2 * Dynamic DMA mapping support.
4 * This implementation is for IA-64 platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
17 #include <linux/cache.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ctype.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
33 #define OFFSET(val,align) ((unsigned long) \
34 ( (val) & ( (align) - 1)))
36 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
37 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
40 * Maximum allowable number of contiguous slabs to map,
41 * must be a power of 2. What is the appropriate value ?
42 * The complexity of {map,unmap}_single is linearly dependent on this value.
44 #define IO_TLB_SEGSIZE 128
47 * log of the size of each IO TLB slab. The number of slabs is command line
50 #define IO_TLB_SHIFT 11
55 * Used to do a quick range check in swiotlb_unmap_single and
56 * swiotlb_sync_single_*, to see if the memory was in fact allocated by this
59 static char *io_tlb_start
, *io_tlb_end
;
62 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
63 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 static unsigned long io_tlb_nslabs
;
68 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 static unsigned long io_tlb_overflow
= 32*1024;
72 void *io_tlb_overflow_buffer
;
75 * This is a free list describing the number of free entries available from
78 static unsigned int *io_tlb_list
;
79 static unsigned int io_tlb_index
;
82 * We need to save away the original address corresponding to a mapped entry
83 * for the sync operations.
85 static unsigned char **io_tlb_orig_addr
;
88 * Protect the above data structures in the map and unmap calls
90 static DEFINE_SPINLOCK(io_tlb_lock
);
93 setup_io_tlb_npages(char *str
)
96 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0) <<
97 (PAGE_SHIFT
- IO_TLB_SHIFT
);
98 /* avoid tail segment of size < IO_TLB_SEGSIZE */
99 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
103 if (!strcmp(str
, "force"))
107 __setup("swiotlb=", setup_io_tlb_npages
);
108 /* make io_tlb_overflow tunable too? */
111 * Statically reserve bounce buffer space and initialize bounce buffer data
112 * structures for the software IO TLB used to implement the PCI DMA API.
115 swiotlb_init_with_default_size (size_t default_size
)
119 if (!io_tlb_nslabs
) {
120 io_tlb_nslabs
= (default_size
>> PAGE_SHIFT
);
121 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
125 * Get IO TLB memory from the low pages
127 io_tlb_start
= alloc_bootmem_low_pages(io_tlb_nslabs
*
128 (1 << IO_TLB_SHIFT
));
130 panic("Cannot allocate SWIOTLB buffer");
131 io_tlb_end
= io_tlb_start
+ io_tlb_nslabs
* (1 << IO_TLB_SHIFT
);
134 * Allocate and initialize the free list array. This array is used
135 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
136 * between io_tlb_start and io_tlb_end.
138 io_tlb_list
= alloc_bootmem(io_tlb_nslabs
* sizeof(int));
139 for (i
= 0; i
< io_tlb_nslabs
; i
++)
140 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
142 io_tlb_orig_addr
= alloc_bootmem(io_tlb_nslabs
* sizeof(char *));
145 * Get the overflow emergency buffer
147 io_tlb_overflow_buffer
= alloc_bootmem_low(io_tlb_overflow
);
148 printk(KERN_INFO
"Placing software IO TLB between 0x%lx - 0x%lx\n",
149 virt_to_phys(io_tlb_start
), virt_to_phys(io_tlb_end
));
155 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
159 address_needs_mapping(struct device
*hwdev
, dma_addr_t addr
)
161 dma_addr_t mask
= 0xffffffff;
162 /* If the device has a mask, use it, otherwise default to 32 bits */
163 if (hwdev
&& hwdev
->dma_mask
)
164 mask
= *hwdev
->dma_mask
;
165 return (addr
& ~mask
) != 0;
169 * Allocates bounce buffer and returns its kernel virtual address.
172 map_single(struct device
*hwdev
, char *buffer
, size_t size
, int dir
)
176 unsigned int nslots
, stride
, index
, wrap
;
180 * For mappings greater than a page, we limit the stride (and
181 * hence alignment) to a page size.
183 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
184 if (size
> PAGE_SIZE
)
185 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
193 * Find suitable number of IO TLB entries size that will fit this
194 * request and allocate a buffer from that IO TLB pool.
196 spin_lock_irqsave(&io_tlb_lock
, flags
);
198 wrap
= index
= ALIGN(io_tlb_index
, stride
);
200 if (index
>= io_tlb_nslabs
)
205 * If we find a slot that indicates we have 'nslots'
206 * number of contiguous buffers, we allocate the
207 * buffers from that slot and mark the entries as '0'
208 * indicating unavailable.
210 if (io_tlb_list
[index
] >= nslots
) {
213 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
215 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
216 io_tlb_list
[i
] = ++count
;
217 dma_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
220 * Update the indices to avoid searching in
223 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
224 ? (index
+ nslots
) : 0);
229 if (index
>= io_tlb_nslabs
)
231 } while (index
!= wrap
);
233 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
237 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
240 * Save away the mapping from the original address to the DMA address.
241 * This is needed when we sync the memory. Then we sync the buffer if
244 io_tlb_orig_addr
[index
] = buffer
;
245 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
246 memcpy(dma_addr
, buffer
, size
);
252 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
255 unmap_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
258 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
259 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
260 char *buffer
= io_tlb_orig_addr
[index
];
263 * First, sync the memory before unmapping the entry
265 if (buffer
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
267 * bounce... copy the data back into the original buffer * and
268 * delete the bounce buffer.
270 memcpy(buffer
, dma_addr
, size
);
273 * Return the buffer to the free list by setting the corresponding
274 * entries to indicate the number of contigous entries available.
275 * While returning the entries to the free list, we merge the entries
276 * with slots below and above the pool being returned.
278 spin_lock_irqsave(&io_tlb_lock
, flags
);
280 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
281 io_tlb_list
[index
+ nslots
] : 0);
283 * Step 1: return the slots to the free list, merging the
284 * slots with superceeding slots
286 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
287 io_tlb_list
[i
] = ++count
;
289 * Step 2: merge the returned slots with the preceding slots,
290 * if available (non zero)
292 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
293 io_tlb_list
[i
] = ++count
;
295 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
299 sync_single(struct device
*hwdev
, char *dma_addr
, size_t size
, int dir
)
301 int index
= (dma_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
302 char *buffer
= io_tlb_orig_addr
[index
];
305 * bounce... copy the data back into/from the original buffer
306 * XXX How do you handle DMA_BIDIRECTIONAL here ?
308 if (dir
== DMA_FROM_DEVICE
)
309 memcpy(buffer
, dma_addr
, size
);
310 else if (dir
== DMA_TO_DEVICE
)
311 memcpy(dma_addr
, buffer
, size
);
317 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
318 dma_addr_t
*dma_handle
, int flags
)
320 unsigned long dev_addr
;
322 int order
= get_order(size
);
325 * XXX fix me: the DMA API should pass us an explicit DMA mask
326 * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32
327 * bit range instead of a 16MB one).
331 ret
= (void *)__get_free_pages(flags
, order
);
332 if (ret
&& address_needs_mapping(hwdev
, virt_to_phys(ret
))) {
334 * The allocated memory isn't reachable by the device.
335 * Fall back on swiotlb_map_single().
337 free_pages((unsigned long) ret
, order
);
342 * We are either out of memory or the device can't DMA
343 * to GFP_DMA memory; fall back on
344 * swiotlb_map_single(), which will grab memory from
345 * the lowest available address range.
348 handle
= swiotlb_map_single(NULL
, NULL
, size
, DMA_FROM_DEVICE
);
349 if (dma_mapping_error(handle
))
352 ret
= phys_to_virt(handle
);
355 memset(ret
, 0, size
);
356 dev_addr
= virt_to_phys(ret
);
358 /* Confirm address can be DMA'd by device */
359 if (address_needs_mapping(hwdev
, dev_addr
)) {
360 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n",
361 (unsigned long long)*hwdev
->dma_mask
, dev_addr
);
362 panic("swiotlb_alloc_coherent: allocated memory is out of "
365 *dma_handle
= dev_addr
;
370 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
371 dma_addr_t dma_handle
)
373 if (!(vaddr
>= (void *)io_tlb_start
374 && vaddr
< (void *)io_tlb_end
))
375 free_pages((unsigned long) vaddr
, get_order(size
));
377 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
378 swiotlb_unmap_single (hwdev
, dma_handle
, size
, DMA_TO_DEVICE
);
382 swiotlb_full(struct device
*dev
, size_t size
, int dir
, int do_panic
)
385 * Ran out of IOMMU space for this operation. This is very bad.
386 * Unfortunately the drivers cannot handle this operation properly.
387 * unless they check for pci_dma_mapping_error (most don't)
388 * When the mapping is small enough return a static buffer to limit
389 * the damage, or panic when the transfer is too big.
391 printk(KERN_ERR
"PCI-DMA: Out of SW-IOMMU space for %lu bytes at "
392 "device %s\n", size
, dev
? dev
->bus_id
: "?");
394 if (size
> io_tlb_overflow
&& do_panic
) {
395 if (dir
== PCI_DMA_FROMDEVICE
|| dir
== PCI_DMA_BIDIRECTIONAL
)
396 panic("PCI-DMA: Memory would be corrupted\n");
397 if (dir
== PCI_DMA_TODEVICE
|| dir
== PCI_DMA_BIDIRECTIONAL
)
398 panic("PCI-DMA: Random memory would be DMAed\n");
403 * Map a single buffer of the indicated size for DMA in streaming mode. The
404 * PCI address to use is returned.
406 * Once the device is given the dma address, the device owns this memory until
407 * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed.
410 swiotlb_map_single(struct device
*hwdev
, void *ptr
, size_t size
, int dir
)
412 unsigned long dev_addr
= virt_to_phys(ptr
);
418 * If the pointer passed in happens to be in the device's DMA window,
419 * we can safely return the device addr and not worry about bounce
422 if (!address_needs_mapping(hwdev
, dev_addr
) && !swiotlb_force
)
426 * Oh well, have to allocate and map a bounce buffer.
428 map
= map_single(hwdev
, ptr
, size
, dir
);
430 swiotlb_full(hwdev
, size
, dir
, 1);
431 map
= io_tlb_overflow_buffer
;
434 dev_addr
= virt_to_phys(map
);
437 * Ensure that the address returned is DMA'ble
439 if (address_needs_mapping(hwdev
, dev_addr
))
440 panic("map_single: bounce buffer is not DMA'ble");
446 * Since DMA is i-cache coherent, any (complete) pages that were written via
447 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
448 * flush them when they get mapped into an executable vm-area.
451 mark_clean(void *addr
, size_t size
)
453 unsigned long pg_addr
, end
;
455 pg_addr
= PAGE_ALIGN((unsigned long) addr
);
456 end
= (unsigned long) addr
+ size
;
457 while (pg_addr
+ PAGE_SIZE
<= end
) {
458 struct page
*page
= virt_to_page(pg_addr
);
459 set_bit(PG_arch_1
, &page
->flags
);
460 pg_addr
+= PAGE_SIZE
;
465 * Unmap a single streaming mode DMA translation. The dma_addr and size must
466 * match what was provided for in a previous swiotlb_map_single call. All
467 * other usages are undefined.
469 * After this call, reads by the cpu to the buffer are guaranteed to see
470 * whatever the device wrote there.
473 swiotlb_unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
, size_t size
,
476 char *dma_addr
= phys_to_virt(dev_addr
);
480 if (dma_addr
>= io_tlb_start
&& dma_addr
< io_tlb_end
)
481 unmap_single(hwdev
, dma_addr
, size
, dir
);
482 else if (dir
== DMA_FROM_DEVICE
)
483 mark_clean(dma_addr
, size
);
487 * Make physical memory consistent for a single streaming mode DMA translation
490 * If you perform a swiotlb_map_single() but wish to interrogate the buffer
491 * using the cpu, yet do not wish to teardown the PCI dma mapping, you must
492 * call this function before doing so. At the next point you give the PCI dma
493 * address back to the card, you must first perform a
494 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
497 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
498 size_t size
, int dir
)
500 char *dma_addr
= phys_to_virt(dev_addr
);
504 if (dma_addr
>= io_tlb_start
&& dma_addr
< io_tlb_end
)
505 sync_single(hwdev
, dma_addr
, size
, dir
);
506 else if (dir
== DMA_FROM_DEVICE
)
507 mark_clean(dma_addr
, size
);
511 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
512 size_t size
, int dir
)
514 char *dma_addr
= phys_to_virt(dev_addr
);
518 if (dma_addr
>= io_tlb_start
&& dma_addr
< io_tlb_end
)
519 sync_single(hwdev
, dma_addr
, size
, dir
);
520 else if (dir
== DMA_FROM_DEVICE
)
521 mark_clean(dma_addr
, size
);
525 * Map a set of buffers described by scatterlist in streaming mode for DMA.
526 * This is the scatter-gather version of the above swiotlb_map_single
527 * interface. Here the scatter gather list elements are each tagged with the
528 * appropriate dma address and length. They are obtained via
529 * sg_dma_{address,length}(SG).
531 * NOTE: An implementation may be able to use a smaller number of
532 * DMA address/length pairs than there are SG table elements.
533 * (for example via virtual mapping capabilities)
534 * The routine returns the number of addr/length pairs actually
535 * used, at most nents.
537 * Device ownership issues as mentioned above for swiotlb_map_single are the
541 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sg
, int nelems
,
545 unsigned long dev_addr
;
551 for (i
= 0; i
< nelems
; i
++, sg
++) {
552 addr
= SG_ENT_VIRT_ADDRESS(sg
);
553 dev_addr
= virt_to_phys(addr
);
554 if (swiotlb_force
|| address_needs_mapping(hwdev
, dev_addr
)) {
555 sg
->dma_address
= (dma_addr_t
) virt_to_phys(map_single(hwdev
, addr
, sg
->length
, dir
));
556 if (!sg
->dma_address
) {
557 /* Don't panic here, we expect map_sg users
558 to do proper error handling. */
559 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
560 swiotlb_unmap_sg(hwdev
, sg
- i
, i
, dir
);
561 sg
[0].dma_length
= 0;
565 sg
->dma_address
= dev_addr
;
566 sg
->dma_length
= sg
->length
;
572 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
573 * concerning calls here are the same as for swiotlb_unmap_single() above.
576 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sg
, int nelems
,
584 for (i
= 0; i
< nelems
; i
++, sg
++)
585 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
586 unmap_single(hwdev
, (void *) phys_to_virt(sg
->dma_address
), sg
->dma_length
, dir
);
587 else if (dir
== DMA_FROM_DEVICE
)
588 mark_clean(SG_ENT_VIRT_ADDRESS(sg
), sg
->dma_length
);
592 * Make physical memory consistent for a set of streaming mode DMA translations
595 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
599 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
607 for (i
= 0; i
< nelems
; i
++, sg
++)
608 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
609 sync_single(hwdev
, (void *) sg
->dma_address
,
610 sg
->dma_length
, dir
);
614 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
622 for (i
= 0; i
< nelems
; i
++, sg
++)
623 if (sg
->dma_address
!= SG_ENT_PHYS_ADDRESS(sg
))
624 sync_single(hwdev
, (void *) sg
->dma_address
,
625 sg
->dma_length
, dir
);
629 swiotlb_dma_mapping_error(dma_addr_t dma_addr
)
631 return (dma_addr
== virt_to_phys(io_tlb_overflow_buffer
));
635 * Return whether the given PCI device DMA address mask can be supported
636 * properly. For example, if your device can only drive the low 24-bits
637 * during PCI bus mastering, then you would pass 0x00ffffff as the mask to
641 swiotlb_dma_supported (struct device
*hwdev
, u64 mask
)
643 return (virt_to_phys (io_tlb_end
) - 1) <= mask
;
646 EXPORT_SYMBOL(swiotlb_init
);
647 EXPORT_SYMBOL(swiotlb_map_single
);
648 EXPORT_SYMBOL(swiotlb_unmap_single
);
649 EXPORT_SYMBOL(swiotlb_map_sg
);
650 EXPORT_SYMBOL(swiotlb_unmap_sg
);
651 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
652 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
653 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
654 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
655 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
656 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
657 EXPORT_SYMBOL(swiotlb_free_coherent
);
658 EXPORT_SYMBOL(swiotlb_dma_supported
);