2 * linux/arch/cris/arch-v10/mm/init.c
5 #include <linux/mmzone.h>
6 #include <linux/init.h>
7 #include <linux/bootmem.h>
9 #include <asm/pgtable.h>
11 #include <asm/types.h>
14 #include <asm/mmu_context.h>
15 #include <asm/arch/svinto.h>
17 extern void tlb_init(void);
20 * The kernel is already mapped with a kernel segment at kseg_c so
21 * we don't need to map it with a page table. However head.S also
22 * temporarily mapped it at kseg_4 so we should set up the ksegs again,
23 * clear the TLB and do some other paging setup stuff.
30 unsigned long zones_size
[MAX_NR_ZONES
];
32 printk("Setting up paging and the MMU.\n");
34 /* clear out the init_mm.pgd that will contain the kernel's mappings */
36 for(i
= 0; i
< PTRS_PER_PGD
; i
++)
37 swapper_pg_dir
[i
] = __pgd(0);
39 /* make sure the current pgd table points to something sane
40 * (even if it is most probably not used until the next
44 per_cpu(current_pgd
, smp_processor_id()) = init_mm
.pgd
;
46 /* initialise the TLB (tlb.c) */
50 /* see README.mm for details on the KSEG setup */
52 #ifdef CONFIG_CRIS_LOW_MAP
53 /* Etrax-100 LX version 1 has a bug so that we cannot map anything
54 * across the 0x80000000 boundary, so we need to shrink the user-virtual
55 * area to 0x50000000 instead of 0xb0000000 and map things slightly
56 * different. The unused areas are marked as paged so that we can catch
57 * freak kernel accesses there.
59 * The ARTPEC chip is mapped at 0xa so we pass that segment straight
60 * through. We cannot vremap it because the vmalloc area is below 0x8
61 * and Juliette needs an uncached area above 0x8.
63 * Same thing with 0xc and 0x9, which is memory-mapped I/O on some boards.
64 * We map them straight over in LOW_MAP, but use vremap in LX version 2.
67 #define CACHED_BOOTROM (KSEG_F | 0x08000000UL)
69 *R_MMU_KSEG
= ( IO_STATE(R_MMU_KSEG
, seg_f
, seg
) | /* bootrom */
70 IO_STATE(R_MMU_KSEG
, seg_e
, page
) |
71 IO_STATE(R_MMU_KSEG
, seg_d
, page
) |
72 IO_STATE(R_MMU_KSEG
, seg_c
, page
) |
73 IO_STATE(R_MMU_KSEG
, seg_b
, seg
) | /* kernel reg area */
74 #ifdef CONFIG_JULIETTE
75 IO_STATE(R_MMU_KSEG
, seg_a
, seg
) | /* ARTPEC etc. */
77 IO_STATE(R_MMU_KSEG
, seg_a
, page
) |
79 IO_STATE(R_MMU_KSEG
, seg_9
, seg
) | /* LED's on some boards */
80 IO_STATE(R_MMU_KSEG
, seg_8
, seg
) | /* CSE0/1, flash and I/O */
81 IO_STATE(R_MMU_KSEG
, seg_7
, page
) | /* kernel vmalloc area */
82 IO_STATE(R_MMU_KSEG
, seg_6
, seg
) | /* kernel DRAM area */
83 IO_STATE(R_MMU_KSEG
, seg_5
, seg
) | /* cached flash */
84 IO_STATE(R_MMU_KSEG
, seg_4
, page
) | /* user area */
85 IO_STATE(R_MMU_KSEG
, seg_3
, page
) | /* user area */
86 IO_STATE(R_MMU_KSEG
, seg_2
, page
) | /* user area */
87 IO_STATE(R_MMU_KSEG
, seg_1
, page
) | /* user area */
88 IO_STATE(R_MMU_KSEG
, seg_0
, page
) ); /* user area */
90 *R_MMU_KBASE_HI
= ( IO_FIELD(R_MMU_KBASE_HI
, base_f
, 0x3 ) |
91 IO_FIELD(R_MMU_KBASE_HI
, base_e
, 0x0 ) |
92 IO_FIELD(R_MMU_KBASE_HI
, base_d
, 0x0 ) |
93 IO_FIELD(R_MMU_KBASE_HI
, base_c
, 0x0 ) |
94 IO_FIELD(R_MMU_KBASE_HI
, base_b
, 0xb ) |
95 #ifdef CONFIG_JULIETTE
96 IO_FIELD(R_MMU_KBASE_HI
, base_a
, 0xa ) |
98 IO_FIELD(R_MMU_KBASE_HI
, base_a
, 0x0 ) |
100 IO_FIELD(R_MMU_KBASE_HI
, base_9
, 0x9 ) |
101 IO_FIELD(R_MMU_KBASE_HI
, base_8
, 0x8 ) );
103 *R_MMU_KBASE_LO
= ( IO_FIELD(R_MMU_KBASE_LO
, base_7
, 0x0 ) |
104 IO_FIELD(R_MMU_KBASE_LO
, base_6
, 0x4 ) |
105 IO_FIELD(R_MMU_KBASE_LO
, base_5
, 0x0 ) |
106 IO_FIELD(R_MMU_KBASE_LO
, base_4
, 0x0 ) |
107 IO_FIELD(R_MMU_KBASE_LO
, base_3
, 0x0 ) |
108 IO_FIELD(R_MMU_KBASE_LO
, base_2
, 0x0 ) |
109 IO_FIELD(R_MMU_KBASE_LO
, base_1
, 0x0 ) |
110 IO_FIELD(R_MMU_KBASE_LO
, base_0
, 0x0 ) );
112 /* This code is for the corrected Etrax-100 LX version 2... */
114 #define CACHED_BOOTROM (KSEG_A | 0x08000000UL)
116 *R_MMU_KSEG
= ( IO_STATE(R_MMU_KSEG
, seg_f
, seg
) | /* cached flash */
117 IO_STATE(R_MMU_KSEG
, seg_e
, seg
) | /* uncached flash */
118 IO_STATE(R_MMU_KSEG
, seg_d
, page
) | /* vmalloc area */
119 IO_STATE(R_MMU_KSEG
, seg_c
, seg
) | /* kernel area */
120 IO_STATE(R_MMU_KSEG
, seg_b
, seg
) | /* kernel reg area */
121 IO_STATE(R_MMU_KSEG
, seg_a
, seg
) | /* bootrom */
122 IO_STATE(R_MMU_KSEG
, seg_9
, page
) | /* user area */
123 IO_STATE(R_MMU_KSEG
, seg_8
, page
) |
124 IO_STATE(R_MMU_KSEG
, seg_7
, page
) |
125 IO_STATE(R_MMU_KSEG
, seg_6
, page
) |
126 IO_STATE(R_MMU_KSEG
, seg_5
, page
) |
127 IO_STATE(R_MMU_KSEG
, seg_4
, page
) |
128 IO_STATE(R_MMU_KSEG
, seg_3
, page
) |
129 IO_STATE(R_MMU_KSEG
, seg_2
, page
) |
130 IO_STATE(R_MMU_KSEG
, seg_1
, page
) |
131 IO_STATE(R_MMU_KSEG
, seg_0
, page
) );
133 *R_MMU_KBASE_HI
= ( IO_FIELD(R_MMU_KBASE_HI
, base_f
, 0x0 ) |
134 IO_FIELD(R_MMU_KBASE_HI
, base_e
, 0x8 ) |
135 IO_FIELD(R_MMU_KBASE_HI
, base_d
, 0x0 ) |
136 IO_FIELD(R_MMU_KBASE_HI
, base_c
, 0x4 ) |
137 IO_FIELD(R_MMU_KBASE_HI
, base_b
, 0xb ) |
138 IO_FIELD(R_MMU_KBASE_HI
, base_a
, 0x3 ) |
139 IO_FIELD(R_MMU_KBASE_HI
, base_9
, 0x0 ) |
140 IO_FIELD(R_MMU_KBASE_HI
, base_8
, 0x0 ) );
142 *R_MMU_KBASE_LO
= ( IO_FIELD(R_MMU_KBASE_LO
, base_7
, 0x0 ) |
143 IO_FIELD(R_MMU_KBASE_LO
, base_6
, 0x0 ) |
144 IO_FIELD(R_MMU_KBASE_LO
, base_5
, 0x0 ) |
145 IO_FIELD(R_MMU_KBASE_LO
, base_4
, 0x0 ) |
146 IO_FIELD(R_MMU_KBASE_LO
, base_3
, 0x0 ) |
147 IO_FIELD(R_MMU_KBASE_LO
, base_2
, 0x0 ) |
148 IO_FIELD(R_MMU_KBASE_LO
, base_1
, 0x0 ) |
149 IO_FIELD(R_MMU_KBASE_LO
, base_0
, 0x0 ) );
152 *R_MMU_CONTEXT
= ( IO_FIELD(R_MMU_CONTEXT
, page_id
, 0 ) );
154 /* The MMU has been enabled ever since head.S but just to make
155 * it totally obvious we do it here as well.
158 *R_MMU_CTRL
= ( IO_STATE(R_MMU_CTRL
, inv_excp
, enable
) |
159 IO_STATE(R_MMU_CTRL
, acc_excp
, enable
) |
160 IO_STATE(R_MMU_CTRL
, we_excp
, enable
) );
162 *R_MMU_ENABLE
= IO_STATE(R_MMU_ENABLE
, mmu_enable
, enable
);
165 * initialize the bad page table and bad page to point
166 * to a couple of allocated pages
169 empty_zero_page
= (unsigned long)alloc_bootmem_pages(PAGE_SIZE
);
170 memset((void *)empty_zero_page
, 0, PAGE_SIZE
);
172 /* All pages are DMA'able in Etrax, so put all in the DMA'able zone */
174 zones_size
[0] = ((unsigned long)high_memory
- PAGE_OFFSET
) >> PAGE_SHIFT
;
176 for (i
= 1; i
< MAX_NR_ZONES
; i
++)
179 /* Use free_area_init_node instead of free_area_init, because the former
180 * is designed for systems where the DRAM starts at an address substantially
181 * higher than 0, like us (we start at PAGE_OFFSET). This saves space in the
182 * mem_map page array.
185 free_area_init_node(0, &contig_page_data
, zones_size
, PAGE_OFFSET
>> PAGE_SHIFT
, 0);
188 /* Initialize remaps of some I/O-ports. It is important that this
189 * is called before any driver is initialized.
193 __init
init_ioremap(void)
196 /* Give the external I/O-port addresses their values */
198 #ifdef CONFIG_CRIS_LOW_MAP
199 /* Simply a linear map (see the KSEG map above in paging_init) */
200 port_cse1_addr
= (volatile unsigned long *)(MEM_CSE1_START
|
202 port_csp0_addr
= (volatile unsigned long *)(MEM_CSP0_START
|
204 port_csp4_addr
= (volatile unsigned long *)(MEM_CSP4_START
|
207 /* Note that nothing blows up just because we do this remapping
208 * it's ok even if the ports are not used or connected
209 * to anything (or connected to a non-I/O thing) */
210 port_cse1_addr
= (volatile unsigned long *)
211 ioremap((unsigned long)(MEM_CSE1_START
| MEM_NON_CACHEABLE
), 16);
212 port_csp0_addr
= (volatile unsigned long *)
213 ioremap((unsigned long)(MEM_CSP0_START
| MEM_NON_CACHEABLE
), 16);
214 port_csp4_addr
= (volatile unsigned long *)
215 ioremap((unsigned long)(MEM_CSP4_START
| MEM_NON_CACHEABLE
), 16);
220 __initcall(init_ioremap
);
222 /* Helper function for the two below */
225 flush_etrax_cacherange(void *startadr
, int length
)
227 /* CACHED_BOOTROM is mapped to the boot-rom area (cached) which
228 * we can use to get fast dummy-reads of cachelines
231 volatile short *flushadr
= (volatile short *)(((unsigned long)startadr
& ~PAGE_MASK
) |
234 length
= length
> 8192 ? 8192 : length
; /* No need to flush more than cache size */
237 *flushadr
; /* dummy read to flush */
238 flushadr
+= (32/sizeof(short)); /* a cacheline is 32 bytes */
243 /* Due to a bug in Etrax100(LX) all versions, receiving DMA buffers
244 * will occationally corrupt certain CPU writes if the DMA buffers
245 * happen to be hot in the cache.
247 * As a workaround, we have to flush the relevant parts of the cache
248 * before (re) inserting any receiving descriptor into the DMA HW.
252 prepare_rx_descriptor(struct etrax_dma_descr
*desc
)
254 flush_etrax_cacherange((void *)desc
->buf
, desc
->sw_len
? desc
->sw_len
: 65536);
257 /* Do the same thing but flush the entire cache */
260 flush_etrax_cache(void)
262 flush_etrax_cacherange(0, 8192);