[PATCH] w1: Added the triplet w1 master method and changes w1_search() to use it.
[linux-2.6/verdex.git] / arch / ia64 / sn / kernel / bte.c
blob647deae9bfcd57c3fef46b03d7f47912f6c985b1
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <asm/sn/nodepda.h>
12 #include <asm/sn/addrs.h>
13 #include <asm/sn/arch.h>
14 #include <asm/sn/sn_cpuid.h>
15 #include <asm/sn/pda.h>
16 #include <asm/sn/shubio.h>
17 #include <asm/nodedata.h>
18 #include <asm/delay.h>
20 #include <linux/bootmem.h>
21 #include <linux/string.h>
22 #include <linux/sched.h>
24 #include <asm/sn/bte.h>
26 #ifndef L1_CACHE_MASK
27 #define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
28 #endif
30 /* two interfaces on two btes */
31 #define MAX_INTERFACES_TO_TRY 4
33 static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
35 nodepda_t *tmp_nodepda;
37 tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
38 return &tmp_nodepda->bte_if[interface];
42 /************************************************************************
43 * Block Transfer Engine copy related functions.
45 ***********************************************************************/
48 * bte_copy(src, dest, len, mode, notification)
50 * Use the block transfer engine to move kernel memory from src to dest
51 * using the assigned mode.
53 * Paramaters:
54 * src - physical address of the transfer source.
55 * dest - physical address of the transfer destination.
56 * len - number of bytes to transfer from source to dest.
57 * mode - hardware defined. See reference information
58 * for IBCT0/1 in the SHUB Programmers Reference
59 * notification - kernel virtual address of the notification cache
60 * line. If NULL, the default is used and
61 * the bte_copy is synchronous.
63 * NOTE: This function requires src, dest, and len to
64 * be cacheline aligned.
66 bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
68 u64 transfer_size;
69 u64 transfer_stat;
70 struct bteinfo_s *bte;
71 bte_result_t bte_status;
72 unsigned long irq_flags;
73 unsigned long itc_end = 0;
74 struct bteinfo_s *btes_to_try[MAX_INTERFACES_TO_TRY];
75 int bte_if_index;
76 int bte_pri, bte_sec;
78 BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
79 src, dest, len, mode, notification));
81 if (len == 0) {
82 return BTE_SUCCESS;
85 BUG_ON((len & L1_CACHE_MASK) ||
86 (src & L1_CACHE_MASK) || (dest & L1_CACHE_MASK));
87 BUG_ON(!(len < ((BTE_LEN_MASK + 1) << L1_CACHE_SHIFT)));
89 /* CPU 0 (per node) tries bte0 first, CPU 1 try bte1 first */
90 if (cpuid_to_subnode(smp_processor_id()) == 0) {
91 bte_pri = 0;
92 bte_sec = 1;
93 } else {
94 bte_pri = 1;
95 bte_sec = 0;
98 if (mode & BTE_USE_DEST) {
99 /* try remote then local */
100 btes_to_try[0] = bte_if_on_node(NASID_GET(dest), bte_pri);
101 btes_to_try[1] = bte_if_on_node(NASID_GET(dest), bte_sec);
102 if (mode & BTE_USE_ANY) {
103 btes_to_try[2] = bte_if_on_node(get_nasid(), bte_pri);
104 btes_to_try[3] = bte_if_on_node(get_nasid(), bte_sec);
105 } else {
106 btes_to_try[2] = NULL;
107 btes_to_try[3] = NULL;
109 } else {
110 /* try local then remote */
111 btes_to_try[0] = bte_if_on_node(get_nasid(), bte_pri);
112 btes_to_try[1] = bte_if_on_node(get_nasid(), bte_sec);
113 if (mode & BTE_USE_ANY) {
114 btes_to_try[2] = bte_if_on_node(NASID_GET(dest), bte_pri);
115 btes_to_try[3] = bte_if_on_node(NASID_GET(dest), bte_sec);
116 } else {
117 btes_to_try[2] = NULL;
118 btes_to_try[3] = NULL;
122 retry_bteop:
123 do {
124 local_irq_save(irq_flags);
126 bte_if_index = 0;
128 /* Attempt to lock one of the BTE interfaces. */
129 while (bte_if_index < MAX_INTERFACES_TO_TRY) {
130 bte = btes_to_try[bte_if_index++];
132 if (bte == NULL) {
133 continue;
136 if (spin_trylock(&bte->spinlock)) {
137 if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
138 (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
139 /* Got the lock but BTE still busy */
140 spin_unlock(&bte->spinlock);
141 } else {
142 /* we got the lock and it's not busy */
143 break;
146 bte = NULL;
149 if (bte != NULL) {
150 break;
153 local_irq_restore(irq_flags);
155 if (!(mode & BTE_WACQUIRE)) {
156 return BTEFAIL_NOTAVAIL;
158 } while (1);
160 if (notification == NULL) {
161 /* User does not want to be notified. */
162 bte->most_rcnt_na = &bte->notify;
163 } else {
164 bte->most_rcnt_na = notification;
167 /* Calculate the number of cache lines to transfer. */
168 transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
170 /* Initialize the notification to a known value. */
171 *bte->most_rcnt_na = BTE_WORD_BUSY;
173 /* Set the source and destination registers */
174 BTE_PRINTKV(("IBSA = 0x%lx)\n", (TO_PHYS(src))));
175 BTE_SRC_STORE(bte, TO_PHYS(src));
176 BTE_PRINTKV(("IBDA = 0x%lx)\n", (TO_PHYS(dest))));
177 BTE_DEST_STORE(bte, TO_PHYS(dest));
179 /* Set the notification register */
180 BTE_PRINTKV(("IBNA = 0x%lx)\n",
181 TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na))));
182 BTE_NOTIF_STORE(bte,
183 TO_PHYS(ia64_tpa((unsigned long)bte->most_rcnt_na)));
185 /* Initiate the transfer */
186 BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
187 BTE_START_TRANSFER(bte, transfer_size, BTE_VALID_MODE(mode));
189 itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
191 spin_unlock_irqrestore(&bte->spinlock, irq_flags);
193 if (notification != NULL) {
194 return BTE_SUCCESS;
197 while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
198 if (ia64_get_itc() > itc_end) {
199 BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
200 NASID_GET(bte->bte_base_addr), bte->bte_num,
201 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
202 bte->bte_error_count++;
203 bte->bh_error = IBLS_ERROR;
204 bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
205 *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
206 goto retry_bteop;
210 BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
211 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
213 if (transfer_stat & IBLS_ERROR) {
214 bte_status = transfer_stat & ~IBLS_ERROR;
215 } else {
216 bte_status = BTE_SUCCESS;
218 *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
220 BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
221 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
223 return bte_status;
226 EXPORT_SYMBOL(bte_copy);
229 * bte_unaligned_copy(src, dest, len, mode)
231 * use the block transfer engine to move kernel
232 * memory from src to dest using the assigned mode.
234 * Paramaters:
235 * src - physical address of the transfer source.
236 * dest - physical address of the transfer destination.
237 * len - number of bytes to transfer from source to dest.
238 * mode - hardware defined. See reference information
239 * for IBCT0/1 in the SGI documentation.
241 * NOTE: If the source, dest, and len are all cache line aligned,
242 * then it would be _FAR_ preferrable to use bte_copy instead.
244 bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
246 int destFirstCacheOffset;
247 u64 headBteSource;
248 u64 headBteLen;
249 u64 headBcopySrcOffset;
250 u64 headBcopyDest;
251 u64 headBcopyLen;
252 u64 footBteSource;
253 u64 footBteLen;
254 u64 footBcopyDest;
255 u64 footBcopyLen;
256 bte_result_t rv;
257 char *bteBlock, *bteBlock_unaligned;
259 if (len == 0) {
260 return BTE_SUCCESS;
263 /* temporary buffer used during unaligned transfers */
264 bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES,
265 GFP_KERNEL | GFP_DMA);
266 if (bteBlock_unaligned == NULL) {
267 return BTEFAIL_NOTAVAIL;
269 bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
271 headBcopySrcOffset = src & L1_CACHE_MASK;
272 destFirstCacheOffset = dest & L1_CACHE_MASK;
275 * At this point, the transfer is broken into
276 * (up to) three sections. The first section is
277 * from the start address to the first physical
278 * cache line, the second is from the first physical
279 * cache line to the last complete cache line,
280 * and the third is from the last cache line to the
281 * end of the buffer. The first and third sections
282 * are handled by bte copying into a temporary buffer
283 * and then bcopy'ing the necessary section into the
284 * final location. The middle section is handled with
285 * a standard bte copy.
287 * One nasty exception to the above rule is when the
288 * source and destination are not symetrically
289 * mis-aligned. If the source offset from the first
290 * cache line is different from the destination offset,
291 * we make the first section be the entire transfer
292 * and the bcopy the entire block into place.
294 if (headBcopySrcOffset == destFirstCacheOffset) {
297 * Both the source and destination are the same
298 * distance from a cache line boundary so we can
299 * use the bte to transfer the bulk of the
300 * data.
302 headBteSource = src & ~L1_CACHE_MASK;
303 headBcopyDest = dest;
304 if (headBcopySrcOffset) {
305 headBcopyLen =
306 (len >
307 (L1_CACHE_BYTES -
308 headBcopySrcOffset) ? L1_CACHE_BYTES
309 - headBcopySrcOffset : len);
310 headBteLen = L1_CACHE_BYTES;
311 } else {
312 headBcopyLen = 0;
313 headBteLen = 0;
316 if (len > headBcopyLen) {
317 footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
318 footBteLen = L1_CACHE_BYTES;
320 footBteSource = src + len - footBcopyLen;
321 footBcopyDest = dest + len - footBcopyLen;
323 if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
325 * We have two contigous bcopy
326 * blocks. Merge them.
328 headBcopyLen += footBcopyLen;
329 headBteLen += footBteLen;
330 } else if (footBcopyLen > 0) {
331 rv = bte_copy(footBteSource,
332 ia64_tpa((unsigned long)bteBlock),
333 footBteLen, mode, NULL);
334 if (rv != BTE_SUCCESS) {
335 kfree(bteBlock_unaligned);
336 return rv;
339 memcpy(__va(footBcopyDest),
340 (char *)bteBlock, footBcopyLen);
342 } else {
343 footBcopyLen = 0;
344 footBteLen = 0;
347 if (len > (headBcopyLen + footBcopyLen)) {
348 /* now transfer the middle. */
349 rv = bte_copy((src + headBcopyLen),
350 (dest +
351 headBcopyLen),
352 (len - headBcopyLen -
353 footBcopyLen), mode, NULL);
354 if (rv != BTE_SUCCESS) {
355 kfree(bteBlock_unaligned);
356 return rv;
360 } else {
363 * The transfer is not symetric, we will
364 * allocate a buffer large enough for all the
365 * data, bte_copy into that buffer and then
366 * bcopy to the destination.
369 /* Add the leader from source */
370 headBteLen = len + (src & L1_CACHE_MASK);
371 /* Add the trailing bytes from footer. */
372 headBteLen += L1_CACHE_BYTES - (headBteLen & L1_CACHE_MASK);
373 headBteSource = src & ~L1_CACHE_MASK;
374 headBcopySrcOffset = src & L1_CACHE_MASK;
375 headBcopyDest = dest;
376 headBcopyLen = len;
379 if (headBcopyLen > 0) {
380 rv = bte_copy(headBteSource,
381 ia64_tpa((unsigned long)bteBlock), headBteLen,
382 mode, NULL);
383 if (rv != BTE_SUCCESS) {
384 kfree(bteBlock_unaligned);
385 return rv;
388 memcpy(__va(headBcopyDest), ((char *)bteBlock +
389 headBcopySrcOffset), headBcopyLen);
391 kfree(bteBlock_unaligned);
392 return BTE_SUCCESS;
395 EXPORT_SYMBOL(bte_unaligned_copy);
397 /************************************************************************
398 * Block Transfer Engine initialization functions.
400 ***********************************************************************/
403 * bte_init_node(nodepda, cnode)
405 * Initialize the nodepda structure with BTE base addresses and
406 * spinlocks.
408 void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
410 int i;
413 * Indicate that all the block transfer engines on this node
414 * are available.
418 * Allocate one bte_recover_t structure per node. It holds
419 * the recovery lock for node. All the bte interface structures
420 * will point at this one bte_recover structure to get the lock.
422 spin_lock_init(&mynodepda->bte_recovery_lock);
423 init_timer(&mynodepda->bte_recovery_timer);
424 mynodepda->bte_recovery_timer.function = bte_error_handler;
425 mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
427 for (i = 0; i < BTES_PER_NODE; i++) {
428 u64 *base_addr;
430 /* Which link status register should we use? */
431 base_addr = (u64 *)
432 REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
433 mynodepda->bte_if[i].bte_base_addr = base_addr;
434 mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
435 mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
436 mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
437 mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
440 * Initialize the notification and spinlock
441 * so the first transfer can occur.
443 mynodepda->bte_if[i].most_rcnt_na =
444 &(mynodepda->bte_if[i].notify);
445 mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
446 spin_lock_init(&mynodepda->bte_if[i].spinlock);
448 mynodepda->bte_if[i].bte_cnode = cnode;
449 mynodepda->bte_if[i].bte_error_count = 0;
450 mynodepda->bte_if[i].bte_num = i;
451 mynodepda->bte_if[i].cleanup_active = 0;
452 mynodepda->bte_if[i].bh_error = 0;