2 * arch/arm/mach-pxa/time.c
4 * PXA clocksource, clockevents, and OST interrupt handlers.
5 * Copyright (c) 2007 by Bill Gatliff <bgat@billgatliff.com>.
7 * Derived from Nicolas Pitre's PXA timer handler Copyright (c) 2001
8 * by MontaVista Software, Inc. (Nico, your code rocks!)
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/clockchips.h>
19 #include <linux/sched.h>
21 #include <asm/div64.h>
22 #include <asm/cnt32_to_63.h>
23 #include <asm/mach/irq.h>
24 #include <asm/mach/time.h>
25 #include <asm/arch/pxa-regs.h>
26 #include <asm/mach-types.h>
29 * This is PXA's sched_clock implementation. This has a resolution
30 * of at least 308 ns and a maximum value of 208 days.
32 * The return value is guaranteed to be monotonic in that range as
33 * long as there is always less than 582 seconds between successive
34 * calls to sched_clock() which should always be the case in practice.
37 #define OSCR2NS_SCALE_FACTOR 10
39 static unsigned long oscr2ns_scale
;
41 static void __init
set_oscr2ns_scale(unsigned long oscr_rate
)
43 unsigned long long v
= 1000000000ULL << OSCR2NS_SCALE_FACTOR
;
47 * We want an even value to automatically clear the top bit
48 * returned by cnt32_to_63() without an additional run time
49 * instruction. So if the LSB is 1 then round it up.
51 if (oscr2ns_scale
& 1)
55 unsigned long long sched_clock(void)
57 unsigned long long v
= cnt32_to_63(OSCR
);
58 return (v
* oscr2ns_scale
) >> OSCR2NS_SCALE_FACTOR
;
63 pxa_ost0_interrupt(int irq
, void *dev_id
)
66 struct clock_event_device
*c
= dev_id
;
68 if (c
->mode
== CLOCK_EVT_MODE_ONESHOT
) {
69 /* Disarm the compare/match, signal the event. */
72 } else if (c
->mode
== CLOCK_EVT_MODE_PERIODIC
) {
73 /* Call the event handler as many times as necessary
74 * to recover missed events, if any (if we update
75 * OSMR0 and OSCR0 is still ahead of us, we've missed
76 * the event). As we're dealing with that, re-arm the
77 * compare/match for the next event.
81 * There's a latency between the instruction that
82 * writes to OSMR0 and the actual commit to the
83 * physical hardware, because the CPU doesn't (have
84 * to) run at bus speed, there's a write buffer
85 * between the CPU and the bus, etc. etc. So if the
86 * target OSCR0 is "very close", to the OSMR0 load
87 * value, the update to OSMR0 might not get to the
88 * hardware in time and we'll miss that interrupt.
90 * To be safe, if the new OSMR0 is "very close" to the
91 * target OSCR0 value, we call the event_handler as
92 * though the event actually happened. According to
93 * Nico's comment in the previous version of this
94 * code, experience has shown that 6 OSCR ticks is
95 * "very close" but he went with 8. We will use 16,
96 * based on the results of testing on PXA270.
98 * To be doubly sure, we also tell clkevt via
99 * clockevents_register_device() not to ask for
100 * anything that might put us "very close".
102 #define MIN_OSCR_DELTA 16
105 next_match
= (OSMR0
+= LATCH
);
107 } while (((signed long)(next_match
- OSCR
) <= MIN_OSCR_DELTA
)
108 && (c
->mode
== CLOCK_EVT_MODE_PERIODIC
));
115 pxa_osmr0_set_next_event(unsigned long delta
, struct clock_event_device
*dev
)
117 unsigned long irqflags
;
119 raw_local_irq_save(irqflags
);
120 OSMR0
= OSCR
+ delta
;
123 raw_local_irq_restore(irqflags
);
128 pxa_osmr0_set_mode(enum clock_event_mode mode
, struct clock_event_device
*dev
)
130 unsigned long irqflags
;
133 case CLOCK_EVT_MODE_PERIODIC
:
134 raw_local_irq_save(irqflags
);
135 OSMR0
= OSCR
+ LATCH
;
138 raw_local_irq_restore(irqflags
);
141 case CLOCK_EVT_MODE_ONESHOT
:
142 raw_local_irq_save(irqflags
);
144 raw_local_irq_restore(irqflags
);
147 case CLOCK_EVT_MODE_UNUSED
:
148 case CLOCK_EVT_MODE_SHUTDOWN
:
149 /* initializing, released, or preparing for suspend */
150 raw_local_irq_save(irqflags
);
152 raw_local_irq_restore(irqflags
);
157 static struct clock_event_device ckevt_pxa_osmr0
= {
159 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
162 .cpumask
= CPU_MASK_CPU0
,
163 .set_next_event
= pxa_osmr0_set_next_event
,
164 .set_mode
= pxa_osmr0_set_mode
,
167 static cycle_t
pxa_read_oscr(void)
172 static struct clocksource cksrc_pxa_oscr0
= {
175 .read
= pxa_read_oscr
,
176 .mask
= CLOCKSOURCE_MASK(32),
178 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
181 static struct irqaction pxa_ost0_irq
= {
183 .flags
= IRQF_DISABLED
| IRQF_TIMER
| IRQF_IRQPOLL
,
184 .handler
= pxa_ost0_interrupt
,
185 .dev_id
= &ckevt_pxa_osmr0
,
188 static void __init
pxa_timer_init(void)
190 unsigned long clock_tick_rate
;
193 OSSR
= OSSR_M0
| OSSR_M1
| OSSR_M2
| OSSR_M3
;
195 if (cpu_is_pxa21x() || cpu_is_pxa25x())
196 clock_tick_rate
= 3686400;
197 else if (machine_is_mainstone())
198 clock_tick_rate
= 3249600;
200 clock_tick_rate
= 3250000;
202 set_oscr2ns_scale(clock_tick_rate
);
204 ckevt_pxa_osmr0
.mult
=
205 div_sc(clock_tick_rate
, NSEC_PER_SEC
, ckevt_pxa_osmr0
.shift
);
206 ckevt_pxa_osmr0
.max_delta_ns
=
207 clockevent_delta2ns(0x7fffffff, &ckevt_pxa_osmr0
);
208 ckevt_pxa_osmr0
.min_delta_ns
=
209 clockevent_delta2ns(MIN_OSCR_DELTA
, &ckevt_pxa_osmr0
) + 1;
211 cksrc_pxa_oscr0
.mult
=
212 clocksource_hz2mult(clock_tick_rate
, cksrc_pxa_oscr0
.shift
);
214 setup_irq(IRQ_OST0
, &pxa_ost0_irq
);
216 clocksource_register(&cksrc_pxa_oscr0
);
217 clockevents_register_device(&ckevt_pxa_osmr0
);
221 static unsigned long osmr
[4], oier
;
223 static void pxa_timer_suspend(void)
232 static void pxa_timer_resume(void)
241 * OSCR0 is the system timer, which has to increase
242 * monotonically until it rolls over in hardware. The value
243 * (OSMR0 - LATCH) is OSCR0 at the most recent system tick,
244 * which is a handy value to restore to OSCR0.
246 OSCR
= OSMR0
- LATCH
;
249 #define pxa_timer_suspend NULL
250 #define pxa_timer_resume NULL
253 struct sys_timer pxa_timer
= {
254 .init
= pxa_timer_init
,
255 .suspend
= pxa_timer_suspend
,
256 .resume
= pxa_timer_resume
,