1152 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1154 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1155 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1156 generic_make_request(tbio
);
1160 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1161 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1167 * Now for the recovery code.
1168 * Recovery happens across physical sectors.
1169 * We recover all non-is_sync drives by finding the virtual address of
1170 * each, and then choose a working drive that also has that virt address.
1171 * There is a separate r10_bio for each non-in_sync drive.
1172 * Only the first two slots are in use. The first for reading,
1173 * The second for writing.
1177 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1179 conf_t
*conf
= mddev_to_conf(mddev
);
1181 struct bio
*bio
, *wbio
;
1184 /* move the pages across to the second bio
1185 * and submit the write request
1187 bio
= r10_bio
->devs
[0].bio
;
1188 wbio
= r10_bio
->devs
[1].bio
;
1189 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1190 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1191 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1192 wbio
->bi_io_vec
[i
].bv_page
= p
;
1194 d
= r10_bio
->devs
[1].devnum
;
1196 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1197 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1198 generic_make_request(wbio
);
1203 * This is a kernel thread which:
1205 * 1. Retries failed read operations on working mirrors.
1206 * 2. Updates the raid superblock when problems encounter.
1207 * 3. Performs writes following reads for array syncronising.
1210 static void raid10d(mddev_t
*mddev
)
1214 unsigned long flags
;
1215 conf_t
*conf
= mddev_to_conf(mddev
);
1216 struct list_head
*head
= &conf
->retry_list
;
1220 md_check_recovery(mddev
);
1223 char b
[BDEVNAME_SIZE
];
1224 spin_lock_irqsave(&conf
->device_lock
, flags
);
1225 if (list_empty(head
))
1227 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1228 list_del(head
->prev
);
1229 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1231 mddev
= r10_bio
->mddev
;
1232 conf
= mddev_to_conf(mddev
);
1233 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1234 sync_request_write(mddev
, r10_bio
);
1236 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1237 recovery_request_write(mddev
, r10_bio
);
1241 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1242 r10_bio
->devs
[r10_bio
->read_slot
].bio
= NULL
;
1244 mirror
= read_balance(conf
, r10_bio
);
1246 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1247 " read error for block %llu\n",
1248 bdevname(bio
->bi_bdev
,b
),
1249 (unsigned long long)r10_bio
->sector
);
1250 raid_end_bio_io(r10_bio
);
1252 rdev
= conf
->mirrors
[mirror
].rdev
;
1253 if (printk_ratelimit())
1254 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1255 " another mirror\n",
1256 bdevname(rdev
->bdev
,b
),
1257 (unsigned long long)r10_bio
->sector
);
1258 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1259 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1260 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1261 + rdev
->data_offset
;
1262 bio
->bi_bdev
= rdev
->bdev
;
1264 bio
->bi_private
= r10_bio
;
1265 bio
->bi_end_io
= raid10_end_read_request
;
1267 generic_make_request(bio
);
1271 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1273 unplug_slaves(mddev
);
1277 static int init_resync(conf_t
*conf
)
1281 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1282 if (conf
->r10buf_pool
)
1284 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1285 if (!conf
->r10buf_pool
)
1287 conf
->next_resync
= 0;
1292 * perform a "sync" on one "block"
1294 * We need to make sure that no normal I/O request - particularly write
1295 * requests - conflict with active sync requests.
1297 * This is achieved by tracking pending requests and a 'barrier' concept
1298 * that can be installed to exclude normal IO requests.
1300 * Resync and recovery are handled very differently.
1301 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1303 * For resync, we iterate over virtual addresses, read all copies,
1304 * and update if there are differences. If only one copy is live,
1306 * For recovery, we iterate over physical addresses, read a good
1307 * value for each non-in_sync drive, and over-write.
1309 * So, for recovery we may have several outstanding complex requests for a
1310 * given address, one for each out-of-sync device. We model this by allocating
1311 * a number of r10_bio structures, one for each out-of-sync device.
1312 * As we setup these structures, we collect all bio's together into a list
1313 * which we then process collectively to add pages, and then process again
1314 * to pass to generic_make_request.
1316 * The r10_bio structures are linked using a borrowed master_bio pointer.
1317 * This link is counted in ->remaining. When the r10_bio that points to NULL
1318 * has its remaining count decremented to 0, the whole complex operation
1323 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1325 conf_t
*conf
= mddev_to_conf(mddev
);
1327 struct bio
*biolist
= NULL
, *bio
;
1328 sector_t max_sector
, nr_sectors
;
1332 sector_t sectors_skipped
= 0;
1333 int chunks_skipped
= 0;
1335 if (!conf
->r10buf_pool
)
1336 if (init_resync(conf
))
1340 max_sector
= mddev
->size
<< 1;
1341 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1342 max_sector
= mddev
->resync_max_sectors
;
1343 if (sector_nr
>= max_sector
) {
1346 return sectors_skipped
;
1348 if (chunks_skipped
>= conf
->raid_disks
) {
1349 /* if there has been nothing to do on any drive,
1350 * then there is nothing to do at all..
1353 return (max_sector
- sector_nr
) + sectors_skipped
;
1356 /* make sure whole request will fit in a chunk - if chunks
1359 if (conf
->near_copies
< conf
->raid_disks
&&
1360 max_sector
> (sector_nr
| conf
->chunk_mask
))
1361 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1363 * If there is non-resync activity waiting for us then
1364 * put in a delay to throttle resync.
1366 if (!go_faster
&& waitqueue_active(&conf
->wait_resume
))
1367 msleep_interruptible(1000);
1368 device_barrier(conf
, sector_nr
+ RESYNC_SECTORS
);
1370 /* Again, very different code for resync and recovery.
1371 * Both must result in an r10bio with a list of bios that
1372 * have bi_end_io, bi_sector, bi_bdev set,
1373 * and bi_private set to the r10bio.
1374 * For recovery, we may actually create several r10bios
1375 * with 2 bios in each, that correspond to the bios in the main one.
1376 * In this case, the subordinate r10bios link back through a
1377 * borrowed master_bio pointer, and the counter in the master
1378 * includes a ref from each subordinate.
1380 /* First, we decide what to do and set ->bi_end_io
1381 * To end_sync_read if we want to read, and
1382 * end_sync_write if we will want to write.
1385 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1386 /* recovery... the complicated one */
1390 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1391 if (conf
->mirrors
[i
].rdev
&&
1392 !conf
->mirrors
[i
].rdev
->in_sync
) {
1393 /* want to reconstruct this device */
1394 r10bio_t
*rb2
= r10_bio
;
1396 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1397 spin_lock_irq(&conf
->resync_lock
);
1399 if (rb2
) conf
->barrier
++;
1400 spin_unlock_irq(&conf
->resync_lock
);
1401 atomic_set(&r10_bio
->remaining
, 0);
1403 r10_bio
->master_bio
= (struct bio
*)rb2
;
1405 atomic_inc(&rb2
->remaining
);
1406 r10_bio
->mddev
= mddev
;
1407 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1408 r10_bio
->sector
= raid10_find_virt(conf
, sector_nr
, i
);
1409 raid10_find_phys(conf
, r10_bio
);
1410 for (j
=0; j
<conf
->copies
;j
++) {
1411 int d
= r10_bio
->devs
[j
].devnum
;
1412 if (conf
->mirrors
[d
].rdev
&&
1413 conf
->mirrors
[d
].rdev
->in_sync
) {
1414 /* This is where we read from */
1415 bio
= r10_bio
->devs
[0].bio
;
1416 bio
->bi_next
= biolist
;
1418 bio
->bi_private
= r10_bio
;
1419 bio
->bi_end_io
= end_sync_read
;
1421 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1422 conf
->mirrors
[d
].rdev
->data_offset
;
1423 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1424 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1425 atomic_inc(&r10_bio
->remaining
);
1426 /* and we write to 'i' */
1428 for (k
=0; k
<conf
->copies
; k
++)
1429 if (r10_bio
->devs
[k
].devnum
== i
)
1431 bio
= r10_bio
->devs
[1].bio
;
1432 bio
->bi_next
= biolist
;
1434 bio
->bi_private
= r10_bio
;
1435 bio
->bi_end_io
= end_sync_write
;
1437 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1438 conf
->mirrors
[i
].rdev
->data_offset
;
1439 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1441 r10_bio
->devs
[0].devnum
= d
;
1442 r10_bio
->devs
[1].devnum
= i
;
1447 if (j
== conf
->copies
) {
1451 if (biolist
== NULL
) {
1453 r10bio_t
*rb2
= r10_bio
;
1454 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1455 rb2
->master_bio
= NULL
;
1461 /* resync. Schedule a read for every block at this virt offset */
1463 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1465 spin_lock_irq(&conf
->resync_lock
);
1467 spin_unlock_irq(&conf
->resync_lock
);
1469 r10_bio
->mddev
= mddev
;
1470 atomic_set(&r10_bio
->remaining
, 0);
1472 r10_bio
->master_bio
= NULL
;
1473 r10_bio
->sector
= sector_nr
;
1474 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1475 raid10_find_phys(conf
, r10_bio
);
1476 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1478 for (i
=0; i
<conf
->copies
; i
++) {
1479 int d
= r10_bio
->devs
[i
].devnum
;
1480 bio
= r10_bio
->devs
[i
].bio
;
1481 bio
->bi_end_io
= NULL
;
1482 if (conf
->mirrors
[d
].rdev
== NULL
||
1483 conf
->mirrors
[d
].rdev
->faulty
)
1485 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1486 atomic_inc(&r10_bio
->remaining
);
1487 bio
->bi_next
= biolist
;
1489 bio
->bi_private
= r10_bio
;
1490 bio
->bi_end_io
= end_sync_read
;
1492 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1493 conf
->mirrors
[d
].rdev
->data_offset
;
1494 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1499 for (i
=0; i
<conf
->copies
; i
++) {
1500 int d
= r10_bio
->devs
[i
].devnum
;
1501 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1502 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1510 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1512 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1514 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1517 bio
->bi_phys_segments
= 0;
1518 bio
->bi_hw_segments
= 0;
1525 int len
= PAGE_SIZE
;
1527 if (sector_nr
+ (len
>>9) > max_sector
)
1528 len
= (max_sector
- sector_nr
) << 9;
1531 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1532 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1533 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1536 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1537 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1538 /* remove last page from this bio */
1540 bio2
->bi_size
-= len
;
1541 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1547 nr_sectors
+= len
>>9;
1548 sector_nr
+= len
>>9;
1549 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1551 r10_bio
->sectors
= nr_sectors
;
1555 biolist
= biolist
->bi_next
;
1557 bio
->bi_next
= NULL
;
1558 r10_bio
= bio
->bi_private
;
1559 r10_bio
->sectors
= nr_sectors
;
1561 if (bio
->bi_end_io
== end_sync_read
) {
1562 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1563 generic_make_request(bio
);
1567 if (sectors_skipped
)
1568 /* pretend they weren't skipped, it makes
1569 * no important difference in this case
1571 md_done_sync(mddev
, sectors_skipped
, 1);
1573 return sectors_skipped
+ nr_sectors
;
1575 /* There is nowhere to write, so all non-sync
1576 * drives must be failed, so try the next chunk...
1579 sector_t sec
= max_sector
- sector_nr
;
1580 sectors_skipped
+= sec
;
1582 sector_nr
= max_sector
;
1587 static int run(mddev_t
*mddev
)
1591 mirror_info_t
*disk
;
1593 struct list_head
*tmp
;
1595 sector_t stride
, size
;
1597 if (mddev
->level
!= 10) {
1598 printk(KERN_ERR
"raid10: %s: raid level not set correctly... (%d)\n",
1599 mdname(mddev
), mddev
->level
);
1602 nc
= mddev
->layout
& 255;
1603 fc
= (mddev
->layout
>> 8) & 255;
1604 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
1605 (mddev
->layout
>> 16)) {
1606 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
1607 mdname(mddev
), mddev
->layout
);
1611 * copy the already verified devices into our private RAID10
1612 * bookkeeping area. [whatever we allocate in run(),
1613 * should be freed in stop()]
1615 conf
= kmalloc(sizeof(conf_t
), GFP_KERNEL
);
1616 mddev
->private = conf
;
1618 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1622 memset(conf
, 0, sizeof(*conf
));
1623 conf
->mirrors
= kmalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1625 if (!conf
->mirrors
) {
1626 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1630 memset(conf
->mirrors
, 0, sizeof(struct mirror_info
)*mddev
->raid_disks
);
1632 conf
->near_copies
= nc
;
1633 conf
->far_copies
= fc
;
1634 conf
->copies
= nc
*fc
;
1635 conf
->chunk_mask
= (sector_t
)(mddev
->chunk_size
>>9)-1;
1636 conf
->chunk_shift
= ffz(~mddev
->chunk_size
) - 9;
1637 stride
= mddev
->size
>> (conf
->chunk_shift
-1);
1638 sector_div(stride
, fc
);
1639 conf
->stride
= stride
<< conf
->chunk_shift
;
1641 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
1642 r10bio_pool_free
, conf
);
1643 if (!conf
->r10bio_pool
) {
1644 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1649 ITERATE_RDEV(mddev
, rdev
, tmp
) {
1650 disk_idx
= rdev
->raid_disk
;
1651 if (disk_idx
>= mddev
->raid_disks
1654 disk
= conf
->mirrors
+ disk_idx
;
1658 blk_queue_stack_limits(mddev
->queue
,
1659 rdev
->bdev
->bd_disk
->queue
);
1660 /* as we don't honour merge_bvec_fn, we must never risk
1661 * violating it, so limit ->max_sector to one PAGE, as
1662 * a one page request is never in violation.
1664 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1665 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1666 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1668 disk
->head_position
= 0;
1669 if (!rdev
->faulty
&& rdev
->in_sync
)
1670 conf
->working_disks
++;
1672 conf
->raid_disks
= mddev
->raid_disks
;
1673 conf
->mddev
= mddev
;
1674 spin_lock_init(&conf
->device_lock
);
1675 INIT_LIST_HEAD(&conf
->retry_list
);
1677 spin_lock_init(&conf
->resync_lock
);
1678 init_waitqueue_head(&conf
->wait_idle
);
1679 init_waitqueue_head(&conf
->wait_resume
);
1681 if (!conf
->working_disks
) {
1682 printk(KERN_ERR
"raid10: no operational mirrors for %s\n",
1687 mddev
->degraded
= 0;
1688 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1690 disk
= conf
->mirrors
+ i
;
1693 disk
->head_position
= 0;
1699 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
1700 if (!mddev
->thread
) {
1702 "raid10: couldn't allocate thread for %s\n",
1708 "raid10: raid set %s active with %d out of %d devices\n",
1709 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
1712 * Ok, everything is just fine now
1714 size
= conf
->stride
* conf
->raid_disks
;
1715 sector_div(size
, conf
->near_copies
);
1716 mddev
->array_size
= size
/2;
1717 mddev
->resync_max_sectors
= size
;
1719 mddev
->queue
->unplug_fn
= raid10_unplug
;
1720 mddev
->queue
->issue_flush_fn
= raid10_issue_flush
;
1722 /* Calculate max read-ahead size.
1723 * We need to readahead at least twice a whole stripe....
1727 int stripe
= conf
->raid_disks
* mddev
->chunk_size
/ PAGE_CACHE_SIZE
;
1728 stripe
/= conf
->near_copies
;
1729 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
1730 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
1733 if (conf
->near_copies
< mddev
->raid_disks
)
1734 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
1738 if (conf
->r10bio_pool
)
1739 mempool_destroy(conf
->r10bio_pool
);
1740 kfree(conf
->mirrors
);
1742 mddev
->private = NULL
;
1747 static int stop(mddev_t
*mddev
)
1749 conf_t
*conf
= mddev_to_conf(mddev
);
1751 md_unregister_thread(mddev
->thread
);
1752 mddev
->thread
= NULL
;
1753 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
1754 if (conf
->r10bio_pool
)
1755 mempool_destroy(conf
->r10bio_pool
);
1756 kfree(conf
->mirrors
);
1758 mddev
->private = NULL
;
1763 static mdk_personality_t raid10_personality
=
1766 .owner
= THIS_MODULE
,
1767 .make_request
= make_request
,
1771 .error_handler
= error
,
1772 .hot_add_disk
= raid10_add_disk
,
1773 .hot_remove_disk
= raid10_remove_disk
,
1774 .spare_active
= raid10_spare_active
,
1775 .sync_request
= sync_request
,
1778 static int __init
raid_init(void)
1780 return register_md_personality(RAID10
, &raid10_personality
);
1783 static void raid_exit(void)
1785 unregister_md_personality(RAID10
);
1788 module_init(raid_init
);
1789 module_exit(raid_exit
);
1790 MODULE_LICENSE("GPL");
1791 MODULE_ALIAS("md-personality-9"); /* RAID10 */