4 #include <linux/kernel.h>
5 #include <asm/segment.h>
6 #include <asm/cpufeature.h>
7 #include <linux/bitops.h> /* for LOCK_PREFIX */
11 struct task_struct
; /* one of the stranger aspects of C forward declarations.. */
12 extern struct task_struct
* FASTCALL(__switch_to(struct task_struct
*prev
, struct task_struct
*next
));
15 * Saving eflags is important. It switches not only IOPL between tasks,
16 * it also protects other tasks from NT leaking through sysenter etc.
18 #define switch_to(prev,next,last) do { \
19 unsigned long esi,edi; \
20 asm volatile("pushfl\n\t" /* Save flags */ \
22 "movl %%esp,%0\n\t" /* save ESP */ \
23 "movl %5,%%esp\n\t" /* restore ESP */ \
24 "movl $1f,%1\n\t" /* save EIP */ \
25 "pushl %6\n\t" /* restore EIP */ \
30 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
31 "=a" (last),"=S" (esi),"=D" (edi) \
32 :"m" (next->thread.esp),"m" (next->thread.eip), \
33 "2" (prev), "d" (next)); \
36 #define _set_base(addr,base) do { unsigned long __pr; \
37 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
38 "rorl $16,%%edx\n\t" \
48 #define _set_limit(addr,limit) do { unsigned long __lr; \
49 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
50 "rorl $16,%%edx\n\t" \
52 "andb $0xf0,%%dh\n\t" \
61 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
62 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
65 * Load a segment. Fall back on loading the zero
66 * segment if something goes wrong..
68 #define loadsegment(seg,value) \
71 "mov %0,%%" #seg "\n" \
73 ".section .fixup,\"ax\"\n" \
76 "popl %%" #seg "\n\t" \
79 ".section __ex_table,\"a\"\n\t" \
86 * Save a segment register away
88 #define savesegment(seg, value) \
89 asm volatile("mov %%" #seg ",%0":"=rm" (value))
91 #define read_cr0() ({ \
92 unsigned int __dummy; \
93 __asm__ __volatile__( \
98 #define write_cr0(x) \
99 __asm__ __volatile__("movl %0,%%cr0": :"r" (x))
101 #define read_cr2() ({ \
102 unsigned int __dummy; \
103 __asm__ __volatile__( \
104 "movl %%cr2,%0\n\t" \
108 #define write_cr2(x) \
109 __asm__ __volatile__("movl %0,%%cr2": :"r" (x))
111 #define read_cr3() ({ \
112 unsigned int __dummy; \
114 "movl %%cr3,%0\n\t" \
118 #define write_cr3(x) \
119 __asm__ __volatile__("movl %0,%%cr3": :"r" (x))
121 #define read_cr4() ({ \
122 unsigned int __dummy; \
124 "movl %%cr4,%0\n\t" \
128 #define read_cr4_safe() ({ \
129 unsigned int __dummy; \
130 /* This could fault if %cr4 does not exist */ \
131 __asm__("1: movl %%cr4, %0 \n" \
133 ".section __ex_table,\"a\" \n" \
136 : "=r" (__dummy): "0" (0)); \
139 #define write_cr4(x) \
140 __asm__ __volatile__("movl %0,%%cr4": :"r" (x))
143 * Clear and set 'TS' bit respectively
145 #define clts() __asm__ __volatile__ ("clts")
146 #define stts() write_cr0(8 | read_cr0())
148 #endif /* __KERNEL__ */
151 __asm__ __volatile__ ("wbinvd": : :"memory")
153 static inline unsigned long get_limit(unsigned long segment
)
155 unsigned long __limit
;
157 :"=r" (__limit
):"r" (segment
));
161 #define nop() __asm__ __volatile__ ("nop")
163 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
165 #define tas(ptr) (xchg((ptr),1))
167 struct __xchg_dummy
{ unsigned long a
[100]; };
168 #define __xg(x) ((struct __xchg_dummy *)(x))
171 #ifdef CONFIG_X86_CMPXCHG64
174 * The semantics of XCHGCMP8B are a bit strange, this is why
175 * there is a loop and the loading of %%eax and %%edx has to
176 * be inside. This inlines well in most cases, the cached
177 * cost is around ~38 cycles. (in the future we might want
178 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
179 * might have an implicit FPU-save as a cost, so it's not
180 * clear which path to go.)
182 * cmpxchg8b must be used with the lock prefix here to allow
183 * the instruction to be executed atomically, see page 3-102
184 * of the instruction set reference 24319102.pdf. We need
185 * the reader side to see the coherent 64bit value.
187 static inline void __set_64bit (unsigned long long * ptr
,
188 unsigned int low
, unsigned int high
)
190 __asm__
__volatile__ (
192 "movl (%0), %%eax\n\t"
193 "movl 4(%0), %%edx\n\t"
194 "lock cmpxchg8b (%0)\n\t"
200 : "ax","dx","memory");
203 static inline void __set_64bit_constant (unsigned long long *ptr
,
204 unsigned long long value
)
206 __set_64bit(ptr
,(unsigned int)(value
), (unsigned int)((value
)>>32ULL));
208 #define ll_low(x) *(((unsigned int*)&(x))+0)
209 #define ll_high(x) *(((unsigned int*)&(x))+1)
211 static inline void __set_64bit_var (unsigned long long *ptr
,
212 unsigned long long value
)
214 __set_64bit(ptr
,ll_low(value
), ll_high(value
));
217 #define set_64bit(ptr,value) \
218 (__builtin_constant_p(value) ? \
219 __set_64bit_constant(ptr, value) : \
220 __set_64bit_var(ptr, value) )
222 #define _set_64bit(ptr,value) \
223 (__builtin_constant_p(value) ? \
224 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
225 __set_64bit(ptr, ll_low(value), ll_high(value)) )
230 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
231 * Note 2: xchg has side effect, so that attribute volatile is necessary,
232 * but generally the primitive is invalid, *ptr is output argument. --ANK
234 static inline unsigned long __xchg(unsigned long x
, volatile void * ptr
, int size
)
238 __asm__
__volatile__("xchgb %b0,%1"
240 :"m" (*__xg(ptr
)), "0" (x
)
244 __asm__
__volatile__("xchgw %w0,%1"
246 :"m" (*__xg(ptr
)), "0" (x
)
250 __asm__
__volatile__("xchgl %0,%1"
252 :"m" (*__xg(ptr
)), "0" (x
)
260 * Atomic compare and exchange. Compare OLD with MEM, if identical,
261 * store NEW in MEM. Return the initial value in MEM. Success is
262 * indicated by comparing RETURN with OLD.
265 #ifdef CONFIG_X86_CMPXCHG
266 #define __HAVE_ARCH_CMPXCHG 1
267 #define cmpxchg(ptr,o,n)\
268 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
269 (unsigned long)(n),sizeof(*(ptr))))
270 #define sync_cmpxchg(ptr,o,n)\
271 ((__typeof__(*(ptr)))__sync_cmpxchg((ptr),(unsigned long)(o),\
272 (unsigned long)(n),sizeof(*(ptr))))
275 static inline unsigned long __cmpxchg(volatile void *ptr
, unsigned long old
,
276 unsigned long new, int size
)
281 __asm__
__volatile__(LOCK_PREFIX
"cmpxchgb %b1,%2"
283 : "q"(new), "m"(*__xg(ptr
)), "0"(old
)
287 __asm__
__volatile__(LOCK_PREFIX
"cmpxchgw %w1,%2"
289 : "r"(new), "m"(*__xg(ptr
)), "0"(old
)
293 __asm__
__volatile__(LOCK_PREFIX
"cmpxchgl %1,%2"
295 : "r"(new), "m"(*__xg(ptr
)), "0"(old
)
303 * Always use locked operations when touching memory shared with a
304 * hypervisor, since the system may be SMP even if the guest kernel
307 static inline unsigned long __sync_cmpxchg(volatile void *ptr
,
309 unsigned long new, int size
)
314 __asm__
__volatile__("lock; cmpxchgb %b1,%2"
316 : "q"(new), "m"(*__xg(ptr
)), "0"(old
)
320 __asm__
__volatile__("lock; cmpxchgw %w1,%2"
322 : "r"(new), "m"(*__xg(ptr
)), "0"(old
)
326 __asm__
__volatile__("lock; cmpxchgl %1,%2"
328 : "r"(new), "m"(*__xg(ptr
)), "0"(old
)
335 #ifndef CONFIG_X86_CMPXCHG
337 * Building a kernel capable running on 80386. It may be necessary to
338 * simulate the cmpxchg on the 80386 CPU. For that purpose we define
339 * a function for each of the sizes we support.
342 extern unsigned long cmpxchg_386_u8(volatile void *, u8
, u8
);
343 extern unsigned long cmpxchg_386_u16(volatile void *, u16
, u16
);
344 extern unsigned long cmpxchg_386_u32(volatile void *, u32
, u32
);
346 static inline unsigned long cmpxchg_386(volatile void *ptr
, unsigned long old
,
347 unsigned long new, int size
)
351 return cmpxchg_386_u8(ptr
, old
, new);
353 return cmpxchg_386_u16(ptr
, old
, new);
355 return cmpxchg_386_u32(ptr
, old
, new);
360 #define cmpxchg(ptr,o,n) \
362 __typeof__(*(ptr)) __ret; \
363 if (likely(boot_cpu_data.x86 > 3)) \
364 __ret = __cmpxchg((ptr), (unsigned long)(o), \
365 (unsigned long)(n), sizeof(*(ptr))); \
367 __ret = cmpxchg_386((ptr), (unsigned long)(o), \
368 (unsigned long)(n), sizeof(*(ptr))); \
373 #ifdef CONFIG_X86_CMPXCHG64
375 static inline unsigned long long __cmpxchg64(volatile void *ptr
, unsigned long long old
,
376 unsigned long long new)
378 unsigned long long prev
;
379 __asm__
__volatile__(LOCK_PREFIX
"cmpxchg8b %3"
381 : "b"((unsigned long)new),
382 "c"((unsigned long)(new >> 32)),
389 #define cmpxchg64(ptr,o,n)\
390 ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
391 (unsigned long long)(n)))
396 * Force strict CPU ordering.
397 * And yes, this is required on UP too when we're talking
400 * For now, "wmb()" doesn't actually do anything, as all
401 * Intel CPU's follow what Intel calls a *Processor Order*,
402 * in which all writes are seen in the program order even
405 * I expect future Intel CPU's to have a weaker ordering,
406 * but I'd also expect them to finally get their act together
407 * and add some real memory barriers if so.
409 * Some non intel clones support out of order store. wmb() ceases to be a
415 * Actually only lfence would be needed for mb() because all stores done
416 * by the kernel should be already ordered. But keep a full barrier for now.
419 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
420 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
423 * read_barrier_depends - Flush all pending reads that subsequents reads
426 * No data-dependent reads from memory-like regions are ever reordered
427 * over this barrier. All reads preceding this primitive are guaranteed
428 * to access memory (but not necessarily other CPUs' caches) before any
429 * reads following this primitive that depend on the data return by
430 * any of the preceding reads. This primitive is much lighter weight than
431 * rmb() on most CPUs, and is never heavier weight than is
434 * These ordering constraints are respected by both the local CPU
437 * Ordering is not guaranteed by anything other than these primitives,
438 * not even by data dependencies. See the documentation for
439 * memory_barrier() for examples and URLs to more information.
441 * For example, the following code would force ordering (the initial
442 * value of "a" is zero, "b" is one, and "p" is "&a"):
450 * read_barrier_depends();
454 * because the read of "*q" depends on the read of "p" and these
455 * two reads are separated by a read_barrier_depends(). However,
456 * the following code, with the same initial values for "a" and "b":
464 * read_barrier_depends();
468 * does not enforce ordering, since there is no data dependency between
469 * the read of "a" and the read of "b". Therefore, on some CPUs, such
470 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
471 * in cases like this where there are no data dependencies.
474 #define read_barrier_depends() do { } while(0)
476 #ifdef CONFIG_X86_OOSTORE
477 /* Actually there are no OOO store capable CPUs for now that do SSE,
478 but make it already an possibility. */
479 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
481 #define wmb() __asm__ __volatile__ ("": : :"memory")
485 #define smp_mb() mb()
486 #define smp_rmb() rmb()
487 #define smp_wmb() wmb()
488 #define smp_read_barrier_depends() read_barrier_depends()
489 #define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
491 #define smp_mb() barrier()
492 #define smp_rmb() barrier()
493 #define smp_wmb() barrier()
494 #define smp_read_barrier_depends() do { } while(0)
495 #define set_mb(var, value) do { var = value; barrier(); } while (0)
498 #include <linux/irqflags.h>
501 * disable hlt during certain critical i/o operations
503 #define HAVE_DISABLE_HLT
504 void disable_hlt(void);
505 void enable_hlt(void);
507 extern int es7000_plat
;
508 void cpu_idle_wait(void);
511 * On SMP systems, when the scheduler does migration-cost autodetection,
512 * it needs a way to flush as much of the CPU's caches as possible:
514 static inline void sched_cacheflush(void)
519 extern unsigned long arch_align_stack(unsigned long sp
);
520 extern void free_init_pages(char *what
, unsigned long begin
, unsigned long end
);
522 void default_idle(void);