[PATCH] w1: Added the triplet w1 master method and changes w1_search() to use it.
[linux-2.6/verdex.git] / arch / ia64 / sn / pci / pci_dma.c
blob5da9bdbde7cb829dbef14774cf5bf2c9d568f8d5
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved.
8 * Routines for PCI DMA mapping. See Documentation/DMA-API.txt for
9 * a description of how these routines should be used.
12 #include <linux/module.h>
13 #include <asm/dma.h>
14 #include <asm/sn/sn_sal.h>
15 #include <asm/sn/pcibus_provider_defs.h>
16 #include <asm/sn/pcidev.h>
18 #define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
19 #define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
21 /**
22 * sn_dma_supported - test a DMA mask
23 * @dev: device to test
24 * @mask: DMA mask to test
26 * Return whether the given PCI device DMA address mask can be supported
27 * properly. For example, if your device can only drive the low 24-bits
28 * during PCI bus mastering, then you would pass 0x00ffffff as the mask to
29 * this function. Of course, SN only supports devices that have 32 or more
30 * address bits when using the PMU.
32 int sn_dma_supported(struct device *dev, u64 mask)
34 BUG_ON(dev->bus != &pci_bus_type);
36 if (mask < 0x7fffffff)
37 return 0;
38 return 1;
40 EXPORT_SYMBOL(sn_dma_supported);
42 /**
43 * sn_dma_set_mask - set the DMA mask
44 * @dev: device to set
45 * @dma_mask: new mask
47 * Set @dev's DMA mask if the hw supports it.
49 int sn_dma_set_mask(struct device *dev, u64 dma_mask)
51 BUG_ON(dev->bus != &pci_bus_type);
53 if (!sn_dma_supported(dev, dma_mask))
54 return 0;
56 *dev->dma_mask = dma_mask;
57 return 1;
59 EXPORT_SYMBOL(sn_dma_set_mask);
61 /**
62 * sn_dma_alloc_coherent - allocate memory for coherent DMA
63 * @dev: device to allocate for
64 * @size: size of the region
65 * @dma_handle: DMA (bus) address
66 * @flags: memory allocation flags
68 * dma_alloc_coherent() returns a pointer to a memory region suitable for
69 * coherent DMA traffic to/from a PCI device. On SN platforms, this means
70 * that @dma_handle will have the %PCIIO_DMA_CMD flag set.
72 * This interface is usually used for "command" streams (e.g. the command
73 * queue for a SCSI controller). See Documentation/DMA-API.txt for
74 * more information.
76 void *sn_dma_alloc_coherent(struct device *dev, size_t size,
77 dma_addr_t * dma_handle, int flags)
79 void *cpuaddr;
80 unsigned long phys_addr;
81 struct pci_dev *pdev = to_pci_dev(dev);
82 struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
84 BUG_ON(dev->bus != &pci_bus_type);
87 * Allocate the memory.
88 * FIXME: We should be doing alloc_pages_node for the node closest
89 * to the PCI device.
91 if (!(cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size))))
92 return NULL;
94 memset(cpuaddr, 0x0, size);
96 /* physical addr. of the memory we just got */
97 phys_addr = __pa(cpuaddr);
100 * 64 bit address translations should never fail.
101 * 32 bit translations can fail if there are insufficient mapping
102 * resources.
105 *dma_handle = provider->dma_map_consistent(pdev, phys_addr, size);
106 if (!*dma_handle) {
107 printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
108 free_pages((unsigned long)cpuaddr, get_order(size));
109 return NULL;
112 return cpuaddr;
114 EXPORT_SYMBOL(sn_dma_alloc_coherent);
117 * sn_pci_free_coherent - free memory associated with coherent DMAable region
118 * @dev: device to free for
119 * @size: size to free
120 * @cpu_addr: kernel virtual address to free
121 * @dma_handle: DMA address associated with this region
123 * Frees the memory allocated by dma_alloc_coherent(), potentially unmapping
124 * any associated IOMMU mappings.
126 void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
127 dma_addr_t dma_handle)
129 struct pci_dev *pdev = to_pci_dev(dev);
130 struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
132 BUG_ON(dev->bus != &pci_bus_type);
134 provider->dma_unmap(pdev, dma_handle, 0);
135 free_pages((unsigned long)cpu_addr, get_order(size));
137 EXPORT_SYMBOL(sn_dma_free_coherent);
140 * sn_dma_map_single - map a single page for DMA
141 * @dev: device to map for
142 * @cpu_addr: kernel virtual address of the region to map
143 * @size: size of the region
144 * @direction: DMA direction
146 * Map the region pointed to by @cpu_addr for DMA and return the
147 * DMA address.
149 * We map this to the one step pcibr_dmamap_trans interface rather than
150 * the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have
151 * no way of saving the dmamap handle from the alloc to later free
152 * (which is pretty much unacceptable).
154 * TODO: simplify our interface;
155 * figure out how to save dmamap handle so can use two step.
157 dma_addr_t sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size,
158 int direction)
160 dma_addr_t dma_addr;
161 unsigned long phys_addr;
162 struct pci_dev *pdev = to_pci_dev(dev);
163 struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
165 BUG_ON(dev->bus != &pci_bus_type);
167 phys_addr = __pa(cpu_addr);
168 dma_addr = provider->dma_map(pdev, phys_addr, size);
169 if (!dma_addr) {
170 printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
171 return 0;
173 return dma_addr;
175 EXPORT_SYMBOL(sn_dma_map_single);
178 * sn_dma_unmap_single - unamp a DMA mapped page
179 * @dev: device to sync
180 * @dma_addr: DMA address to sync
181 * @size: size of region
182 * @direction: DMA direction
184 * This routine is supposed to sync the DMA region specified
185 * by @dma_handle into the coherence domain. On SN, we're always cache
186 * coherent, so we just need to free any ATEs associated with this mapping.
188 void sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
189 int direction)
191 struct pci_dev *pdev = to_pci_dev(dev);
192 struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
194 BUG_ON(dev->bus != &pci_bus_type);
196 provider->dma_unmap(pdev, dma_addr, direction);
198 EXPORT_SYMBOL(sn_dma_unmap_single);
201 * sn_dma_unmap_sg - unmap a DMA scatterlist
202 * @dev: device to unmap
203 * @sg: scatterlist to unmap
204 * @nhwentries: number of scatterlist entries
205 * @direction: DMA direction
207 * Unmap a set of streaming mode DMA translations.
209 void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
210 int nhwentries, int direction)
212 int i;
213 struct pci_dev *pdev = to_pci_dev(dev);
214 struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
216 BUG_ON(dev->bus != &pci_bus_type);
218 for (i = 0; i < nhwentries; i++, sg++) {
219 provider->dma_unmap(pdev, sg->dma_address, direction);
220 sg->dma_address = (dma_addr_t) NULL;
221 sg->dma_length = 0;
224 EXPORT_SYMBOL(sn_dma_unmap_sg);
227 * sn_dma_map_sg - map a scatterlist for DMA
228 * @dev: device to map for
229 * @sg: scatterlist to map
230 * @nhwentries: number of entries
231 * @direction: direction of the DMA transaction
233 * Maps each entry of @sg for DMA.
235 int sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
236 int direction)
238 unsigned long phys_addr;
239 struct scatterlist *saved_sg = sg;
240 struct pci_dev *pdev = to_pci_dev(dev);
241 struct sn_pcibus_provider *provider = SN_PCIDEV_BUSPROVIDER(pdev);
242 int i;
244 BUG_ON(dev->bus != &pci_bus_type);
247 * Setup a DMA address for each entry in the scatterlist.
249 for (i = 0; i < nhwentries; i++, sg++) {
250 phys_addr = SG_ENT_PHYS_ADDRESS(sg);
251 sg->dma_address = provider->dma_map(pdev,
252 phys_addr, sg->length);
254 if (!sg->dma_address) {
255 printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
258 * Free any successfully allocated entries.
260 if (i > 0)
261 sn_dma_unmap_sg(dev, saved_sg, i, direction);
262 return 0;
265 sg->dma_length = sg->length;
268 return nhwentries;
270 EXPORT_SYMBOL(sn_dma_map_sg);
272 void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
273 size_t size, int direction)
275 BUG_ON(dev->bus != &pci_bus_type);
277 EXPORT_SYMBOL(sn_dma_sync_single_for_cpu);
279 void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
280 size_t size, int direction)
282 BUG_ON(dev->bus != &pci_bus_type);
284 EXPORT_SYMBOL(sn_dma_sync_single_for_device);
286 void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
287 int nelems, int direction)
289 BUG_ON(dev->bus != &pci_bus_type);
291 EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu);
293 void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
294 int nelems, int direction)
296 BUG_ON(dev->bus != &pci_bus_type);
298 EXPORT_SYMBOL(sn_dma_sync_sg_for_device);
300 int sn_dma_mapping_error(dma_addr_t dma_addr)
302 return 0;
304 EXPORT_SYMBOL(sn_dma_mapping_error);
306 char *sn_pci_get_legacy_mem(struct pci_bus *bus)
308 if (!SN_PCIBUS_BUSSOFT(bus))
309 return ERR_PTR(-ENODEV);
311 return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET);
314 int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
316 unsigned long addr;
317 int ret;
319 if (!SN_PCIBUS_BUSSOFT(bus))
320 return -ENODEV;
322 addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET;
323 addr += port;
325 ret = ia64_sn_probe_mem(addr, (long)size, (void *)val);
327 if (ret == 2)
328 return -EINVAL;
330 if (ret == 1)
331 *val = -1;
333 return size;
336 int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
338 int ret = size;
339 unsigned long paddr;
340 unsigned long *addr;
342 if (!SN_PCIBUS_BUSSOFT(bus)) {
343 ret = -ENODEV;
344 goto out;
347 /* Put the phys addr in uncached space */
348 paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET;
349 paddr += port;
350 addr = (unsigned long *)paddr;
352 switch (size) {
353 case 1:
354 *(volatile u8 *)(addr) = (u8)(val);
355 break;
356 case 2:
357 *(volatile u16 *)(addr) = (u16)(val);
358 break;
359 case 4:
360 *(volatile u32 *)(addr) = (u32)(val);
361 break;
362 default:
363 ret = -EINVAL;
364 break;
366 out:
367 return ret;