1 /* $Id: cryptocop.c,v 1.13 2005/04/21 17:27:55 henriken Exp $
3 * Stream co-processor driver for the ETRAX FS
5 * Copyright (C) 2003-2005 Axis Communications AB
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
15 #include <linux/spinlock.h>
16 #include <linux/stddef.h>
18 #include <asm/uaccess.h>
20 #include <asm/atomic.h>
22 #include <linux/list.h>
23 #include <linux/interrupt.h>
25 #include <asm/signal.h>
28 #include <asm/arch/dma.h>
29 #include <asm/arch/hwregs/dma.h>
30 #include <asm/arch/hwregs/reg_map.h>
31 #include <asm/arch/hwregs/reg_rdwr.h>
32 #include <asm/arch/hwregs/intr_vect_defs.h>
34 #include <asm/arch/hwregs/strcop.h>
35 #include <asm/arch/hwregs/strcop_defs.h>
36 #include <asm/arch/cryptocop.h>
40 #define DESCR_ALLOC_PAD (31)
42 struct cryptocop_dma_desc
{
43 char *free_buf
; /* If non-null will be kfreed in free_cdesc() */
44 dma_descr_data
*dma_descr
;
46 unsigned char dma_descr_buf
[sizeof(dma_descr_data
) + DESCR_ALLOC_PAD
];
48 unsigned int from_pool
:1; /* If 1 'allocated' from the descriptor pool. */
49 struct cryptocop_dma_desc
*next
;
53 struct cryptocop_int_operation
{
55 cryptocop_session_id sid
;
57 dma_descr_context ctx_out
;
58 dma_descr_context ctx_in
;
60 /* DMA descriptors allocated by driver. */
61 struct cryptocop_dma_desc
*cdesc_out
;
62 struct cryptocop_dma_desc
*cdesc_in
;
64 /* Strcop config to use. */
65 cryptocop_3des_mode tdes_mode
;
66 cryptocop_csum_type csum_mode
;
68 /* DMA descrs provided by consumer. */
69 dma_descr_data
*ddesc_out
;
70 dma_descr_data
*ddesc_in
;
74 struct cryptocop_tfrm_ctx
{
75 cryptocop_tfrm_id tid
;
76 unsigned int blocklength
;
78 unsigned int start_ix
;
80 struct cryptocop_tfrm_cfg
*tcfg
;
81 struct cryptocop_transform_ctx
*tctx
;
83 unsigned char previous_src
;
84 unsigned char current_src
;
86 /* Values to use in metadata out. */
87 unsigned char hash_conf
;
88 unsigned char hash_mode
;
89 unsigned char ciph_conf
;
90 unsigned char cbcmode
;
91 unsigned char decrypt
;
93 unsigned int requires_padding
:1;
94 unsigned int strict_block_length
:1;
95 unsigned int active
:1;
100 /* Pad (input) descriptors to put in the DMA out list when the transform
101 * output is put on the DMA in list. */
102 struct cryptocop_dma_desc
*pad_descs
;
104 struct cryptocop_tfrm_ctx
*prev_src
;
105 struct cryptocop_tfrm_ctx
*curr_src
;
108 unsigned char unit_no
;
112 struct cryptocop_private
{
113 cryptocop_session_id sid
;
114 struct cryptocop_private
*next
;
119 struct cryptocop_transform_ctx
{
120 struct cryptocop_transform_init init
;
121 unsigned char dec_key
[CRYPTOCOP_MAX_KEY_LENGTH
];
122 unsigned int dec_key_set
:1;
124 struct cryptocop_transform_ctx
*next
;
128 struct cryptocop_session
{
129 cryptocop_session_id sid
;
131 struct cryptocop_transform_ctx
*tfrm_ctx
;
133 struct cryptocop_session
*next
;
136 /* Priority levels for jobs sent to the cryptocop. Checksum operations from
137 kernel have highest priority since TCPIP stack processing must not
140 cryptocop_prio_kernel_csum
= 0,
141 cryptocop_prio_kernel
= 1,
142 cryptocop_prio_user
= 2,
143 cryptocop_prio_no_prios
= 3
144 } cryptocop_queue_priority
;
146 struct cryptocop_prio_queue
{
147 struct list_head jobs
;
148 cryptocop_queue_priority prio
;
151 struct cryptocop_prio_job
{
152 struct list_head node
;
153 cryptocop_queue_priority prio
;
155 struct cryptocop_operation
*oper
;
156 struct cryptocop_int_operation
*iop
;
159 struct ioctl_job_cb_ctx
{
160 unsigned int processed
:1;
164 static struct cryptocop_session
*cryptocop_sessions
= NULL
;
165 spinlock_t cryptocop_sessions_lock
;
167 /* Next Session ID to assign. */
168 static cryptocop_session_id next_sid
= 1;
170 /* Pad for checksum. */
171 static const char csum_zero_pad
[1] = {0x00};
173 /* Trash buffer for mem2mem operations. */
174 #define MEM2MEM_DISCARD_BUF_LENGTH (512)
175 static unsigned char mem2mem_discard_buf
[MEM2MEM_DISCARD_BUF_LENGTH
];
177 /* Descriptor pool. */
178 /* FIXME Tweak this value. */
179 #define CRYPTOCOP_DESCRIPTOR_POOL_SIZE (100)
180 static struct cryptocop_dma_desc descr_pool
[CRYPTOCOP_DESCRIPTOR_POOL_SIZE
];
181 static struct cryptocop_dma_desc
*descr_pool_free_list
;
182 static int descr_pool_no_free
;
183 static spinlock_t descr_pool_lock
;
185 /* Lock to stop cryptocop to start processing of a new operation. The holder
186 of this lock MUST call cryptocop_start_job() after it is unlocked. */
187 spinlock_t cryptocop_process_lock
;
189 static struct cryptocop_prio_queue cryptocop_job_queues
[cryptocop_prio_no_prios
];
190 static spinlock_t cryptocop_job_queue_lock
;
191 static struct cryptocop_prio_job
*cryptocop_running_job
= NULL
;
192 static spinlock_t running_job_lock
;
194 /* The interrupt handler appends completed jobs to this list. The scehduled
195 * tasklet removes them upon sending the response to the crypto consumer. */
196 static struct list_head cryptocop_completed_jobs
;
197 static spinlock_t cryptocop_completed_jobs_lock
;
199 DECLARE_WAIT_QUEUE_HEAD(cryptocop_ioc_process_wq
);
202 /** Local functions. **/
204 static int cryptocop_open(struct inode
*, struct file
*);
206 static int cryptocop_release(struct inode
*, struct file
*);
208 static int cryptocop_ioctl(struct inode
*inode
, struct file
*file
,
209 unsigned int cmd
, unsigned long arg
);
211 static void cryptocop_start_job(void);
213 static int cryptocop_job_queue_insert(cryptocop_queue_priority prio
, struct cryptocop_operation
*operation
);
214 static int cryptocop_job_setup(struct cryptocop_prio_job
**pj
, struct cryptocop_operation
*operation
);
216 static int cryptocop_job_queue_init(void);
217 static void cryptocop_job_queue_close(void);
219 static int create_md5_pad(int alloc_flag
, unsigned long long hashed_length
, char **pad
, size_t *pad_length
);
221 static int create_sha1_pad(int alloc_flag
, unsigned long long hashed_length
, char **pad
, size_t *pad_length
);
223 static int transform_ok(struct cryptocop_transform_init
*tinit
);
225 static struct cryptocop_session
*get_session(cryptocop_session_id sid
);
227 static struct cryptocop_transform_ctx
*get_transform_ctx(struct cryptocop_session
*sess
, cryptocop_tfrm_id tid
);
229 static void delete_internal_operation(struct cryptocop_int_operation
*iop
);
231 static void get_aes_decrypt_key(unsigned char *dec_key
, const unsigned char *key
, unsigned int keylength
);
233 static int init_stream_coprocessor(void);
235 static void __exit
exit_stream_coprocessor(void);
240 #define DEBUG_API(s) s
241 static void print_cryptocop_operation(struct cryptocop_operation
*cop
);
242 static void print_dma_descriptors(struct cryptocop_int_operation
*iop
);
243 static void print_strcop_crypto_op(struct strcop_crypto_op
*cop
);
244 static void print_lock_status(void);
245 static void print_user_dma_lists(struct cryptocop_dma_list_operation
*dma_op
);
246 #define assert(s) do{if (!(s)) panic(#s);} while(0);
254 /* Transform constants. */
255 #define DES_BLOCK_LENGTH (8)
256 #define AES_BLOCK_LENGTH (16)
257 #define MD5_BLOCK_LENGTH (64)
258 #define SHA1_BLOCK_LENGTH (64)
259 #define CSUM_BLOCK_LENGTH (2)
260 #define MD5_STATE_LENGTH (16)
261 #define SHA1_STATE_LENGTH (20)
263 /* The device number. */
264 #define CRYPTOCOP_MAJOR (254)
265 #define CRYPTOCOP_MINOR (0)
269 const struct file_operations cryptocop_fops
= {
270 .owner
= THIS_MODULE
,
271 .open
= cryptocop_open
,
272 .release
= cryptocop_release
,
273 .ioctl
= cryptocop_ioctl
277 static void free_cdesc(struct cryptocop_dma_desc
*cdesc
)
279 DEBUG(printk("free_cdesc: cdesc 0x%p, from_pool=%d\n", cdesc
, cdesc
->from_pool
));
280 kfree(cdesc
->free_buf
);
282 if (cdesc
->from_pool
) {
283 unsigned long int flags
;
284 spin_lock_irqsave(&descr_pool_lock
, flags
);
285 cdesc
->next
= descr_pool_free_list
;
286 descr_pool_free_list
= cdesc
;
287 ++descr_pool_no_free
;
288 spin_unlock_irqrestore(&descr_pool_lock
, flags
);
295 static struct cryptocop_dma_desc
*alloc_cdesc(int alloc_flag
)
297 int use_pool
= (alloc_flag
& GFP_ATOMIC
) ? 1 : 0;
298 struct cryptocop_dma_desc
*cdesc
;
301 unsigned long int flags
;
302 spin_lock_irqsave(&descr_pool_lock
, flags
);
303 if (!descr_pool_free_list
) {
304 spin_unlock_irqrestore(&descr_pool_lock
, flags
);
305 DEBUG_API(printk("alloc_cdesc: pool is empty\n"));
308 cdesc
= descr_pool_free_list
;
309 descr_pool_free_list
= descr_pool_free_list
->next
;
310 --descr_pool_no_free
;
311 spin_unlock_irqrestore(&descr_pool_lock
, flags
);
312 cdesc
->from_pool
= 1;
314 cdesc
= kmalloc(sizeof(struct cryptocop_dma_desc
), alloc_flag
);
316 DEBUG_API(printk("alloc_cdesc: kmalloc\n"));
319 cdesc
->from_pool
= 0;
321 cdesc
->dma_descr
= (dma_descr_data
*)(((unsigned long int)cdesc
+ offsetof(struct cryptocop_dma_desc
, dma_descr_buf
) + DESCR_ALLOC_PAD
) & ~0x0000001F);
325 cdesc
->free_buf
= NULL
;
326 cdesc
->dma_descr
->out_eop
= 0;
327 cdesc
->dma_descr
->in_eop
= 0;
328 cdesc
->dma_descr
->intr
= 0;
329 cdesc
->dma_descr
->eol
= 0;
330 cdesc
->dma_descr
->wait
= 0;
331 cdesc
->dma_descr
->buf
= NULL
;
332 cdesc
->dma_descr
->after
= NULL
;
334 DEBUG_API(printk("alloc_cdesc: return 0x%p, cdesc->dma_descr=0x%p, from_pool=%d\n", cdesc
, cdesc
->dma_descr
, cdesc
->from_pool
));
339 static void setup_descr_chain(struct cryptocop_dma_desc
*cd
)
341 DEBUG(printk("setup_descr_chain: entering\n"));
344 cd
->dma_descr
->next
= (dma_descr_data
*)virt_to_phys(cd
->next
->dma_descr
);
346 cd
->dma_descr
->next
= NULL
;
350 DEBUG(printk("setup_descr_chain: exit\n"));
354 /* Create a pad descriptor for the transform.
355 * Return -1 for error, 0 if pad created. */
356 static int create_pad_descriptor(struct cryptocop_tfrm_ctx
*tc
, struct cryptocop_dma_desc
**pad_desc
, int alloc_flag
)
358 struct cryptocop_dma_desc
*cdesc
= NULL
;
360 struct strcop_meta_out mo
= {
368 DEBUG(printk("create_pad_descriptor: start.\n"));
369 /* Setup pad descriptor. */
371 DEBUG(printk("create_pad_descriptor: setting up padding.\n"));
372 cdesc
= alloc_cdesc(alloc_flag
);
374 DEBUG_API(printk("create_pad_descriptor: alloc pad desc\n"));
377 switch (tc
->unit_no
) {
379 error
= create_md5_pad(alloc_flag
, tc
->consumed
, &pad
, &plen
);
381 DEBUG_API(printk("create_pad_descriptor: create_md5_pad_failed\n"));
384 cdesc
->free_buf
= pad
;
385 mo
.hashsel
= src_dma
;
386 mo
.hashconf
= tc
->hash_conf
;
387 mo
.hashmode
= tc
->hash_mode
;
390 error
= create_sha1_pad(alloc_flag
, tc
->consumed
, &pad
, &plen
);
392 DEBUG_API(printk("create_pad_descriptor: create_sha1_pad_failed\n"));
395 cdesc
->free_buf
= pad
;
396 mo
.hashsel
= src_dma
;
397 mo
.hashconf
= tc
->hash_conf
;
398 mo
.hashmode
= tc
->hash_mode
;
401 if (tc
->consumed
% tc
->blocklength
){
402 pad
= (char*)csum_zero_pad
;
405 pad
= (char*)cdesc
; /* Use any pointer. */
408 mo
.csumsel
= src_dma
;
411 cdesc
->dma_descr
->wait
= 1;
412 cdesc
->dma_descr
->out_eop
= 1; /* Since this is a pad output is pushed. EOP is ok here since the padded unit is the only one active. */
413 cdesc
->dma_descr
->buf
= (char*)virt_to_phys((char*)pad
);
414 cdesc
->dma_descr
->after
= cdesc
->dma_descr
->buf
+ plen
;
416 cdesc
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_out
, mo
);
422 if (cdesc
) free_cdesc(cdesc
);
427 static int setup_key_dl_desc(struct cryptocop_tfrm_ctx
*tc
, struct cryptocop_dma_desc
**kd
, int alloc_flag
)
429 struct cryptocop_dma_desc
*key_desc
= alloc_cdesc(alloc_flag
);
430 struct strcop_meta_out mo
= {0};
432 DEBUG(printk("setup_key_dl_desc\n"));
435 DEBUG_API(printk("setup_key_dl_desc: failed descriptor allocation.\n"));
440 if ((tc
->tctx
->init
.alg
== cryptocop_alg_aes
) && (tc
->tcfg
->flags
& CRYPTOCOP_DECRYPT
)) {
441 /* Precook the AES decrypt key. */
442 if (!tc
->tctx
->dec_key_set
){
443 get_aes_decrypt_key(tc
->tctx
->dec_key
, tc
->tctx
->init
.key
, tc
->tctx
->init
.keylen
);
444 tc
->tctx
->dec_key_set
= 1;
446 key_desc
->dma_descr
->buf
= (char*)virt_to_phys(tc
->tctx
->dec_key
);
447 key_desc
->dma_descr
->after
= key_desc
->dma_descr
->buf
+ tc
->tctx
->init
.keylen
/8;
449 key_desc
->dma_descr
->buf
= (char*)virt_to_phys(tc
->tctx
->init
.key
);
450 key_desc
->dma_descr
->after
= key_desc
->dma_descr
->buf
+ tc
->tctx
->init
.keylen
/8;
452 /* Setup metadata. */
454 switch (tc
->tctx
->init
.keylen
) {
474 mo
.ciphsel
= mo
.hashsel
= mo
.csumsel
= src_none
;
475 key_desc
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_out
, mo
);
477 key_desc
->dma_descr
->out_eop
= 1;
478 key_desc
->dma_descr
->wait
= 1;
479 key_desc
->dma_descr
->intr
= 0;
485 static int setup_cipher_iv_desc(struct cryptocop_tfrm_ctx
*tc
, struct cryptocop_dma_desc
**id
, int alloc_flag
)
487 struct cryptocop_dma_desc
*iv_desc
= alloc_cdesc(alloc_flag
);
488 struct strcop_meta_out mo
= {0};
490 DEBUG(printk("setup_cipher_iv_desc\n"));
493 DEBUG_API(printk("setup_cipher_iv_desc: failed CBC IV descriptor allocation.\n"));
497 iv_desc
->dma_descr
->buf
= (char*)virt_to_phys(tc
->tcfg
->iv
);
498 iv_desc
->dma_descr
->after
= iv_desc
->dma_descr
->buf
+ tc
->blocklength
;
500 /* Setup metadata. */
501 mo
.hashsel
= mo
.csumsel
= src_none
;
502 mo
.ciphsel
= src_dma
;
503 mo
.ciphconf
= tc
->ciph_conf
;
504 mo
.cbcmode
= tc
->cbcmode
;
506 iv_desc
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_out
, mo
);
508 iv_desc
->dma_descr
->out_eop
= 0;
509 iv_desc
->dma_descr
->wait
= 1;
510 iv_desc
->dma_descr
->intr
= 0;
516 /* Map the ouput length of the transform to operation output starting on the inject index. */
517 static int create_input_descriptors(struct cryptocop_operation
*operation
, struct cryptocop_tfrm_ctx
*tc
, struct cryptocop_dma_desc
**id
, int alloc_flag
)
520 struct cryptocop_dma_desc head
= {0};
521 struct cryptocop_dma_desc
*outdesc
= &head
;
522 size_t iov_offset
= 0;
525 struct strcop_meta_in mi
= {0};
527 size_t out_length
= tc
->produced
;
531 assert(out_length
!= 0);
532 if (((tc
->produced
+ tc
->tcfg
->inject_ix
) > operation
->tfrm_op
.outlen
) || (tc
->produced
&& (operation
->tfrm_op
.outlen
== 0))) {
533 DEBUG_API(printk("create_input_descriptors: operation outdata too small\n"));
536 /* Traverse the out iovec until the result inject index is reached. */
537 while ((outiov_ix
< operation
->tfrm_op
.outcount
) && ((out_ix
+ operation
->tfrm_op
.outdata
[outiov_ix
].iov_len
) <= tc
->tcfg
->inject_ix
)){
538 out_ix
+= operation
->tfrm_op
.outdata
[outiov_ix
].iov_len
;
541 if (outiov_ix
>= operation
->tfrm_op
.outcount
){
542 DEBUG_API(printk("create_input_descriptors: operation outdata too small\n"));
545 iov_offset
= tc
->tcfg
->inject_ix
- out_ix
;
546 mi
.dmasel
= tc
->unit_no
;
548 /* Setup the output descriptors. */
549 while ((out_length
> 0) && (outiov_ix
< operation
->tfrm_op
.outcount
)) {
550 outdesc
->next
= alloc_cdesc(alloc_flag
);
551 if (!outdesc
->next
) {
552 DEBUG_API(printk("create_input_descriptors: alloc_cdesc\n"));
556 outdesc
= outdesc
->next
;
557 rem_length
= operation
->tfrm_op
.outdata
[outiov_ix
].iov_len
- iov_offset
;
558 dlength
= (out_length
< rem_length
) ? out_length
: rem_length
;
560 DEBUG(printk("create_input_descriptors:\n"
561 "outiov_ix=%d, rem_length=%d, dlength=%d\n"
562 "iov_offset=%d, outdata[outiov_ix].iov_len=%d\n"
563 "outcount=%d, outiov_ix=%d\n",
564 outiov_ix
, rem_length
, dlength
, iov_offset
, operation
->tfrm_op
.outdata
[outiov_ix
].iov_len
, operation
->tfrm_op
.outcount
, outiov_ix
));
566 outdesc
->dma_descr
->buf
= (char*)virt_to_phys(operation
->tfrm_op
.outdata
[outiov_ix
].iov_base
+ iov_offset
);
567 outdesc
->dma_descr
->after
= outdesc
->dma_descr
->buf
+ dlength
;
568 outdesc
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_in
, mi
);
570 out_length
-= dlength
;
571 iov_offset
+= dlength
;
572 if (iov_offset
>= operation
->tfrm_op
.outdata
[outiov_ix
].iov_len
) {
578 DEBUG_API(printk("create_input_descriptors: not enough room for output, %d remained\n", out_length
));
582 /* Set sync in last descriptor. */
584 outdesc
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_in
, mi
);
591 outdesc
= head
.next
->next
;
592 free_cdesc(head
.next
);
599 static int create_output_descriptors(struct cryptocop_operation
*operation
, int *iniov_ix
, int *iniov_offset
, size_t desc_len
, struct cryptocop_dma_desc
**current_out_cdesc
, struct strcop_meta_out
*meta_out
, int alloc_flag
)
601 while (desc_len
!= 0) {
602 struct cryptocop_dma_desc
*cdesc
;
603 int rem_length
= operation
->tfrm_op
.indata
[*iniov_ix
].iov_len
- *iniov_offset
;
604 int dlength
= (desc_len
< rem_length
) ? desc_len
: rem_length
;
606 cdesc
= alloc_cdesc(alloc_flag
);
608 DEBUG_API(printk("create_output_descriptors: alloc_cdesc\n"));
611 (*current_out_cdesc
)->next
= cdesc
;
612 (*current_out_cdesc
) = cdesc
;
614 cdesc
->free_buf
= NULL
;
616 cdesc
->dma_descr
->buf
= (char*)virt_to_phys(operation
->tfrm_op
.indata
[*iniov_ix
].iov_base
+ *iniov_offset
);
617 cdesc
->dma_descr
->after
= cdesc
->dma_descr
->buf
+ dlength
;
620 *iniov_offset
+= dlength
;
621 assert(desc_len
>= 0);
622 if (*iniov_offset
>= operation
->tfrm_op
.indata
[*iniov_ix
].iov_len
) {
625 if (*iniov_ix
> operation
->tfrm_op
.incount
) {
626 DEBUG_API(printk("create_output_descriptors: not enough indata in operation."));
630 cdesc
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_out
, (*meta_out
));
631 } /* while (desc_len != 0) */
632 /* Last DMA descriptor gets a 'wait' bit to signal expected change in metadata. */
633 (*current_out_cdesc
)->dma_descr
->wait
= 1; /* This will set extraneous WAIT in some situations, e.g. when padding hashes and checksums. */
639 static int append_input_descriptors(struct cryptocop_operation
*operation
, struct cryptocop_dma_desc
**current_in_cdesc
, struct cryptocop_dma_desc
**current_out_cdesc
, struct cryptocop_tfrm_ctx
*tc
, int alloc_flag
)
641 DEBUG(printk("append_input_descriptors, tc=0x%p, unit_no=%d\n", tc
, tc
->unit_no
));
644 struct cryptocop_dma_desc
*idescs
= NULL
;
645 DEBUG(printk("append_input_descriptors: pushing output, consumed %d produced %d bytes.\n", tc
->consumed
, tc
->produced
));
647 DEBUG(printk("append_input_descriptors: append pad descriptors to DMA out list.\n"));
648 while (tc
->pad_descs
) {
649 DEBUG(printk("append descriptor 0x%p\n", tc
->pad_descs
));
650 (*current_out_cdesc
)->next
= tc
->pad_descs
;
651 tc
->pad_descs
= tc
->pad_descs
->next
;
652 (*current_out_cdesc
) = (*current_out_cdesc
)->next
;
656 /* Setup and append output descriptors to DMA in list. */
657 if (tc
->unit_no
== src_dma
){
658 /* mem2mem. Setup DMA in descriptors to discard all input prior to the requested mem2mem data. */
659 struct strcop_meta_in mi
= {.sync
= 0, .dmasel
= src_dma
};
660 unsigned int start_ix
= tc
->start_ix
;
662 unsigned int desclen
= start_ix
< MEM2MEM_DISCARD_BUF_LENGTH
? start_ix
: MEM2MEM_DISCARD_BUF_LENGTH
;
663 (*current_in_cdesc
)->next
= alloc_cdesc(alloc_flag
);
664 if (!(*current_in_cdesc
)->next
){
665 DEBUG_API(printk("append_input_descriptors: alloc_cdesc mem2mem discard failed\n"));
668 (*current_in_cdesc
) = (*current_in_cdesc
)->next
;
669 (*current_in_cdesc
)->dma_descr
->buf
= (char*)virt_to_phys(mem2mem_discard_buf
);
670 (*current_in_cdesc
)->dma_descr
->after
= (*current_in_cdesc
)->dma_descr
->buf
+ desclen
;
671 (*current_in_cdesc
)->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_in
, mi
);
675 (*current_in_cdesc
)->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_in
, mi
);
678 failed
= create_input_descriptors(operation
, tc
, &idescs
, alloc_flag
);
680 DEBUG_API(printk("append_input_descriptors: output descriptor setup failed\n"));
683 DEBUG(printk("append_input_descriptors: append output descriptors to DMA in list.\n"));
685 DEBUG(printk("append descriptor 0x%p\n", idescs
));
686 (*current_in_cdesc
)->next
= idescs
;
687 idescs
= idescs
->next
;
688 (*current_in_cdesc
) = (*current_in_cdesc
)->next
;
696 static int cryptocop_setup_dma_list(struct cryptocop_operation
*operation
, struct cryptocop_int_operation
**int_op
, int alloc_flag
)
698 struct cryptocop_session
*sess
;
699 struct cryptocop_transform_ctx
*tctx
;
701 struct cryptocop_tfrm_ctx digest_ctx
= {
702 .previous_src
= src_none
,
703 .current_src
= src_none
,
705 .requires_padding
= 1,
706 .strict_block_length
= 0,
720 struct cryptocop_tfrm_ctx cipher_ctx
= {
721 .previous_src
= src_none
,
722 .current_src
= src_none
,
724 .requires_padding
= 0,
725 .strict_block_length
= 1,
739 struct cryptocop_tfrm_ctx csum_ctx
= {
740 .previous_src
= src_none
,
741 .current_src
= src_none
,
744 .requires_padding
= 1,
745 .strict_block_length
= 0,
759 .unit_no
= src_csum
};
760 struct cryptocop_tfrm_cfg
*tcfg
= operation
->tfrm_op
.tfrm_cfg
;
762 unsigned int indata_ix
= 0;
764 /* iovec accounting. */
766 int iniov_offset
= 0;
768 /* Operation descriptor cfg traversal pointer. */
769 struct cryptocop_desc
*odsc
;
772 /* List heads for allocated descriptors. */
773 struct cryptocop_dma_desc out_cdesc_head
= {0};
774 struct cryptocop_dma_desc in_cdesc_head
= {0};
776 struct cryptocop_dma_desc
*current_out_cdesc
= &out_cdesc_head
;
777 struct cryptocop_dma_desc
*current_in_cdesc
= &in_cdesc_head
;
779 struct cryptocop_tfrm_ctx
*output_tc
= NULL
;
782 assert(operation
!= NULL
);
783 assert(int_op
!= NULL
);
785 DEBUG(printk("cryptocop_setup_dma_list: start\n"));
786 DEBUG(print_cryptocop_operation(operation
));
788 sess
= get_session(operation
->sid
);
790 DEBUG_API(printk("cryptocop_setup_dma_list: no session found for operation.\n"));
794 iop_alloc_ptr
= kmalloc(DESCR_ALLOC_PAD
+ sizeof(struct cryptocop_int_operation
), alloc_flag
);
795 if (!iop_alloc_ptr
) {
796 DEBUG_API(printk("cryptocop_setup_dma_list: kmalloc cryptocop_int_operation\n"));
800 (*int_op
) = (struct cryptocop_int_operation
*)(((unsigned long int)(iop_alloc_ptr
+ DESCR_ALLOC_PAD
+ offsetof(struct cryptocop_int_operation
, ctx_out
)) & ~0x0000001F) - offsetof(struct cryptocop_int_operation
, ctx_out
));
801 DEBUG(memset((*int_op
), 0xff, sizeof(struct cryptocop_int_operation
)));
802 (*int_op
)->alloc_ptr
= iop_alloc_ptr
;
803 DEBUG(printk("cryptocop_setup_dma_list: *int_op=0x%p, alloc_ptr=0x%p\n", *int_op
, (*int_op
)->alloc_ptr
));
805 (*int_op
)->sid
= operation
->sid
;
806 (*int_op
)->cdesc_out
= NULL
;
807 (*int_op
)->cdesc_in
= NULL
;
808 (*int_op
)->tdes_mode
= cryptocop_3des_ede
;
809 (*int_op
)->csum_mode
= cryptocop_csum_le
;
810 (*int_op
)->ddesc_out
= NULL
;
811 (*int_op
)->ddesc_in
= NULL
;
813 /* Scan operation->tfrm_op.tfrm_cfg for bad configuration and set up the local contexts. */
815 DEBUG_API(printk("cryptocop_setup_dma_list: no configured transforms in operation.\n"));
820 tctx
= get_transform_ctx(sess
, tcfg
->tid
);
822 DEBUG_API(printk("cryptocop_setup_dma_list: no transform id %d in session.\n", tcfg
->tid
));
826 if (tcfg
->inject_ix
> operation
->tfrm_op
.outlen
){
827 DEBUG_API(printk("cryptocop_setup_dma_list: transform id %d inject_ix (%d) > operation->tfrm_op.outlen(%d)", tcfg
->tid
, tcfg
->inject_ix
, operation
->tfrm_op
.outlen
));
831 switch (tctx
->init
.alg
){
832 case cryptocop_alg_mem2mem
:
833 if (cipher_ctx
.tcfg
!= NULL
){
834 DEBUG_API(printk("cryptocop_setup_dma_list: multiple ciphers in operation.\n"));
838 /* mem2mem is handled as a NULL cipher. */
839 cipher_ctx
.cbcmode
= 0;
840 cipher_ctx
.decrypt
= 0;
841 cipher_ctx
.blocklength
= 1;
842 cipher_ctx
.ciph_conf
= 0;
843 cipher_ctx
.unit_no
= src_dma
;
844 cipher_ctx
.tcfg
= tcfg
;
845 cipher_ctx
.tctx
= tctx
;
847 case cryptocop_alg_des
:
848 case cryptocop_alg_3des
:
849 case cryptocop_alg_aes
:
851 if (cipher_ctx
.tcfg
!= NULL
){
852 DEBUG_API(printk("cryptocop_setup_dma_list: multiple ciphers in operation.\n"));
856 cipher_ctx
.tcfg
= tcfg
;
857 cipher_ctx
.tctx
= tctx
;
858 if (cipher_ctx
.tcfg
->flags
& CRYPTOCOP_DECRYPT
){
859 cipher_ctx
.decrypt
= 1;
861 switch (tctx
->init
.cipher_mode
) {
862 case cryptocop_cipher_mode_ecb
:
863 cipher_ctx
.cbcmode
= 0;
865 case cryptocop_cipher_mode_cbc
:
866 cipher_ctx
.cbcmode
= 1;
869 DEBUG_API(printk("cryptocop_setup_dma_list: cipher_ctx, bad cipher mode==%d\n", tctx
->init
.cipher_mode
));
873 DEBUG(printk("cryptocop_setup_dma_list: cipher_ctx, set CBC mode==%d\n", cipher_ctx
.cbcmode
));
874 switch (tctx
->init
.alg
){
875 case cryptocop_alg_des
:
876 cipher_ctx
.ciph_conf
= 0;
877 cipher_ctx
.unit_no
= src_des
;
878 cipher_ctx
.blocklength
= DES_BLOCK_LENGTH
;
880 case cryptocop_alg_3des
:
881 cipher_ctx
.ciph_conf
= 1;
882 cipher_ctx
.unit_no
= src_des
;
883 cipher_ctx
.blocklength
= DES_BLOCK_LENGTH
;
885 case cryptocop_alg_aes
:
886 cipher_ctx
.ciph_conf
= 2;
887 cipher_ctx
.unit_no
= src_aes
;
888 cipher_ctx
.blocklength
= AES_BLOCK_LENGTH
;
891 panic("cryptocop_setup_dma_list: impossible algorithm %d\n", tctx
->init
.alg
);
893 (*int_op
)->tdes_mode
= tctx
->init
.tdes_mode
;
895 case cryptocop_alg_md5
:
896 case cryptocop_alg_sha1
:
898 if (digest_ctx
.tcfg
!= NULL
){
899 DEBUG_API(printk("cryptocop_setup_dma_list: multiple digests in operation.\n"));
903 digest_ctx
.tcfg
= tcfg
;
904 digest_ctx
.tctx
= tctx
;
905 digest_ctx
.hash_mode
= 0; /* Don't use explicit IV in this API. */
906 switch (tctx
->init
.alg
){
907 case cryptocop_alg_md5
:
908 digest_ctx
.blocklength
= MD5_BLOCK_LENGTH
;
909 digest_ctx
.unit_no
= src_md5
;
910 digest_ctx
.hash_conf
= 1; /* 1 => MD-5 */
912 case cryptocop_alg_sha1
:
913 digest_ctx
.blocklength
= SHA1_BLOCK_LENGTH
;
914 digest_ctx
.unit_no
= src_sha1
;
915 digest_ctx
.hash_conf
= 0; /* 0 => SHA-1 */
918 panic("cryptocop_setup_dma_list: impossible digest algorithm\n");
921 case cryptocop_alg_csum
:
923 if (csum_ctx
.tcfg
!= NULL
){
924 DEBUG_API(printk("cryptocop_setup_dma_list: multiple checksums in operation.\n"));
928 (*int_op
)->csum_mode
= tctx
->init
.csum_mode
;
929 csum_ctx
.tcfg
= tcfg
;
930 csum_ctx
.tctx
= tctx
;
934 DEBUG_API(printk("cryptocop_setup_dma_list: invalid algorithm %d specified in tfrm %d.\n", tctx
->init
.alg
, tcfg
->tid
));
940 /* Download key if a cipher is used. */
941 if (cipher_ctx
.tcfg
&& (cipher_ctx
.tctx
->init
.alg
!= cryptocop_alg_mem2mem
)){
942 struct cryptocop_dma_desc
*key_desc
= NULL
;
944 failed
= setup_key_dl_desc(&cipher_ctx
, &key_desc
, alloc_flag
);
946 DEBUG_API(printk("cryptocop_setup_dma_list: setup key dl\n"));
949 current_out_cdesc
->next
= key_desc
;
950 current_out_cdesc
= key_desc
;
951 indata_ix
+= (unsigned int)(key_desc
->dma_descr
->after
- key_desc
->dma_descr
->buf
);
953 /* Download explicit IV if a cipher is used and CBC mode and explicit IV selected. */
954 if ((cipher_ctx
.tctx
->init
.cipher_mode
== cryptocop_cipher_mode_cbc
) && (cipher_ctx
.tcfg
->flags
& CRYPTOCOP_EXPLICIT_IV
)) {
955 struct cryptocop_dma_desc
*iv_desc
= NULL
;
957 DEBUG(printk("cryptocop_setup_dma_list: setup cipher CBC IV descriptor.\n"));
959 failed
= setup_cipher_iv_desc(&cipher_ctx
, &iv_desc
, alloc_flag
);
961 DEBUG_API(printk("cryptocop_setup_dma_list: CBC IV descriptor.\n"));
964 current_out_cdesc
->next
= iv_desc
;
965 current_out_cdesc
= iv_desc
;
966 indata_ix
+= (unsigned int)(iv_desc
->dma_descr
->after
- iv_desc
->dma_descr
->buf
);
970 /* Process descriptors. */
971 odsc
= operation
->tfrm_op
.desc
;
973 struct cryptocop_desc_cfg
*dcfg
= odsc
->cfg
;
974 struct strcop_meta_out meta_out
= {0};
975 size_t desc_len
= odsc
->length
;
976 int active_count
, eop_needed_count
;
980 DEBUG(printk("cryptocop_setup_dma_list: parsing an operation descriptor\n"));
983 struct cryptocop_tfrm_ctx
*tc
= NULL
;
985 DEBUG(printk("cryptocop_setup_dma_list: parsing an operation descriptor configuration.\n"));
986 /* Get the local context for the transform and mark it as the output unit if it produces output. */
987 if (digest_ctx
.tcfg
&& (digest_ctx
.tcfg
->tid
== dcfg
->tid
)){
989 } else if (cipher_ctx
.tcfg
&& (cipher_ctx
.tcfg
->tid
== dcfg
->tid
)){
991 } else if (csum_ctx
.tcfg
&& (csum_ctx
.tcfg
->tid
== dcfg
->tid
)){
995 DEBUG_API(printk("cryptocop_setup_dma_list: invalid transform %d specified in descriptor.\n", dcfg
->tid
));
1000 DEBUG_API(printk("cryptocop_setup_dma_list: completed transform %d reused.\n", dcfg
->tid
));
1005 tc
->start_ix
= indata_ix
;
1009 tc
->previous_src
= tc
->current_src
;
1010 tc
->prev_src
= tc
->curr_src
;
1011 /* Map source unit id to DMA source config. */
1013 case cryptocop_source_dma
:
1014 tc
->current_src
= src_dma
;
1016 case cryptocop_source_des
:
1017 tc
->current_src
= src_des
;
1019 case cryptocop_source_3des
:
1020 tc
->current_src
= src_des
;
1022 case cryptocop_source_aes
:
1023 tc
->current_src
= src_aes
;
1025 case cryptocop_source_md5
:
1026 case cryptocop_source_sha1
:
1027 case cryptocop_source_csum
:
1028 case cryptocop_source_none
:
1030 /* We do not allow using accumulating style units (SHA-1, MD5, checksum) as sources to other units.
1032 DEBUG_API(printk("cryptocop_setup_dma_list: bad unit source configured %d.\n", dcfg
->src
));
1036 if (tc
->current_src
!= src_dma
) {
1037 /* Find the unit we are sourcing from. */
1038 if (digest_ctx
.unit_no
== tc
->current_src
){
1039 tc
->curr_src
= &digest_ctx
;
1040 } else if (cipher_ctx
.unit_no
== tc
->current_src
){
1041 tc
->curr_src
= &cipher_ctx
;
1042 } else if (csum_ctx
.unit_no
== tc
->current_src
){
1043 tc
->curr_src
= &csum_ctx
;
1045 if ((tc
->curr_src
== tc
) && (tc
->unit_no
!= src_dma
)){
1046 DEBUG_API(printk("cryptocop_setup_dma_list: unit %d configured to source from itself.\n", tc
->unit_no
));
1051 tc
->curr_src
= NULL
;
1054 /* Detect source switch. */
1055 DEBUG(printk("cryptocop_setup_dma_list: tc->active=%d tc->unit_no=%d tc->current_src=%d tc->previous_src=%d, tc->curr_src=0x%p, tc->prev_srv=0x%p\n", tc
->active
, tc
->unit_no
, tc
->current_src
, tc
->previous_src
, tc
->curr_src
, tc
->prev_src
));
1056 if (tc
->active
&& (tc
->current_src
!= tc
->previous_src
)) {
1057 /* Only allow source switch when both the old source unit and the new one have
1058 * no pending data to process (i.e. the consumed length must be a multiple of the
1059 * transform blocklength). */
1060 /* Note: if the src == NULL we are actually sourcing from DMA out. */
1061 if (((tc
->prev_src
!= NULL
) && (tc
->prev_src
->consumed
% tc
->prev_src
->blocklength
)) ||
1062 ((tc
->curr_src
!= NULL
) && (tc
->curr_src
->consumed
% tc
->curr_src
->blocklength
)))
1064 DEBUG_API(printk("cryptocop_setup_dma_list: can only disconnect from or connect to a unit on a multiple of the blocklength, old: cons=%d, prod=%d, block=%d, new: cons=%d prod=%d, block=%d.\n", tc
->prev_src
? tc
->prev_src
->consumed
: INT_MIN
, tc
->prev_src
? tc
->prev_src
->produced
: INT_MIN
, tc
->prev_src
? tc
->prev_src
->blocklength
: INT_MIN
, tc
->curr_src
? tc
->curr_src
->consumed
: INT_MIN
, tc
->curr_src
? tc
->curr_src
->produced
: INT_MIN
, tc
->curr_src
? tc
->curr_src
->blocklength
: INT_MIN
));
1069 /* Detect unit deactivation. */
1071 /* Length check of this is handled below. */
1075 } /* while (dcfg) */
1076 DEBUG(printk("cryptocop_setup_dma_list: parsing operation descriptor configuration complete.\n"));
1078 if (cipher_ctx
.active
&& (cipher_ctx
.curr_src
!= NULL
) && !cipher_ctx
.curr_src
->active
){
1079 DEBUG_API(printk("cryptocop_setup_dma_list: cipher source from inactive unit %d\n", cipher_ctx
.curr_src
->unit_no
));
1083 if (digest_ctx
.active
&& (digest_ctx
.curr_src
!= NULL
) && !digest_ctx
.curr_src
->active
){
1084 DEBUG_API(printk("cryptocop_setup_dma_list: digest source from inactive unit %d\n", digest_ctx
.curr_src
->unit_no
));
1088 if (csum_ctx
.active
&& (csum_ctx
.curr_src
!= NULL
) && !csum_ctx
.curr_src
->active
){
1089 DEBUG_API(printk("cryptocop_setup_dma_list: cipher source from inactive unit %d\n", csum_ctx
.curr_src
->unit_no
));
1094 /* Update consumed and produced lengths.
1096 The consumed length accounting here is actually cheating. If a unit source from DMA (or any
1097 other unit that process data in blocks of one octet) it is correct, but if it source from a
1098 block processing unit, i.e. a cipher, it will be temporarily incorrect at some times. However
1099 since it is only allowed--by the HW--to change source to or from a block processing unit at times where that
1100 unit has processed an exact multiple of its block length the end result will be correct.
1101 Beware that if the source change restriction change this code will need to be (much) reworked.
1103 DEBUG(printk("cryptocop_setup_dma_list: desc->length=%d, desc_len=%d.\n", odsc
->length
, desc_len
));
1105 if (csum_ctx
.active
) {
1106 csum_ctx
.consumed
+= desc_len
;
1107 if (csum_ctx
.done
) {
1108 csum_ctx
.produced
= 2;
1110 DEBUG(printk("cryptocop_setup_dma_list: csum_ctx producing: consumed=%d, produced=%d, blocklength=%d.\n", csum_ctx
.consumed
, csum_ctx
.produced
, csum_ctx
.blocklength
));
1112 if (digest_ctx
.active
) {
1113 digest_ctx
.consumed
+= desc_len
;
1114 if (digest_ctx
.done
) {
1115 if (digest_ctx
.unit_no
== src_md5
) {
1116 digest_ctx
.produced
= MD5_STATE_LENGTH
;
1118 digest_ctx
.produced
= SHA1_STATE_LENGTH
;
1121 DEBUG(printk("cryptocop_setup_dma_list: digest_ctx producing: consumed=%d, produced=%d, blocklength=%d.\n", digest_ctx
.consumed
, digest_ctx
.produced
, digest_ctx
.blocklength
));
1123 if (cipher_ctx
.active
) {
1124 /* Ciphers are allowed only to source from DMA out. That is filtered above. */
1125 assert(cipher_ctx
.current_src
== src_dma
);
1126 cipher_ctx
.consumed
+= desc_len
;
1127 cipher_ctx
.produced
= cipher_ctx
.blocklength
* (cipher_ctx
.consumed
/ cipher_ctx
.blocklength
);
1128 if (cipher_ctx
.cbcmode
&& !(cipher_ctx
.tcfg
->flags
& CRYPTOCOP_EXPLICIT_IV
) && cipher_ctx
.produced
){
1129 cipher_ctx
.produced
-= cipher_ctx
.blocklength
; /* Compensate for CBC iv. */
1131 DEBUG(printk("cryptocop_setup_dma_list: cipher_ctx producing: consumed=%d, produced=%d, blocklength=%d.\n", cipher_ctx
.consumed
, cipher_ctx
.produced
, cipher_ctx
.blocklength
));
1134 /* Setup the DMA out descriptors. */
1135 /* Configure the metadata. */
1137 eop_needed_count
= 0;
1138 if (cipher_ctx
.active
) {
1140 if (cipher_ctx
.unit_no
== src_dma
){
1142 meta_out
.ciphsel
= src_none
;
1144 meta_out
.ciphsel
= cipher_ctx
.current_src
;
1146 meta_out
.ciphconf
= cipher_ctx
.ciph_conf
;
1147 meta_out
.cbcmode
= cipher_ctx
.cbcmode
;
1148 meta_out
.decrypt
= cipher_ctx
.decrypt
;
1149 DEBUG(printk("set ciphsel=%d ciphconf=%d cbcmode=%d decrypt=%d\n", meta_out
.ciphsel
, meta_out
.ciphconf
, meta_out
.cbcmode
, meta_out
.decrypt
));
1150 if (cipher_ctx
.done
) ++eop_needed_count
;
1152 meta_out
.ciphsel
= src_none
;
1155 if (digest_ctx
.active
) {
1157 meta_out
.hashsel
= digest_ctx
.current_src
;
1158 meta_out
.hashconf
= digest_ctx
.hash_conf
;
1159 meta_out
.hashmode
= 0; /* Explicit mode is not used here. */
1160 DEBUG(printk("set hashsel=%d hashconf=%d hashmode=%d\n", meta_out
.hashsel
, meta_out
.hashconf
, meta_out
.hashmode
));
1161 if (digest_ctx
.done
) {
1162 assert(digest_ctx
.pad_descs
== NULL
);
1163 failed
= create_pad_descriptor(&digest_ctx
, &digest_ctx
.pad_descs
, alloc_flag
);
1165 DEBUG_API(printk("cryptocop_setup_dma_list: failed digest pad creation.\n"));
1170 meta_out
.hashsel
= src_none
;
1173 if (csum_ctx
.active
) {
1175 meta_out
.csumsel
= csum_ctx
.current_src
;
1176 if (csum_ctx
.done
) {
1177 assert(csum_ctx
.pad_descs
== NULL
);
1178 failed
= create_pad_descriptor(&csum_ctx
, &csum_ctx
.pad_descs
, alloc_flag
);
1180 DEBUG_API(printk("cryptocop_setup_dma_list: failed csum pad creation.\n"));
1185 meta_out
.csumsel
= src_none
;
1187 DEBUG(printk("cryptocop_setup_dma_list: %d eop needed, %d active units\n", eop_needed_count
, active_count
));
1188 /* Setup DMA out descriptors for the indata. */
1189 failed
= create_output_descriptors(operation
, &iniov_ix
, &iniov_offset
, desc_len
, ¤t_out_cdesc
, &meta_out
, alloc_flag
);
1191 DEBUG_API(printk("cryptocop_setup_dma_list: create_output_descriptors %d\n", failed
));
1194 /* Setup out EOP. If there are active units that are not done here they cannot get an EOP
1195 * so we ust setup a zero length descriptor to DMA to signal EOP only to done units.
1196 * If there is a pad descriptor EOP for the padded unit will be EOPed by it.
1198 assert(active_count
>= eop_needed_count
);
1199 assert((eop_needed_count
== 0) || (eop_needed_count
== 1));
1200 if (eop_needed_count
) {
1201 /* This means that the bulk operation (cipeher/m2m) is terminated. */
1202 if (active_count
> 1) {
1203 /* Use zero length EOP descriptor. */
1204 struct cryptocop_dma_desc
*ed
= alloc_cdesc(alloc_flag
);
1205 struct strcop_meta_out ed_mo
= {0};
1207 DEBUG_API(printk("cryptocop_setup_dma_list: alloc EOP descriptor for cipher\n"));
1212 assert(cipher_ctx
.active
&& cipher_ctx
.done
);
1214 if (cipher_ctx
.unit_no
== src_dma
){
1216 ed_mo
.ciphsel
= src_none
;
1218 ed_mo
.ciphsel
= cipher_ctx
.current_src
;
1220 ed_mo
.ciphconf
= cipher_ctx
.ciph_conf
;
1221 ed_mo
.cbcmode
= cipher_ctx
.cbcmode
;
1222 ed_mo
.decrypt
= cipher_ctx
.decrypt
;
1224 ed
->free_buf
= NULL
;
1225 ed
->dma_descr
->wait
= 1;
1226 ed
->dma_descr
->out_eop
= 1;
1228 ed
->dma_descr
->buf
= (char*)virt_to_phys(&ed
); /* Use any valid physical address for zero length descriptor. */
1229 ed
->dma_descr
->after
= ed
->dma_descr
->buf
;
1230 ed
->dma_descr
->md
= REG_TYPE_CONV(unsigned short int, struct strcop_meta_out
, ed_mo
);
1231 current_out_cdesc
->next
= ed
;
1232 current_out_cdesc
= ed
;
1234 /* Set EOP in the current out descriptor since the only active module is
1235 * the one needing the EOP. */
1237 current_out_cdesc
->dma_descr
->out_eop
= 1;
1241 if (cipher_ctx
.done
&& cipher_ctx
.active
) cipher_ctx
.active
= 0;
1242 if (digest_ctx
.done
&& digest_ctx
.active
) digest_ctx
.active
= 0;
1243 if (csum_ctx
.done
&& csum_ctx
.active
) csum_ctx
.active
= 0;
1244 indata_ix
+= odsc
->length
;
1246 } /* while (odsc) */ /* Process descriptors. */
1247 DEBUG(printk("cryptocop_setup_dma_list: done parsing operation descriptors\n"));
1248 if (cipher_ctx
.tcfg
&& (cipher_ctx
.active
|| !cipher_ctx
.done
)){
1249 DEBUG_API(printk("cryptocop_setup_dma_list: cipher operation not terminated.\n"));
1253 if (digest_ctx
.tcfg
&& (digest_ctx
.active
|| !digest_ctx
.done
)){
1254 DEBUG_API(printk("cryptocop_setup_dma_list: digest operation not terminated.\n"));
1258 if (csum_ctx
.tcfg
&& (csum_ctx
.active
|| !csum_ctx
.done
)){
1259 DEBUG_API(printk("cryptocop_setup_dma_list: csum operation not terminated.\n"));
1264 failed
= append_input_descriptors(operation
, ¤t_in_cdesc
, ¤t_out_cdesc
, &cipher_ctx
, alloc_flag
);
1266 DEBUG_API(printk("cryptocop_setup_dma_list: append_input_descriptors cipher_ctx %d\n", failed
));
1269 failed
= append_input_descriptors(operation
, ¤t_in_cdesc
, ¤t_out_cdesc
, &digest_ctx
, alloc_flag
);
1271 DEBUG_API(printk("cryptocop_setup_dma_list: append_input_descriptors cipher_ctx %d\n", failed
));
1274 failed
= append_input_descriptors(operation
, ¤t_in_cdesc
, ¤t_out_cdesc
, &csum_ctx
, alloc_flag
);
1276 DEBUG_API(printk("cryptocop_setup_dma_list: append_input_descriptors cipher_ctx %d\n", failed
));
1280 DEBUG(printk("cryptocop_setup_dma_list: int_op=0x%p, *int_op=0x%p\n", int_op
, *int_op
));
1281 (*int_op
)->cdesc_out
= out_cdesc_head
.next
;
1282 (*int_op
)->cdesc_in
= in_cdesc_head
.next
;
1283 DEBUG(printk("cryptocop_setup_dma_list: out_cdesc_head=0x%p in_cdesc_head=0x%p\n", (*int_op
)->cdesc_out
, (*int_op
)->cdesc_in
));
1285 setup_descr_chain(out_cdesc_head
.next
);
1286 setup_descr_chain(in_cdesc_head
.next
);
1288 /* Last but not least: mark the last DMA in descriptor for a INTR and EOL and the the
1289 * last DMA out descriptor for EOL.
1291 current_in_cdesc
->dma_descr
->intr
= 1;
1292 current_in_cdesc
->dma_descr
->eol
= 1;
1293 current_out_cdesc
->dma_descr
->eol
= 1;
1295 /* Setup DMA contexts. */
1296 (*int_op
)->ctx_out
.next
= NULL
;
1297 (*int_op
)->ctx_out
.eol
= 1;
1298 (*int_op
)->ctx_out
.intr
= 0;
1299 (*int_op
)->ctx_out
.store_mode
= 0;
1300 (*int_op
)->ctx_out
.en
= 0;
1301 (*int_op
)->ctx_out
.dis
= 0;
1302 (*int_op
)->ctx_out
.md0
= 0;
1303 (*int_op
)->ctx_out
.md1
= 0;
1304 (*int_op
)->ctx_out
.md2
= 0;
1305 (*int_op
)->ctx_out
.md3
= 0;
1306 (*int_op
)->ctx_out
.md4
= 0;
1307 (*int_op
)->ctx_out
.saved_data
= (dma_descr_data
*)virt_to_phys((*int_op
)->cdesc_out
->dma_descr
);
1308 (*int_op
)->ctx_out
.saved_data_buf
= (*int_op
)->cdesc_out
->dma_descr
->buf
; /* Already physical address. */
1310 (*int_op
)->ctx_in
.next
= NULL
;
1311 (*int_op
)->ctx_in
.eol
= 1;
1312 (*int_op
)->ctx_in
.intr
= 0;
1313 (*int_op
)->ctx_in
.store_mode
= 0;
1314 (*int_op
)->ctx_in
.en
= 0;
1315 (*int_op
)->ctx_in
.dis
= 0;
1316 (*int_op
)->ctx_in
.md0
= 0;
1317 (*int_op
)->ctx_in
.md1
= 0;
1318 (*int_op
)->ctx_in
.md2
= 0;
1319 (*int_op
)->ctx_in
.md3
= 0;
1320 (*int_op
)->ctx_in
.md4
= 0;
1322 (*int_op
)->ctx_in
.saved_data
= (dma_descr_data
*)virt_to_phys((*int_op
)->cdesc_in
->dma_descr
);
1323 (*int_op
)->ctx_in
.saved_data_buf
= (*int_op
)->cdesc_in
->dma_descr
->buf
; /* Already physical address. */
1325 DEBUG(printk("cryptocop_setup_dma_list: done\n"));
1330 /* Free all allocated resources. */
1331 struct cryptocop_dma_desc
*tmp_cdesc
;
1332 while (digest_ctx
.pad_descs
){
1333 tmp_cdesc
= digest_ctx
.pad_descs
->next
;
1334 free_cdesc(digest_ctx
.pad_descs
);
1335 digest_ctx
.pad_descs
= tmp_cdesc
;
1337 while (csum_ctx
.pad_descs
){
1338 tmp_cdesc
= csum_ctx
.pad_descs
->next
;
1339 free_cdesc(csum_ctx
.pad_descs
);
1340 csum_ctx
.pad_descs
= tmp_cdesc
;
1342 assert(cipher_ctx
.pad_descs
== NULL
); /* The ciphers are never padded. */
1344 if (*int_op
!= NULL
) delete_internal_operation(*int_op
);
1346 DEBUG_API(printk("cryptocop_setup_dma_list: done with error %d\n", failed
));
1351 static void delete_internal_operation(struct cryptocop_int_operation
*iop
)
1353 void *ptr
= iop
->alloc_ptr
;
1354 struct cryptocop_dma_desc
*cd
= iop
->cdesc_out
;
1355 struct cryptocop_dma_desc
*next
;
1357 DEBUG(printk("delete_internal_operation: iop=0x%p, alloc_ptr=0x%p\n", iop
, ptr
));
1373 #define MD5_MIN_PAD_LENGTH (9)
1374 #define MD5_PAD_LENGTH_FIELD_LENGTH (8)
1376 static int create_md5_pad(int alloc_flag
, unsigned long long hashed_length
, char **pad
, size_t *pad_length
)
1378 size_t padlen
= MD5_BLOCK_LENGTH
- (hashed_length
% MD5_BLOCK_LENGTH
);
1381 unsigned long long int bit_length
= hashed_length
<< 3;
1383 if (padlen
< MD5_MIN_PAD_LENGTH
) padlen
+= MD5_BLOCK_LENGTH
;
1385 p
= kmalloc(padlen
, alloc_flag
);
1386 if (!pad
) return -ENOMEM
;
1389 memset(p
+1, 0, padlen
- 1);
1391 DEBUG(printk("create_md5_pad: hashed_length=%lld bits == %lld bytes\n", bit_length
, hashed_length
));
1393 i
= padlen
- MD5_PAD_LENGTH_FIELD_LENGTH
;
1394 while (bit_length
!= 0){
1395 p
[i
++] = bit_length
% 0x100;
1400 *pad_length
= padlen
;
1405 #define SHA1_MIN_PAD_LENGTH (9)
1406 #define SHA1_PAD_LENGTH_FIELD_LENGTH (8)
1408 static int create_sha1_pad(int alloc_flag
, unsigned long long hashed_length
, char **pad
, size_t *pad_length
)
1410 size_t padlen
= SHA1_BLOCK_LENGTH
- (hashed_length
% SHA1_BLOCK_LENGTH
);
1413 unsigned long long int bit_length
= hashed_length
<< 3;
1415 if (padlen
< SHA1_MIN_PAD_LENGTH
) padlen
+= SHA1_BLOCK_LENGTH
;
1417 p
= kmalloc(padlen
, alloc_flag
);
1418 if (!pad
) return -ENOMEM
;
1421 memset(p
+1, 0, padlen
- 1);
1423 DEBUG(printk("create_sha1_pad: hashed_length=%lld bits == %lld bytes\n", bit_length
, hashed_length
));
1426 while (bit_length
!= 0){
1427 p
[i
--] = bit_length
% 0x100;
1432 *pad_length
= padlen
;
1438 static int transform_ok(struct cryptocop_transform_init
*tinit
)
1440 switch (tinit
->alg
){
1441 case cryptocop_alg_csum
:
1442 switch (tinit
->csum_mode
){
1443 case cryptocop_csum_le
:
1444 case cryptocop_csum_be
:
1447 DEBUG_API(printk("transform_ok: Bad mode set for csum transform\n"));
1450 case cryptocop_alg_mem2mem
:
1451 case cryptocop_alg_md5
:
1452 case cryptocop_alg_sha1
:
1453 if (tinit
->keylen
!= 0) {
1454 DEBUG_API(printk("transform_ok: non-zero keylength, %d, for a digest/csum algorithm\n", tinit
->keylen
));
1455 return -EINVAL
; /* This check is a bit strict. */
1458 case cryptocop_alg_des
:
1459 if (tinit
->keylen
!= 64) {
1460 DEBUG_API(printk("transform_ok: keylen %d invalid for DES\n", tinit
->keylen
));
1464 case cryptocop_alg_3des
:
1465 if (tinit
->keylen
!= 192) {
1466 DEBUG_API(printk("transform_ok: keylen %d invalid for 3DES\n", tinit
->keylen
));
1470 case cryptocop_alg_aes
:
1471 if (tinit
->keylen
!= 128 && tinit
->keylen
!= 192 && tinit
->keylen
!= 256) {
1472 DEBUG_API(printk("transform_ok: keylen %d invalid for AES\n", tinit
->keylen
));
1476 case cryptocop_no_alg
:
1478 DEBUG_API(printk("transform_ok: no such algorithm %d\n", tinit
->alg
));
1482 switch (tinit
->alg
){
1483 case cryptocop_alg_des
:
1484 case cryptocop_alg_3des
:
1485 case cryptocop_alg_aes
:
1486 if (tinit
->cipher_mode
!= cryptocop_cipher_mode_ecb
&& tinit
->cipher_mode
!= cryptocop_cipher_mode_cbc
) return -EINVAL
;
1494 int cryptocop_new_session(cryptocop_session_id
*sid
, struct cryptocop_transform_init
*tinit
, int alloc_flag
)
1496 struct cryptocop_session
*sess
;
1497 struct cryptocop_transform_init
*tfrm_in
= tinit
;
1498 struct cryptocop_transform_init
*tmp_in
;
1501 unsigned long int flags
;
1503 init_stream_coprocessor(); /* For safety if we are called early */
1508 if ((err
= transform_ok(tfrm_in
))) {
1509 DEBUG_API(printk("cryptocop_new_session, bad transform\n"));
1512 tfrm_in
= tfrm_in
->next
;
1514 if (0 == no_tfrms
) {
1515 DEBUG_API(printk("cryptocop_new_session, no transforms specified\n"));
1519 sess
= kmalloc(sizeof(struct cryptocop_session
), alloc_flag
);
1521 DEBUG_API(printk("cryptocop_new_session, kmalloc cryptocop_session\n"));
1525 sess
->tfrm_ctx
= kmalloc(no_tfrms
* sizeof(struct cryptocop_transform_ctx
), alloc_flag
);
1526 if (!sess
->tfrm_ctx
) {
1527 DEBUG_API(printk("cryptocop_new_session, kmalloc cryptocop_transform_ctx\n"));
1533 for (i
= 0; i
< no_tfrms
; i
++){
1534 tmp_in
= tfrm_in
->next
;
1536 if (tmp_in
->tid
== tfrm_in
->tid
) {
1537 DEBUG_API(printk("cryptocop_new_session, duplicate transform ids\n"));
1538 kfree(sess
->tfrm_ctx
);
1542 tmp_in
= tmp_in
->next
;
1544 memcpy(&sess
->tfrm_ctx
[i
].init
, tfrm_in
, sizeof(struct cryptocop_transform_init
));
1545 sess
->tfrm_ctx
[i
].dec_key_set
= 0;
1546 sess
->tfrm_ctx
[i
].next
= &sess
->tfrm_ctx
[i
] + 1;
1548 tfrm_in
= tfrm_in
->next
;
1550 sess
->tfrm_ctx
[i
-1].next
= NULL
;
1552 spin_lock_irqsave(&cryptocop_sessions_lock
, flags
);
1553 sess
->sid
= next_sid
;
1555 /* TODO If we are really paranoid we should do duplicate check to handle sid wraparound.
1556 * OTOH 2^64 is a really large number of session. */
1557 if (next_sid
== 0) next_sid
= 1;
1559 /* Prepend to session list. */
1560 sess
->next
= cryptocop_sessions
;
1561 cryptocop_sessions
= sess
;
1562 spin_unlock_irqrestore(&cryptocop_sessions_lock
, flags
);
1568 int cryptocop_free_session(cryptocop_session_id sid
)
1570 struct cryptocop_transform_ctx
*tc
;
1571 struct cryptocop_session
*sess
= NULL
;
1572 struct cryptocop_session
*psess
= NULL
;
1573 unsigned long int flags
;
1575 LIST_HEAD(remove_list
);
1576 struct list_head
*node
, *tmp
;
1577 struct cryptocop_prio_job
*pj
;
1579 DEBUG(printk("cryptocop_free_session: sid=%lld\n", sid
));
1581 spin_lock_irqsave(&cryptocop_sessions_lock
, flags
);
1582 sess
= cryptocop_sessions
;
1583 while (sess
&& sess
->sid
!= sid
){
1589 psess
->next
= sess
->next
;
1591 cryptocop_sessions
= sess
->next
;
1594 spin_unlock_irqrestore(&cryptocop_sessions_lock
, flags
);
1596 if (!sess
) return -EINVAL
;
1598 /* Remove queued jobs. */
1599 spin_lock_irqsave(&cryptocop_job_queue_lock
, flags
);
1601 for (i
= 0; i
< cryptocop_prio_no_prios
; i
++){
1602 if (!list_empty(&(cryptocop_job_queues
[i
].jobs
))){
1603 list_for_each_safe(node
, tmp
, &(cryptocop_job_queues
[i
].jobs
)) {
1604 pj
= list_entry(node
, struct cryptocop_prio_job
, node
);
1605 if (pj
->oper
->sid
== sid
) {
1606 list_move_tail(node
, &remove_list
);
1611 spin_unlock_irqrestore(&cryptocop_job_queue_lock
, flags
);
1613 list_for_each_safe(node
, tmp
, &remove_list
) {
1615 pj
= list_entry(node
, struct cryptocop_prio_job
, node
);
1616 pj
->oper
->operation_status
= -EAGAIN
; /* EAGAIN is not ideal for job/session terminated but it's the best choice I know of. */
1617 DEBUG(printk("cryptocop_free_session: pj=0x%p, pj->oper=0x%p, pj->iop=0x%p\n", pj
, pj
->oper
, pj
->iop
));
1618 pj
->oper
->cb(pj
->oper
, pj
->oper
->cb_data
);
1619 delete_internal_operation(pj
->iop
);
1623 tc
= sess
->tfrm_ctx
;
1624 /* Erase keying data. */
1626 DEBUG(printk("cryptocop_free_session: memset keys, tfrm id=%d\n", tc
->init
.tid
));
1627 memset(tc
->init
.key
, 0xff, CRYPTOCOP_MAX_KEY_LENGTH
);
1628 memset(tc
->dec_key
, 0xff, CRYPTOCOP_MAX_KEY_LENGTH
);
1631 kfree(sess
->tfrm_ctx
);
1637 static struct cryptocop_session
*get_session(cryptocop_session_id sid
)
1639 struct cryptocop_session
*sess
;
1640 unsigned long int flags
;
1642 spin_lock_irqsave(&cryptocop_sessions_lock
, flags
);
1643 sess
= cryptocop_sessions
;
1644 while (sess
&& (sess
->sid
!= sid
)){
1647 spin_unlock_irqrestore(&cryptocop_sessions_lock
, flags
);
1652 static struct cryptocop_transform_ctx
*get_transform_ctx(struct cryptocop_session
*sess
, cryptocop_tfrm_id tid
)
1654 struct cryptocop_transform_ctx
*tc
= sess
->tfrm_ctx
;
1656 DEBUG(printk("get_transform_ctx, sess=0x%p, tid=%d\n", sess
, tid
));
1657 assert(sess
!= NULL
);
1658 while (tc
&& tc
->init
.tid
!= tid
){
1659 DEBUG(printk("tc=0x%p, tc->next=0x%p\n", tc
, tc
->next
));
1662 DEBUG(printk("get_transform_ctx, returning tc=0x%p\n", tc
));
1668 /* The AES s-transform matrix (s-box). */
1669 static const u8 aes_sbox
[256] = {
1670 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
1671 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
1672 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
1673 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,
1674 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132,
1675 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
1676 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168,
1677 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,
1678 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
1679 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219,
1680 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121,
1681 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
1682 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
1683 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
1684 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
1685 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22
1688 /* AES has a 32 bit word round constants for each round in the
1689 * key schedule. round_constant[i] is really Rcon[i+1] in FIPS187.
1691 static u32 round_constant
[11] = {
1692 0x01000000, 0x02000000, 0x04000000, 0x08000000,
1693 0x10000000, 0x20000000, 0x40000000, 0x80000000,
1694 0x1B000000, 0x36000000, 0x6C000000
1697 /* Apply the s-box to each of the four occtets in w. */
1698 static u32
aes_ks_subword(const u32 w
)
1702 *(u32
*)(&bytes
[0]) = w
;
1703 bytes
[0] = aes_sbox
[bytes
[0]];
1704 bytes
[1] = aes_sbox
[bytes
[1]];
1705 bytes
[2] = aes_sbox
[bytes
[2]];
1706 bytes
[3] = aes_sbox
[bytes
[3]];
1707 return *(u32
*)(&bytes
[0]);
1710 /* The encrypt (forward) Rijndael key schedule algorithm pseudo code:
1711 * (Note that AES words are 32 bit long)
1713 * KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk){
1717 * w[i] = word(key[4*i, 4*i + 1, 4*i + 2, 4*i + 3])
1722 * while (i < (Nb * (Nr + 1))) {
1724 * if ((i mod Nk) == 0) {
1725 * temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
1727 * else if ((Nk > 6) && ((i mod Nk) == 4)) {
1728 * temp = SubWord(temp)
1730 * w[i] = w[i - Nk] xor temp
1732 * RotWord(t) does a 8 bit cyclic shift left on a 32 bit word.
1733 * SubWord(t) applies the AES s-box individually to each octet
1736 * For AES Nk can have the values 4, 6, and 8 (corresponding to
1737 * values for Nr of 10, 12, and 14). Nb is always 4.
1739 * To construct w[i], w[i - 1] and w[i - Nk] must be
1740 * available. Consequently we must keep a state of the last Nk words
1741 * to be able to create the last round keys.
1743 static void get_aes_decrypt_key(unsigned char *dec_key
, const unsigned char *key
, unsigned int keylength
)
1746 u32 w_ring
[8]; /* nk is max 8, use elements 0..(nk - 1) as a ringbuffer */
1765 panic("stream co-processor: bad aes key length in get_aes_decrypt_key\n");
1768 /* Need to do host byte order correction here since key is byte oriented and the
1769 * kx algorithm is word (u32) oriented. */
1770 for (i
= 0; i
< nk
; i
+=1) {
1771 w_ring
[i
] = be32_to_cpu(*(u32
*)&key
[4*i
]);
1776 while (i
< (4 * (nr
+ 2))) {
1777 temp
= w_ring
[w_last_ix
];
1780 temp
= (temp
<< 8) | (temp
>> 24);
1781 temp
= aes_ks_subword(temp
);
1782 temp
^= round_constant
[i
/nk
- 1];
1783 } else if ((nk
> 6) && ((i
% nk
) == 4)) {
1784 temp
= aes_ks_subword(temp
);
1786 w_last_ix
= (w_last_ix
+ 1) % nk
; /* This is the same as (i-Nk) mod Nk */
1787 temp
^= w_ring
[w_last_ix
];
1788 w_ring
[w_last_ix
] = temp
;
1790 /* We need the round keys for round Nr+1 and Nr+2 (round key
1791 * Nr+2 is the round key beyond the last one used when
1792 * encrypting). Rounds are numbered starting from 0, Nr=10
1793 * implies 11 rounds are used in encryption/decryption.
1795 if (i
>= (4 * nr
)) {
1796 /* Need to do host byte order correction here, the key
1797 * is byte oriented. */
1798 *(u32
*)dec_key
= cpu_to_be32(temp
);
1806 /**** Job/operation management. ****/
1808 int cryptocop_job_queue_insert_csum(struct cryptocop_operation
*operation
)
1810 return cryptocop_job_queue_insert(cryptocop_prio_kernel_csum
, operation
);
1813 int cryptocop_job_queue_insert_crypto(struct cryptocop_operation
*operation
)
1815 return cryptocop_job_queue_insert(cryptocop_prio_kernel
, operation
);
1818 int cryptocop_job_queue_insert_user_job(struct cryptocop_operation
*operation
)
1820 return cryptocop_job_queue_insert(cryptocop_prio_user
, operation
);
1823 static int cryptocop_job_queue_insert(cryptocop_queue_priority prio
, struct cryptocop_operation
*operation
)
1826 struct cryptocop_prio_job
*pj
= NULL
;
1827 unsigned long int flags
;
1829 DEBUG(printk("cryptocop_job_queue_insert(%d, 0x%p)\n", prio
, operation
));
1831 if (!operation
|| !operation
->cb
){
1832 DEBUG_API(printk("cryptocop_job_queue_insert oper=0x%p, NULL operation or callback\n", operation
));
1836 if ((ret
= cryptocop_job_setup(&pj
, operation
)) != 0){
1837 DEBUG_API(printk("cryptocop_job_queue_insert: job setup failed\n"));
1842 spin_lock_irqsave(&cryptocop_job_queue_lock
, flags
);
1843 list_add_tail(&pj
->node
, &cryptocop_job_queues
[prio
].jobs
);
1844 spin_unlock_irqrestore(&cryptocop_job_queue_lock
, flags
);
1846 /* Make sure a job is running */
1847 cryptocop_start_job();
1851 static void cryptocop_do_tasklet(unsigned long unused
);
1852 DECLARE_TASKLET (cryptocop_tasklet
, cryptocop_do_tasklet
, 0);
1854 static void cryptocop_do_tasklet(unsigned long unused
)
1856 struct list_head
*node
;
1857 struct cryptocop_prio_job
*pj
= NULL
;
1858 unsigned long flags
;
1860 DEBUG(printk("cryptocop_do_tasklet: entering\n"));
1863 spin_lock_irqsave(&cryptocop_completed_jobs_lock
, flags
);
1864 if (!list_empty(&cryptocop_completed_jobs
)){
1865 node
= cryptocop_completed_jobs
.next
;
1867 pj
= list_entry(node
, struct cryptocop_prio_job
, node
);
1871 spin_unlock_irqrestore(&cryptocop_completed_jobs_lock
, flags
);
1873 assert(pj
->oper
!= NULL
);
1875 /* Notify consumer of operation completeness. */
1876 DEBUG(printk("cryptocop_do_tasklet: callback 0x%p, data 0x%p\n", pj
->oper
->cb
, pj
->oper
->cb_data
));
1878 pj
->oper
->operation_status
= 0; /* Job is completed. */
1879 pj
->oper
->cb(pj
->oper
, pj
->oper
->cb_data
);
1880 delete_internal_operation(pj
->iop
);
1883 } while (pj
!= NULL
);
1885 DEBUG(printk("cryptocop_do_tasklet: exiting\n"));
1889 dma_done_interrupt(int irq
, void *dev_id
, struct pt_regs
* regs
)
1891 struct cryptocop_prio_job
*done_job
;
1892 reg_dma_rw_ack_intr ack_intr
= {
1896 REG_WR (dma
, regi_dma9
, rw_ack_intr
, ack_intr
);
1898 DEBUG(printk("cryptocop DMA done\n"));
1900 spin_lock(&running_job_lock
);
1901 if (cryptocop_running_job
== NULL
){
1902 printk("stream co-processor got interrupt when not busy\n");
1903 spin_unlock(&running_job_lock
);
1906 done_job
= cryptocop_running_job
;
1907 cryptocop_running_job
= NULL
;
1908 spin_unlock(&running_job_lock
);
1910 /* Start processing a job. */
1911 if (!spin_trylock(&cryptocop_process_lock
)){
1912 DEBUG(printk("cryptocop irq handler, not starting a job\n"));
1914 cryptocop_start_job();
1915 spin_unlock(&cryptocop_process_lock
);
1918 done_job
->oper
->operation_status
= 0; /* Job is completed. */
1919 if (done_job
->oper
->fast_callback
){
1920 /* This operation wants callback from interrupt. */
1921 done_job
->oper
->cb(done_job
->oper
, done_job
->oper
->cb_data
);
1922 delete_internal_operation(done_job
->iop
);
1925 spin_lock(&cryptocop_completed_jobs_lock
);
1926 list_add_tail(&(done_job
->node
), &cryptocop_completed_jobs
);
1927 spin_unlock(&cryptocop_completed_jobs_lock
);
1928 tasklet_schedule(&cryptocop_tasklet
);
1931 DEBUG(printk("cryptocop leave irq handler\n"));
1936 /* Setup interrupts and DMA channels. */
1937 static int init_cryptocop(void)
1939 unsigned long flags
;
1940 reg_intr_vect_rw_mask intr_mask
;
1941 reg_dma_rw_cfg dma_cfg
= {.en
= 1};
1942 reg_dma_rw_intr_mask intr_mask_in
= {.data
= regk_dma_yes
}; /* Only want descriptor interrupts from the DMA in channel. */
1943 reg_dma_rw_ack_intr ack_intr
= {.data
= 1,.in_eop
= 1 };
1944 reg_strcop_rw_cfg strcop_cfg
= {
1945 .ipend
= regk_strcop_little
,
1946 .td1
= regk_strcop_e
,
1947 .td2
= regk_strcop_d
,
1948 .td3
= regk_strcop_e
,
1953 if (request_irq(DMA9_INTR_VECT
, dma_done_interrupt
, 0, "stream co-processor DMA", NULL
)) panic("request_irq stream co-processor irq dma9");
1955 (void)crisv32_request_dma(8, "strcop", DMA_PANIC_ON_ERROR
, 0, dma_strp
);
1956 (void)crisv32_request_dma(9, "strcop", DMA_PANIC_ON_ERROR
, 0, dma_strp
);
1958 local_irq_save(flags
);
1960 /* Reset and enable the cryptocop. */
1962 REG_WR(strcop
, regi_strcop
, rw_cfg
, strcop_cfg
);
1964 REG_WR(strcop
, regi_strcop
, rw_cfg
, strcop_cfg
);
1966 /* Enable DMA9 interrupt */
1967 intr_mask
= REG_RD(intr_vect
, regi_irq
, rw_mask
);
1969 REG_WR(intr_vect
, regi_irq
, rw_mask
, intr_mask
);
1972 REG_WR(dma
, regi_dma9
, rw_cfg
, dma_cfg
); /* input DMA */
1973 REG_WR(dma
, regi_dma8
, rw_cfg
, dma_cfg
); /* output DMA */
1975 /* Set up wordsize = 4 for DMAs. */
1976 DMA_WR_CMD (regi_dma8
, regk_dma_set_w_size4
);
1977 DMA_WR_CMD (regi_dma9
, regk_dma_set_w_size4
);
1979 /* Enable interrupts. */
1980 REG_WR(dma
, regi_dma9
, rw_intr_mask
, intr_mask_in
);
1982 /* Clear intr ack. */
1983 REG_WR(dma
, regi_dma9
, rw_ack_intr
, ack_intr
);
1985 local_irq_restore(flags
);
1990 /* Free used cryptocop hw resources (interrupt and DMA channels). */
1991 static void release_cryptocop(void)
1993 unsigned long flags
;
1994 reg_intr_vect_rw_mask intr_mask
;
1995 reg_dma_rw_cfg dma_cfg
= {.en
= 0};
1996 reg_dma_rw_intr_mask intr_mask_in
= {0};
1997 reg_dma_rw_ack_intr ack_intr
= {.data
= 1,.in_eop
= 1 };
1999 local_irq_save(flags
);
2001 /* Clear intr ack. */
2002 REG_WR(dma
, regi_dma9
, rw_ack_intr
, ack_intr
);
2004 /* Disable DMA9 interrupt */
2005 intr_mask
= REG_RD(intr_vect
, regi_irq
, rw_mask
);
2007 REG_WR(intr_vect
, regi_irq
, rw_mask
, intr_mask
);
2010 REG_WR(dma
, regi_dma9
, rw_cfg
, dma_cfg
); /* input DMA */
2011 REG_WR(dma
, regi_dma8
, rw_cfg
, dma_cfg
); /* output DMA */
2013 /* Disable interrupts. */
2014 REG_WR(dma
, regi_dma9
, rw_intr_mask
, intr_mask_in
);
2016 local_irq_restore(flags
);
2018 free_irq(DMA9_INTR_VECT
, NULL
);
2020 (void)crisv32_free_dma(8);
2021 (void)crisv32_free_dma(9);
2025 /* Init job queue. */
2026 static int cryptocop_job_queue_init(void)
2030 INIT_LIST_HEAD(&cryptocop_completed_jobs
);
2032 for (i
= 0; i
< cryptocop_prio_no_prios
; i
++){
2033 cryptocop_job_queues
[i
].prio
= (cryptocop_queue_priority
)i
;
2034 INIT_LIST_HEAD(&cryptocop_job_queues
[i
].jobs
);
2040 static void cryptocop_job_queue_close(void)
2042 struct list_head
*node
, *tmp
;
2043 struct cryptocop_prio_job
*pj
= NULL
;
2044 unsigned long int process_flags
, flags
;
2047 /* FIXME: This is as yet untested code. */
2049 /* Stop strcop from getting an operation to process while we are closing the
2051 spin_lock_irqsave(&cryptocop_process_lock
, process_flags
);
2053 /* Empty the job queue. */
2054 for (i
= 0; i
< cryptocop_prio_no_prios
; i
++){
2055 if (!list_empty(&(cryptocop_job_queues
[i
].jobs
))){
2056 list_for_each_safe(node
, tmp
, &(cryptocop_job_queues
[i
].jobs
)) {
2057 pj
= list_entry(node
, struct cryptocop_prio_job
, node
);
2060 /* Call callback to notify consumer of job removal. */
2061 DEBUG(printk("cryptocop_job_queue_close: callback 0x%p, data 0x%p\n", pj
->oper
->cb
, pj
->oper
->cb_data
));
2062 pj
->oper
->operation_status
= -EINTR
; /* Job is terminated without completion. */
2063 pj
->oper
->cb(pj
->oper
, pj
->oper
->cb_data
);
2065 delete_internal_operation(pj
->iop
);
2070 spin_unlock_irqrestore(&cryptocop_process_lock
, process_flags
);
2072 /* Remove the running job, if any. */
2073 spin_lock_irqsave(&running_job_lock
, flags
);
2074 if (cryptocop_running_job
){
2075 reg_strcop_rw_cfg rw_cfg
;
2076 reg_dma_rw_cfg dma_out_cfg
, dma_in_cfg
;
2079 dma_out_cfg
= REG_RD(dma
, regi_dma8
, rw_cfg
);
2080 dma_out_cfg
.en
= regk_dma_no
;
2081 REG_WR(dma
, regi_dma8
, rw_cfg
, dma_out_cfg
);
2083 dma_in_cfg
= REG_RD(dma
, regi_dma9
, rw_cfg
);
2084 dma_in_cfg
.en
= regk_dma_no
;
2085 REG_WR(dma
, regi_dma9
, rw_cfg
, dma_in_cfg
);
2087 /* Disble the cryptocop. */
2088 rw_cfg
= REG_RD(strcop
, regi_strcop
, rw_cfg
);
2090 REG_WR(strcop
, regi_strcop
, rw_cfg
, rw_cfg
);
2092 pj
= cryptocop_running_job
;
2093 cryptocop_running_job
= NULL
;
2095 /* Call callback to notify consumer of job removal. */
2096 DEBUG(printk("cryptocop_job_queue_close: callback 0x%p, data 0x%p\n", pj
->oper
->cb
, pj
->oper
->cb_data
));
2097 pj
->oper
->operation_status
= -EINTR
; /* Job is terminated without completion. */
2098 pj
->oper
->cb(pj
->oper
, pj
->oper
->cb_data
);
2100 delete_internal_operation(pj
->iop
);
2103 spin_unlock_irqrestore(&running_job_lock
, flags
);
2105 /* Remove completed jobs, if any. */
2106 spin_lock_irqsave(&cryptocop_completed_jobs_lock
, flags
);
2108 list_for_each_safe(node
, tmp
, &cryptocop_completed_jobs
) {
2109 pj
= list_entry(node
, struct cryptocop_prio_job
, node
);
2111 /* Call callback to notify consumer of job removal. */
2112 DEBUG(printk("cryptocop_job_queue_close: callback 0x%p, data 0x%p\n", pj
->oper
->cb
, pj
->oper
->cb_data
));
2113 pj
->oper
->operation_status
= -EINTR
; /* Job is terminated without completion. */
2114 pj
->oper
->cb(pj
->oper
, pj
->oper
->cb_data
);
2116 delete_internal_operation(pj
->iop
);
2119 spin_unlock_irqrestore(&cryptocop_completed_jobs_lock
, flags
);
2123 static void cryptocop_start_job(void)
2126 struct cryptocop_prio_job
*pj
;
2127 unsigned long int flags
;
2128 unsigned long int running_job_flags
;
2129 reg_strcop_rw_cfg rw_cfg
= {.en
= 1, .ignore_sync
= 0};
2131 DEBUG(printk("cryptocop_start_job: entering\n"));
2133 spin_lock_irqsave(&running_job_lock
, running_job_flags
);
2134 if (cryptocop_running_job
!= NULL
){
2135 /* Already running. */
2136 DEBUG(printk("cryptocop_start_job: already running, exit\n"));
2137 spin_unlock_irqrestore(&running_job_lock
, running_job_flags
);
2140 spin_lock_irqsave(&cryptocop_job_queue_lock
, flags
);
2142 /* Check the queues in priority order. */
2143 for (i
= cryptocop_prio_kernel_csum
; (i
< cryptocop_prio_no_prios
) && list_empty(&cryptocop_job_queues
[i
].jobs
); i
++);
2144 if (i
== cryptocop_prio_no_prios
) {
2145 spin_unlock_irqrestore(&cryptocop_job_queue_lock
, flags
);
2146 spin_unlock_irqrestore(&running_job_lock
, running_job_flags
);
2147 DEBUG(printk("cryptocop_start_job: no jobs to run\n"));
2148 return; /* No jobs to run */
2150 DEBUG(printk("starting job for prio %d\n", i
));
2152 /* TODO: Do not starve lower priority jobs. Let in a lower
2153 * prio job for every N-th processed higher prio job or some
2154 * other scheduling policy. This could reasonably be
2155 * tweakable since the optimal balance would depend on the
2156 * type of load on the system. */
2158 /* Pull the DMA lists from the job and start the DMA client. */
2159 pj
= list_entry(cryptocop_job_queues
[i
].jobs
.next
, struct cryptocop_prio_job
, node
);
2160 list_del(&pj
->node
);
2161 spin_unlock_irqrestore(&cryptocop_job_queue_lock
, flags
);
2162 cryptocop_running_job
= pj
;
2164 /* Set config register (3DES and CSUM modes). */
2165 switch (pj
->iop
->tdes_mode
){
2166 case cryptocop_3des_eee
:
2167 rw_cfg
.td1
= regk_strcop_e
;
2168 rw_cfg
.td2
= regk_strcop_e
;
2169 rw_cfg
.td3
= regk_strcop_e
;
2171 case cryptocop_3des_eed
:
2172 rw_cfg
.td1
= regk_strcop_e
;
2173 rw_cfg
.td2
= regk_strcop_e
;
2174 rw_cfg
.td3
= regk_strcop_d
;
2176 case cryptocop_3des_ede
:
2177 rw_cfg
.td1
= regk_strcop_e
;
2178 rw_cfg
.td2
= regk_strcop_d
;
2179 rw_cfg
.td3
= regk_strcop_e
;
2181 case cryptocop_3des_edd
:
2182 rw_cfg
.td1
= regk_strcop_e
;
2183 rw_cfg
.td2
= regk_strcop_d
;
2184 rw_cfg
.td3
= regk_strcop_d
;
2186 case cryptocop_3des_dee
:
2187 rw_cfg
.td1
= regk_strcop_d
;
2188 rw_cfg
.td2
= regk_strcop_e
;
2189 rw_cfg
.td3
= regk_strcop_e
;
2191 case cryptocop_3des_ded
:
2192 rw_cfg
.td1
= regk_strcop_d
;
2193 rw_cfg
.td2
= regk_strcop_e
;
2194 rw_cfg
.td3
= regk_strcop_d
;
2196 case cryptocop_3des_dde
:
2197 rw_cfg
.td1
= regk_strcop_d
;
2198 rw_cfg
.td2
= regk_strcop_d
;
2199 rw_cfg
.td3
= regk_strcop_e
;
2201 case cryptocop_3des_ddd
:
2202 rw_cfg
.td1
= regk_strcop_d
;
2203 rw_cfg
.td2
= regk_strcop_d
;
2204 rw_cfg
.td3
= regk_strcop_d
;
2207 DEBUG(printk("cryptocop_setup_dma_list: bad 3DES mode\n"));
2209 switch (pj
->iop
->csum_mode
){
2210 case cryptocop_csum_le
:
2211 rw_cfg
.ipend
= regk_strcop_little
;
2213 case cryptocop_csum_be
:
2214 rw_cfg
.ipend
= regk_strcop_big
;
2217 DEBUG(printk("cryptocop_setup_dma_list: bad checksum mode\n"));
2219 REG_WR(strcop
, regi_strcop
, rw_cfg
, rw_cfg
);
2221 DEBUG(printk("cryptocop_start_job: starting DMA, new cryptocop_running_job=0x%p\n"
2222 "ctx_in: 0x%p, phys: 0x%p\n"
2223 "ctx_out: 0x%p, phys: 0x%p\n",
2225 &pj
->iop
->ctx_in
, (char*)virt_to_phys(&pj
->iop
->ctx_in
),
2226 &pj
->iop
->ctx_out
, (char*)virt_to_phys(&pj
->iop
->ctx_out
)));
2228 /* Start input DMA. */
2229 DMA_START_CONTEXT(regi_dma9
, virt_to_phys(&pj
->iop
->ctx_in
));
2231 /* Start output DMA. */
2232 DMA_START_CONTEXT(regi_dma8
, virt_to_phys(&pj
->iop
->ctx_out
));
2234 spin_unlock_irqrestore(&running_job_lock
, running_job_flags
);
2235 DEBUG(printk("cryptocop_start_job: exiting\n"));
2239 static int cryptocop_job_setup(struct cryptocop_prio_job
**pj
, struct cryptocop_operation
*operation
)
2242 int alloc_flag
= operation
->in_interrupt
? GFP_ATOMIC
: GFP_KERNEL
;
2243 void *iop_alloc_ptr
= NULL
;
2245 *pj
= kmalloc(sizeof (struct cryptocop_prio_job
), alloc_flag
);
2246 if (!*pj
) return -ENOMEM
;
2248 DEBUG(printk("cryptocop_job_setup: operation=0x%p\n", operation
));
2250 (*pj
)->oper
= operation
;
2251 DEBUG(printk("cryptocop_job_setup, cb=0x%p cb_data=0x%p\n", (*pj
)->oper
->cb
, (*pj
)->oper
->cb_data
));
2253 if (operation
->use_dmalists
) {
2254 DEBUG(print_user_dma_lists(&operation
->list_op
));
2255 if (!operation
->list_op
.inlist
|| !operation
->list_op
.outlist
|| !operation
->list_op
.out_data_buf
|| !operation
->list_op
.in_data_buf
){
2256 DEBUG_API(printk("cryptocop_job_setup: bad indata (use_dmalists)\n"));
2260 iop_alloc_ptr
= kmalloc(DESCR_ALLOC_PAD
+ sizeof(struct cryptocop_int_operation
), alloc_flag
);
2261 if (!iop_alloc_ptr
) {
2262 DEBUG_API(printk("cryptocop_job_setup: kmalloc cryptocop_int_operation\n"));
2266 (*pj
)->iop
= (struct cryptocop_int_operation
*)(((unsigned long int)(iop_alloc_ptr
+ DESCR_ALLOC_PAD
+ offsetof(struct cryptocop_int_operation
, ctx_out
)) & ~0x0000001F) - offsetof(struct cryptocop_int_operation
, ctx_out
));
2267 DEBUG(memset((*pj
)->iop
, 0xff, sizeof(struct cryptocop_int_operation
)));
2268 (*pj
)->iop
->alloc_ptr
= iop_alloc_ptr
;
2269 (*pj
)->iop
->sid
= operation
->sid
;
2270 (*pj
)->iop
->cdesc_out
= NULL
;
2271 (*pj
)->iop
->cdesc_in
= NULL
;
2272 (*pj
)->iop
->tdes_mode
= operation
->list_op
.tdes_mode
;
2273 (*pj
)->iop
->csum_mode
= operation
->list_op
.csum_mode
;
2274 (*pj
)->iop
->ddesc_out
= operation
->list_op
.outlist
;
2275 (*pj
)->iop
->ddesc_in
= operation
->list_op
.inlist
;
2277 /* Setup DMA contexts. */
2278 (*pj
)->iop
->ctx_out
.next
= NULL
;
2279 (*pj
)->iop
->ctx_out
.eol
= 1;
2280 (*pj
)->iop
->ctx_out
.saved_data
= operation
->list_op
.outlist
;
2281 (*pj
)->iop
->ctx_out
.saved_data_buf
= operation
->list_op
.out_data_buf
;
2283 (*pj
)->iop
->ctx_in
.next
= NULL
;
2284 (*pj
)->iop
->ctx_in
.eol
= 1;
2285 (*pj
)->iop
->ctx_in
.saved_data
= operation
->list_op
.inlist
;
2286 (*pj
)->iop
->ctx_in
.saved_data_buf
= operation
->list_op
.in_data_buf
;
2288 if ((err
= cryptocop_setup_dma_list(operation
, &(*pj
)->iop
, alloc_flag
))) {
2289 DEBUG_API(printk("cryptocop_job_setup: cryptocop_setup_dma_list failed %d\n", err
));
2294 DEBUG(print_dma_descriptors((*pj
)->iop
));
2296 DEBUG(printk("cryptocop_job_setup, DMA list setup successful\n"));
2302 static int cryptocop_open(struct inode
*inode
, struct file
*filp
)
2304 int p
= iminor(inode
);
2306 if (p
!= CRYPTOCOP_MINOR
) return -EINVAL
;
2308 filp
->private_data
= NULL
;
2313 static int cryptocop_release(struct inode
*inode
, struct file
*filp
)
2315 struct cryptocop_private
*dev
= filp
->private_data
;
2316 struct cryptocop_private
*dev_next
;
2319 dev_next
= dev
->next
;
2320 if (dev
->sid
!= CRYPTOCOP_SESSION_ID_NONE
) {
2321 (void)cryptocop_free_session(dev
->sid
);
2331 static int cryptocop_ioctl_close_session(struct inode
*inode
, struct file
*filp
,
2332 unsigned int cmd
, unsigned long arg
)
2334 struct cryptocop_private
*dev
= filp
->private_data
;
2335 struct cryptocop_private
*prev_dev
= NULL
;
2336 struct strcop_session_op
*sess_op
= (struct strcop_session_op
*)arg
;
2337 struct strcop_session_op sop
;
2340 DEBUG(printk("cryptocop_ioctl_close_session\n"));
2342 if (!access_ok(VERIFY_READ
, sess_op
, sizeof(struct strcop_session_op
)))
2344 err
= copy_from_user(&sop
, sess_op
, sizeof(struct strcop_session_op
));
2345 if (err
) return -EFAULT
;
2347 while (dev
&& (dev
->sid
!= sop
.ses_id
)) {
2353 prev_dev
->next
= dev
->next
;
2355 filp
->private_data
= dev
->next
;
2357 err
= cryptocop_free_session(dev
->sid
);
2358 if (err
) return -EFAULT
;
2360 DEBUG_API(printk("cryptocop_ioctl_close_session: session %lld not found\n", sop
.ses_id
));
2367 static void ioctl_process_job_callback(struct cryptocop_operation
*op
, void*cb_data
)
2369 struct ioctl_job_cb_ctx
*jc
= (struct ioctl_job_cb_ctx
*)cb_data
;
2371 DEBUG(printk("ioctl_process_job_callback: op=0x%p, cb_data=0x%p\n", op
, cb_data
));
2374 wake_up(&cryptocop_ioc_process_wq
);
2378 #define CRYPTOCOP_IOCTL_CIPHER_TID (1)
2379 #define CRYPTOCOP_IOCTL_DIGEST_TID (2)
2380 #define CRYPTOCOP_IOCTL_CSUM_TID (3)
2382 static size_t first_cfg_change_ix(struct strcop_crypto_op
*crp_op
)
2386 if (crp_op
->do_cipher
) ch_ix
= crp_op
->cipher_start
;
2387 if (crp_op
->do_digest
&& (crp_op
->digest_start
< ch_ix
)) ch_ix
= crp_op
->digest_start
;
2388 if (crp_op
->do_csum
&& (crp_op
->csum_start
< ch_ix
)) ch_ix
= crp_op
->csum_start
;
2390 DEBUG(printk("first_cfg_change_ix: ix=%d\n", ch_ix
));
2395 static size_t next_cfg_change_ix(struct strcop_crypto_op
*crp_op
, size_t ix
)
2397 size_t ch_ix
= INT_MAX
;
2400 if (crp_op
->do_cipher
&& ((crp_op
->cipher_start
+ crp_op
->cipher_len
) > ix
)){
2401 if (crp_op
->cipher_start
> ix
) {
2402 ch_ix
= crp_op
->cipher_start
;
2404 ch_ix
= crp_op
->cipher_start
+ crp_op
->cipher_len
;
2407 if (crp_op
->do_digest
&& ((crp_op
->digest_start
+ crp_op
->digest_len
) > ix
)){
2408 if (crp_op
->digest_start
> ix
) {
2409 tmp_ix
= crp_op
->digest_start
;
2411 tmp_ix
= crp_op
->digest_start
+ crp_op
->digest_len
;
2413 if (tmp_ix
< ch_ix
) ch_ix
= tmp_ix
;
2415 if (crp_op
->do_csum
&& ((crp_op
->csum_start
+ crp_op
->csum_len
) > ix
)){
2416 if (crp_op
->csum_start
> ix
) {
2417 tmp_ix
= crp_op
->csum_start
;
2419 tmp_ix
= crp_op
->csum_start
+ crp_op
->csum_len
;
2421 if (tmp_ix
< ch_ix
) ch_ix
= tmp_ix
;
2423 if (ch_ix
== INT_MAX
) ch_ix
= ix
;
2424 DEBUG(printk("next_cfg_change_ix prev ix=%d, next ix=%d\n", ix
, ch_ix
));
2429 /* Map map_length bytes from the pages starting on *pageix and *pageoffset to iovecs starting on *iovix.
2430 * Return -1 for ok, 0 for fail. */
2431 static int map_pages_to_iovec(struct iovec
*iov
, int iovlen
, int *iovix
, struct page
**pages
, int nopages
, int *pageix
, int *pageoffset
, int map_length
)
2435 assert(iov
!= NULL
);
2436 assert(iovix
!= NULL
);
2437 assert(pages
!= NULL
);
2438 assert(pageix
!= NULL
);
2439 assert(pageoffset
!= NULL
);
2441 DEBUG(printk("map_pages_to_iovec, map_length=%d, iovlen=%d, *iovix=%d, nopages=%d, *pageix=%d, *pageoffset=%d\n", map_length
, iovlen
, *iovix
, nopages
, *pageix
, *pageoffset
));
2443 while (map_length
> 0){
2444 DEBUG(printk("map_pages_to_iovec, map_length=%d, iovlen=%d, *iovix=%d, nopages=%d, *pageix=%d, *pageoffset=%d\n", map_length
, iovlen
, *iovix
, nopages
, *pageix
, *pageoffset
));
2445 if (*iovix
>= iovlen
){
2446 DEBUG_API(printk("map_page_to_iovec: *iovix=%d >= iovlen=%d\n", *iovix
, iovlen
));
2449 if (*pageix
>= nopages
){
2450 DEBUG_API(printk("map_page_to_iovec: *pageix=%d >= nopages=%d\n", *pageix
, nopages
));
2453 iov
[*iovix
].iov_base
= (unsigned char*)page_address(pages
[*pageix
]) + *pageoffset
;
2454 tmplen
= PAGE_SIZE
- *pageoffset
;
2455 if (tmplen
< map_length
){
2459 tmplen
= map_length
;
2460 (*pageoffset
) += map_length
;
2462 DEBUG(printk("mapping %d bytes from page %d (or %d) to iovec %d\n", tmplen
, *pageix
, *pageix
-1, *iovix
));
2463 iov
[*iovix
].iov_len
= tmplen
;
2464 map_length
-= tmplen
;
2467 DEBUG(printk("map_page_to_iovec, exit, *iovix=%d\n", *iovix
));
2473 static int cryptocop_ioctl_process(struct inode
*inode
, struct file
*filp
, unsigned int cmd
, unsigned long arg
)
2476 struct cryptocop_private
*dev
= filp
->private_data
;
2477 struct strcop_crypto_op
*crp_oper
= (struct strcop_crypto_op
*)arg
;
2478 struct strcop_crypto_op oper
= {0};
2480 struct cryptocop_operation
*cop
= NULL
;
2482 struct ioctl_job_cb_ctx
*jc
= NULL
;
2484 struct page
**inpages
= NULL
;
2485 struct page
**outpages
= NULL
;
2489 struct cryptocop_desc descs
[5]; /* Max 5 descriptors are needed, there are three transforms that
2490 * can get connected/disconnected on different places in the indata. */
2491 struct cryptocop_desc_cfg dcfgs
[5*3];
2494 struct cryptocop_tfrm_cfg ciph_tcfg
= {0};
2495 struct cryptocop_tfrm_cfg digest_tcfg
= {0};
2496 struct cryptocop_tfrm_cfg csum_tcfg
= {0};
2498 unsigned char *digest_result
= NULL
;
2499 int digest_length
= 0;
2501 unsigned char csum_result
[CSUM_BLOCK_LENGTH
];
2502 struct cryptocop_session
*sess
;
2512 int cipher_active
, digest_active
, csum_active
;
2513 int end_digest
, end_csum
;
2514 int digest_done
= 0;
2515 int cipher_done
= 0;
2518 DEBUG(printk("cryptocop_ioctl_process\n"));
2520 if (!access_ok(VERIFY_WRITE
, crp_oper
, sizeof(struct strcop_crypto_op
))){
2521 DEBUG_API(printk("cryptocop_ioctl_process: !access_ok crp_oper!\n"));
2524 if (copy_from_user(&oper
, crp_oper
, sizeof(struct strcop_crypto_op
))) {
2525 DEBUG_API(printk("cryptocop_ioctl_process: copy_from_user\n"));
2528 DEBUG(print_strcop_crypto_op(&oper
));
2530 while (dev
&& dev
->sid
!= oper
.ses_id
) dev
= dev
->next
;
2532 DEBUG_API(printk("cryptocop_ioctl_process: session %lld not found\n", oper
.ses_id
));
2536 /* Check buffers. */
2537 if (((oper
.indata
+ oper
.inlen
) < oper
.indata
) || ((oper
.cipher_outdata
+ oper
.cipher_outlen
) < oper
.cipher_outdata
)){
2538 DEBUG_API(printk("cryptocop_ioctl_process: user buffers wrapped around, bad user!\n"));
2542 if (!access_ok(VERIFY_WRITE
, oper
.cipher_outdata
, oper
.cipher_outlen
)){
2543 DEBUG_API(printk("cryptocop_ioctl_process: !access_ok out data!\n"));
2546 if (!access_ok(VERIFY_READ
, oper
.indata
, oper
.inlen
)){
2547 DEBUG_API(printk("cryptocop_ioctl_process: !access_ok in data!\n"));
2551 cop
= kmalloc(sizeof(struct cryptocop_operation
), GFP_KERNEL
);
2553 DEBUG_API(printk("cryptocop_ioctl_process: kmalloc\n"));
2556 jc
= kmalloc(sizeof(struct ioctl_job_cb_ctx
), GFP_KERNEL
);
2558 DEBUG_API(printk("cryptocop_ioctl_process: kmalloc\n"));
2565 cop
->cb
= ioctl_process_job_callback
;
2566 cop
->operation_status
= 0;
2567 cop
->use_dmalists
= 0;
2568 cop
->in_interrupt
= 0;
2569 cop
->fast_callback
= 0;
2570 cop
->tfrm_op
.tfrm_cfg
= NULL
;
2571 cop
->tfrm_op
.desc
= NULL
;
2572 cop
->tfrm_op
.indata
= NULL
;
2573 cop
->tfrm_op
.incount
= 0;
2574 cop
->tfrm_op
.inlen
= 0;
2575 cop
->tfrm_op
.outdata
= NULL
;
2576 cop
->tfrm_op
.outcount
= 0;
2577 cop
->tfrm_op
.outlen
= 0;
2579 sess
= get_session(oper
.ses_id
);
2581 DEBUG_API(printk("cryptocop_ioctl_process: bad session id.\n"));
2587 if (oper
.do_cipher
) {
2588 unsigned int cipher_outlen
= 0;
2589 struct cryptocop_transform_ctx
*tc
= get_transform_ctx(sess
, CRYPTOCOP_IOCTL_CIPHER_TID
);
2591 DEBUG_API(printk("cryptocop_ioctl_process: no cipher transform in session.\n"));
2595 ciph_tcfg
.tid
= CRYPTOCOP_IOCTL_CIPHER_TID
;
2596 ciph_tcfg
.inject_ix
= 0;
2597 ciph_tcfg
.flags
= 0;
2598 if ((oper
.cipher_start
< 0) || (oper
.cipher_len
<= 0) || (oper
.cipher_start
> oper
.inlen
) || ((oper
.cipher_start
+ oper
.cipher_len
) > oper
.inlen
)){
2599 DEBUG_API(printk("cryptocop_ioctl_process: bad cipher length\n"));
2604 cblocklen
= tc
->init
.alg
== cryptocop_alg_aes
? AES_BLOCK_LENGTH
: DES_BLOCK_LENGTH
;
2605 if (oper
.cipher_len
% cblocklen
) {
2608 DEBUG_API(printk("cryptocop_ioctl_process: cipher inlength not multiple of block length.\n"));
2611 cipher_outlen
= oper
.cipher_len
;
2612 if (tc
->init
.cipher_mode
== cryptocop_cipher_mode_cbc
){
2613 if (oper
.cipher_explicit
) {
2614 ciph_tcfg
.flags
|= CRYPTOCOP_EXPLICIT_IV
;
2615 memcpy(ciph_tcfg
.iv
, oper
.cipher_iv
, cblocklen
);
2617 cipher_outlen
= oper
.cipher_len
- cblocklen
;
2620 if (oper
.cipher_explicit
){
2623 DEBUG_API(printk("cryptocop_ioctl_process: explicit_iv when not CBC mode\n"));
2627 if (oper
.cipher_outlen
!= cipher_outlen
) {
2630 DEBUG_API(printk("cryptocop_ioctl_process: cipher_outlen incorrect, should be %d not %d.\n", cipher_outlen
, oper
.cipher_outlen
));
2635 ciph_tcfg
.flags
|= CRYPTOCOP_DECRYPT
;
2637 ciph_tcfg
.flags
|= CRYPTOCOP_ENCRYPT
;
2639 ciph_tcfg
.next
= cop
->tfrm_op
.tfrm_cfg
;
2640 cop
->tfrm_op
.tfrm_cfg
= &ciph_tcfg
;
2642 if (oper
.do_digest
){
2643 struct cryptocop_transform_ctx
*tc
= get_transform_ctx(sess
, CRYPTOCOP_IOCTL_DIGEST_TID
);
2645 DEBUG_API(printk("cryptocop_ioctl_process: no digest transform in session.\n"));
2649 digest_length
= tc
->init
.alg
== cryptocop_alg_md5
? 16 : 20;
2650 digest_result
= kmalloc(digest_length
, GFP_KERNEL
);
2651 if (!digest_result
) {
2652 DEBUG_API(printk("cryptocop_ioctl_process: kmalloc digest_result\n"));
2656 DEBUG(memset(digest_result
, 0xff, digest_length
));
2658 digest_tcfg
.tid
= CRYPTOCOP_IOCTL_DIGEST_TID
;
2659 digest_tcfg
.inject_ix
= 0;
2660 ciph_tcfg
.inject_ix
+= digest_length
;
2661 if ((oper
.digest_start
< 0) || (oper
.digest_len
<= 0) || (oper
.digest_start
> oper
.inlen
) || ((oper
.digest_start
+ oper
.digest_len
) > oper
.inlen
)){
2662 DEBUG_API(printk("cryptocop_ioctl_process: bad digest length\n"));
2667 digest_tcfg
.next
= cop
->tfrm_op
.tfrm_cfg
;
2668 cop
->tfrm_op
.tfrm_cfg
= &digest_tcfg
;
2671 csum_tcfg
.tid
= CRYPTOCOP_IOCTL_CSUM_TID
;
2672 csum_tcfg
.inject_ix
= digest_length
;
2673 ciph_tcfg
.inject_ix
+= 2;
2675 if ((oper
.csum_start
< 0) || (oper
.csum_len
<= 0) || (oper
.csum_start
> oper
.inlen
) || ((oper
.csum_start
+ oper
.csum_len
) > oper
.inlen
)){
2676 DEBUG_API(printk("cryptocop_ioctl_process: bad csum length\n"));
2682 csum_tcfg
.next
= cop
->tfrm_op
.tfrm_cfg
;
2683 cop
->tfrm_op
.tfrm_cfg
= &csum_tcfg
;
2686 prev_ix
= first_cfg_change_ix(&oper
);
2687 if (prev_ix
> oper
.inlen
) {
2688 DEBUG_API(printk("cryptocop_ioctl_process: length mismatch\n"));
2689 nooutpages
= noinpages
= 0;
2693 DEBUG(printk("cryptocop_ioctl_process: inlen=%d, cipher_outlen=%d\n", oper
.inlen
, oper
.cipher_outlen
));
2695 /* Map user pages for in and out data of the operation. */
2696 noinpages
= (((unsigned long int)(oper
.indata
+ prev_ix
) & ~PAGE_MASK
) + oper
.inlen
- 1 - prev_ix
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2697 DEBUG(printk("cryptocop_ioctl_process: noinpages=%d\n", noinpages
));
2698 inpages
= kmalloc(noinpages
* sizeof(struct page
*), GFP_KERNEL
);
2700 DEBUG_API(printk("cryptocop_ioctl_process: kmalloc inpages\n"));
2701 nooutpages
= noinpages
= 0;
2705 if (oper
.do_cipher
){
2706 nooutpages
= (((unsigned long int)oper
.cipher_outdata
& ~PAGE_MASK
) + oper
.cipher_outlen
- 1 + ~PAGE_MASK
) >> PAGE_SHIFT
;
2707 DEBUG(printk("cryptocop_ioctl_process: nooutpages=%d\n", nooutpages
));
2708 outpages
= kmalloc(nooutpages
* sizeof(struct page
*), GFP_KERNEL
);
2710 DEBUG_API(printk("cryptocop_ioctl_process: kmalloc outpages\n"));
2711 nooutpages
= noinpages
= 0;
2717 /* Acquire the mm page semaphore. */
2718 down_read(¤t
->mm
->mmap_sem
);
2720 err
= get_user_pages(current
,
2722 (unsigned long int)(oper
.indata
+ prev_ix
),
2724 0, /* read access only for in data */
2730 up_read(¤t
->mm
->mmap_sem
);
2731 nooutpages
= noinpages
= 0;
2732 DEBUG_API(printk("cryptocop_ioctl_process: get_user_pages indata\n"));
2736 if (oper
.do_cipher
){
2737 err
= get_user_pages(current
,
2739 (unsigned long int)oper
.cipher_outdata
,
2741 1, /* write access for out data */
2745 up_read(¤t
->mm
->mmap_sem
);
2748 DEBUG_API(printk("cryptocop_ioctl_process: get_user_pages outdata\n"));
2753 up_read(¤t
->mm
->mmap_sem
);
2756 /* Add 6 to nooutpages to make room for possibly inserted buffers for storing digest and
2757 * csum output and splits when units are (dis-)connected. */
2758 cop
->tfrm_op
.indata
= kmalloc((noinpages
) * sizeof(struct iovec
), GFP_KERNEL
);
2759 cop
->tfrm_op
.outdata
= kmalloc((6 + nooutpages
) * sizeof(struct iovec
), GFP_KERNEL
);
2760 if (!cop
->tfrm_op
.indata
|| !cop
->tfrm_op
.outdata
) {
2761 DEBUG_API(printk("cryptocop_ioctl_process: kmalloc iovecs\n"));
2766 cop
->tfrm_op
.inlen
= oper
.inlen
- prev_ix
;
2767 cop
->tfrm_op
.outlen
= 0;
2768 if (oper
.do_cipher
) cop
->tfrm_op
.outlen
+= oper
.cipher_outlen
;
2769 if (oper
.do_digest
) cop
->tfrm_op
.outlen
+= digest_length
;
2770 if (oper
.do_csum
) cop
->tfrm_op
.outlen
+= 2;
2772 /* Setup the in iovecs. */
2773 cop
->tfrm_op
.incount
= noinpages
;
2775 size_t tmplen
= cop
->tfrm_op
.inlen
;
2777 cop
->tfrm_op
.indata
[0].iov_len
= PAGE_SIZE
- ((unsigned long int)(oper
.indata
+ prev_ix
) & ~PAGE_MASK
);
2778 cop
->tfrm_op
.indata
[0].iov_base
= (unsigned char*)page_address(inpages
[0]) + ((unsigned long int)(oper
.indata
+ prev_ix
) & ~PAGE_MASK
);
2779 tmplen
-= cop
->tfrm_op
.indata
[0].iov_len
;
2780 for (i
= 1; i
<noinpages
; i
++){
2781 cop
->tfrm_op
.indata
[i
].iov_len
= tmplen
< PAGE_SIZE
? tmplen
: PAGE_SIZE
;
2782 cop
->tfrm_op
.indata
[i
].iov_base
= (unsigned char*)page_address(inpages
[i
]);
2783 tmplen
-= PAGE_SIZE
;
2786 cop
->tfrm_op
.indata
[0].iov_len
= oper
.inlen
- prev_ix
;
2787 cop
->tfrm_op
.indata
[0].iov_base
= (unsigned char*)page_address(inpages
[0]) + ((unsigned long int)(oper
.indata
+ prev_ix
) & ~PAGE_MASK
);
2790 iovlen
= nooutpages
+ 6;
2791 pageoffset
= oper
.do_cipher
? ((unsigned long int)oper
.cipher_outdata
& ~PAGE_MASK
) : 0;
2793 next_ix
= next_cfg_change_ix(&oper
, prev_ix
);
2794 if (prev_ix
== next_ix
){
2795 DEBUG_API(printk("cryptocop_ioctl_process: length configuration broken.\n"));
2796 err
= -EINVAL
; /* This should be impossible barring bugs. */
2799 while (prev_ix
!= next_ix
){
2800 end_digest
= end_csum
= cipher_active
= digest_active
= csum_active
= 0;
2801 descs
[desc_ix
].cfg
= NULL
;
2802 descs
[desc_ix
].length
= next_ix
- prev_ix
;
2804 if (oper
.do_cipher
&& (oper
.cipher_start
< next_ix
) && (prev_ix
< (oper
.cipher_start
+ oper
.cipher_len
))) {
2805 dcfgs
[dcfg_ix
].tid
= CRYPTOCOP_IOCTL_CIPHER_TID
;
2806 dcfgs
[dcfg_ix
].src
= cryptocop_source_dma
;
2809 if (next_ix
== (oper
.cipher_start
+ oper
.cipher_len
)){
2811 dcfgs
[dcfg_ix
].last
= 1;
2813 dcfgs
[dcfg_ix
].last
= 0;
2815 dcfgs
[dcfg_ix
].next
= descs
[desc_ix
].cfg
;
2816 descs
[desc_ix
].cfg
= &dcfgs
[dcfg_ix
];
2819 if (oper
.do_digest
&& (oper
.digest_start
< next_ix
) && (prev_ix
< (oper
.digest_start
+ oper
.digest_len
))) {
2821 dcfgs
[dcfg_ix
].tid
= CRYPTOCOP_IOCTL_DIGEST_TID
;
2822 dcfgs
[dcfg_ix
].src
= cryptocop_source_dma
;
2823 if (next_ix
== (oper
.digest_start
+ oper
.digest_len
)){
2824 assert(!digest_done
);
2826 dcfgs
[dcfg_ix
].last
= 1;
2828 dcfgs
[dcfg_ix
].last
= 0;
2830 dcfgs
[dcfg_ix
].next
= descs
[desc_ix
].cfg
;
2831 descs
[desc_ix
].cfg
= &dcfgs
[dcfg_ix
];
2834 if (oper
.do_csum
&& (oper
.csum_start
< next_ix
) && (prev_ix
< (oper
.csum_start
+ oper
.csum_len
))){
2836 dcfgs
[dcfg_ix
].tid
= CRYPTOCOP_IOCTL_CSUM_TID
;
2837 dcfgs
[dcfg_ix
].src
= cryptocop_source_dma
;
2838 if (next_ix
== (oper
.csum_start
+ oper
.csum_len
)){
2840 dcfgs
[dcfg_ix
].last
= 1;
2842 dcfgs
[dcfg_ix
].last
= 0;
2844 dcfgs
[dcfg_ix
].next
= descs
[desc_ix
].cfg
;
2845 descs
[desc_ix
].cfg
= &dcfgs
[dcfg_ix
];
2848 if (!descs
[desc_ix
].cfg
){
2849 DEBUG_API(printk("cryptocop_ioctl_process: data segment %d (%d to %d) had no active transforms\n", desc_ix
, prev_ix
, next_ix
));
2853 descs
[desc_ix
].next
= &(descs
[desc_ix
]) + 1;
2856 next_ix
= next_cfg_change_ix(&oper
, prev_ix
);
2859 descs
[desc_ix
-1].next
= NULL
;
2861 descs
[0].next
= NULL
;
2863 if (oper
.do_digest
) {
2864 DEBUG(printk("cryptocop_ioctl_process: mapping %d byte digest output to iovec %d\n", digest_length
, iovix
));
2865 /* Add outdata iovec, length == <length of type of digest> */
2866 cop
->tfrm_op
.outdata
[iovix
].iov_base
= digest_result
;
2867 cop
->tfrm_op
.outdata
[iovix
].iov_len
= digest_length
;
2871 /* Add outdata iovec, length == 2, the length of csum. */
2872 DEBUG(printk("cryptocop_ioctl_process: mapping 2 byte csum output to iovec %d\n", iovix
));
2873 /* Add outdata iovec, length == <length of type of digest> */
2874 cop
->tfrm_op
.outdata
[iovix
].iov_base
= csum_result
;
2875 cop
->tfrm_op
.outdata
[iovix
].iov_len
= 2;
2878 if (oper
.do_cipher
) {
2879 if (!map_pages_to_iovec(cop
->tfrm_op
.outdata
, iovlen
, &iovix
, outpages
, nooutpages
, &pageix
, &pageoffset
, oper
.cipher_outlen
)){
2880 DEBUG_API(printk("cryptocop_ioctl_process: failed to map pages to iovec.\n"));
2881 err
= -ENOSYS
; /* This should be impossible barring bugs. */
2885 DEBUG(printk("cryptocop_ioctl_process: setting cop->tfrm_op.outcount %d\n", iovix
));
2886 cop
->tfrm_op
.outcount
= iovix
;
2887 assert(iovix
<= (nooutpages
+ 6));
2889 cop
->sid
= oper
.ses_id
;
2890 cop
->tfrm_op
.desc
= &descs
[0];
2892 DEBUG(printk("cryptocop_ioctl_process: inserting job, cb_data=0x%p\n", cop
->cb_data
));
2894 if ((err
= cryptocop_job_queue_insert_user_job(cop
)) != 0) {
2895 DEBUG_API(printk("cryptocop_ioctl_process: insert job %d\n", err
));
2900 DEBUG(printk("cryptocop_ioctl_process: begin wait for result\n"));
2902 wait_event(cryptocop_ioc_process_wq
, (jc
->processed
!= 0));
2903 DEBUG(printk("cryptocop_ioctl_process: end wait for result\n"));
2904 if (!jc
->processed
){
2905 printk(KERN_WARNING
"cryptocop_ioctl_process: job not processed at completion\n");
2910 /* Job process done. Cipher output should already be correct in job so no post processing of outdata. */
2911 DEBUG(printk("cryptocop_ioctl_process: operation_status = %d\n", cop
->operation_status
));
2912 if (cop
->operation_status
== 0){
2913 if (oper
.do_digest
){
2914 DEBUG(printk("cryptocop_ioctl_process: copy %d bytes digest to user\n", digest_length
));
2915 err
= copy_to_user((unsigned char*)crp_oper
+ offsetof(struct strcop_crypto_op
, digest
), digest_result
, digest_length
);
2917 DEBUG_API(printk("cryptocop_ioctl_process: copy_to_user, digest length %d, err %d\n", digest_length
, err
));
2923 DEBUG(printk("cryptocop_ioctl_process: copy 2 bytes checksum to user\n"));
2924 err
= copy_to_user((unsigned char*)crp_oper
+ offsetof(struct strcop_crypto_op
, csum
), csum_result
, 2);
2926 DEBUG_API(printk("cryptocop_ioctl_process: copy_to_user, csum, err %d\n", err
));
2933 DEBUG(printk("cryptocop_ioctl_process: returning err = operation_status = %d\n", cop
->operation_status
));
2934 err
= cop
->operation_status
;
2938 /* Release page caches. */
2939 for (i
= 0; i
< noinpages
; i
++){
2940 put_page(inpages
[i
]);
2942 for (i
= 0; i
< nooutpages
; i
++){
2944 /* Mark output pages dirty. */
2945 spdl_err
= set_page_dirty_lock(outpages
[i
]);
2946 DEBUG(if (spdl_err
< 0)printk("cryptocop_ioctl_process: set_page_dirty_lock returned %d\n", spdl_err
));
2948 for (i
= 0; i
< nooutpages
; i
++){
2949 put_page(outpages
[i
]);
2952 kfree(digest_result
);
2956 kfree(cop
->tfrm_op
.indata
);
2957 kfree(cop
->tfrm_op
.outdata
);
2962 DEBUG(print_lock_status());
2968 static int cryptocop_ioctl_create_session(struct inode
*inode
, struct file
*filp
, unsigned int cmd
, unsigned long arg
)
2970 cryptocop_session_id sid
;
2972 struct cryptocop_private
*dev
;
2973 struct strcop_session_op
*sess_op
= (struct strcop_session_op
*)arg
;
2974 struct strcop_session_op sop
;
2975 struct cryptocop_transform_init
*tis
= NULL
;
2976 struct cryptocop_transform_init ti_cipher
= {0};
2977 struct cryptocop_transform_init ti_digest
= {0};
2978 struct cryptocop_transform_init ti_csum
= {0};
2980 if (!access_ok(VERIFY_WRITE
, sess_op
, sizeof(struct strcop_session_op
)))
2982 err
= copy_from_user(&sop
, sess_op
, sizeof(struct strcop_session_op
));
2983 if (err
) return -EFAULT
;
2984 if (sop
.cipher
!= cryptocop_cipher_none
) {
2985 if (!access_ok(VERIFY_READ
, sop
.key
, sop
.keylen
)) return -EFAULT
;
2987 DEBUG(printk("cryptocop_ioctl_create_session, sess_op:\n"));
2989 DEBUG(printk("\tcipher:%d\n"
2990 "\tcipher_mode:%d\n"
2998 if (sop
.cipher
!= cryptocop_cipher_none
){
2999 /* Init the cipher. */
3000 switch (sop
.cipher
){
3001 case cryptocop_cipher_des
:
3002 ti_cipher
.alg
= cryptocop_alg_des
;
3004 case cryptocop_cipher_3des
:
3005 ti_cipher
.alg
= cryptocop_alg_3des
;
3007 case cryptocop_cipher_aes
:
3008 ti_cipher
.alg
= cryptocop_alg_aes
;
3011 DEBUG_API(printk("create session, bad cipher algorithm %d\n", sop
.cipher
));
3014 DEBUG(printk("setting cipher transform %d\n", ti_cipher
.alg
));
3015 copy_from_user(ti_cipher
.key
, sop
.key
, sop
.keylen
/8);
3016 ti_cipher
.keylen
= sop
.keylen
;
3018 case cryptocop_cipher_mode_cbc
:
3019 case cryptocop_cipher_mode_ecb
:
3020 ti_cipher
.cipher_mode
= sop
.cmode
;
3023 DEBUG_API(printk("create session, bad cipher mode %d\n", sop
.cmode
));
3026 DEBUG(printk("cryptocop_ioctl_create_session: setting CBC mode %d\n", ti_cipher
.cipher_mode
));
3027 switch (sop
.des3_mode
){
3028 case cryptocop_3des_eee
:
3029 case cryptocop_3des_eed
:
3030 case cryptocop_3des_ede
:
3031 case cryptocop_3des_edd
:
3032 case cryptocop_3des_dee
:
3033 case cryptocop_3des_ded
:
3034 case cryptocop_3des_dde
:
3035 case cryptocop_3des_ddd
:
3036 ti_cipher
.tdes_mode
= sop
.des3_mode
;
3039 DEBUG_API(printk("create session, bad 3DES mode %d\n", sop
.des3_mode
));
3042 ti_cipher
.tid
= CRYPTOCOP_IOCTL_CIPHER_TID
;
3043 ti_cipher
.next
= tis
;
3045 } /* if (sop.cipher != cryptocop_cipher_none) */
3046 if (sop
.digest
!= cryptocop_digest_none
){
3047 DEBUG(printk("setting digest transform\n"));
3048 switch (sop
.digest
){
3049 case cryptocop_digest_md5
:
3050 ti_digest
.alg
= cryptocop_alg_md5
;
3052 case cryptocop_digest_sha1
:
3053 ti_digest
.alg
= cryptocop_alg_sha1
;
3056 DEBUG_API(printk("create session, bad digest algorithm %d\n", sop
.digest
));
3059 ti_digest
.tid
= CRYPTOCOP_IOCTL_DIGEST_TID
;
3060 ti_digest
.next
= tis
;
3062 } /* if (sop.digest != cryptocop_digest_none) */
3063 if (sop
.csum
!= cryptocop_csum_none
){
3064 DEBUG(printk("setting csum transform\n"));
3066 case cryptocop_csum_le
:
3067 case cryptocop_csum_be
:
3068 ti_csum
.csum_mode
= sop
.csum
;
3071 DEBUG_API(printk("create session, bad checksum algorithm %d\n", sop
.csum
));
3074 ti_csum
.alg
= cryptocop_alg_csum
;
3075 ti_csum
.tid
= CRYPTOCOP_IOCTL_CSUM_TID
;
3078 } /* (sop.csum != cryptocop_csum_none) */
3079 dev
= kmalloc(sizeof(struct cryptocop_private
), GFP_KERNEL
);
3081 DEBUG_API(printk("create session, alloc dev\n"));
3085 err
= cryptocop_new_session(&sid
, tis
, GFP_KERNEL
);
3086 DEBUG({ if (err
) printk("create session, cryptocop_new_session %d\n", err
);});
3092 sess_op
->ses_id
= sid
;
3094 dev
->next
= filp
->private_data
;
3095 filp
->private_data
= dev
;
3100 static int cryptocop_ioctl(struct inode
*inode
, struct file
*filp
, unsigned int cmd
, unsigned long arg
)
3103 if (_IOC_TYPE(cmd
) != ETRAXCRYPTOCOP_IOCTYPE
) {
3104 DEBUG_API(printk("cryptocop_ioctl: wrong type\n"));
3107 if (_IOC_NR(cmd
) > CRYPTOCOP_IO_MAXNR
){
3110 /* Access check of the argument. Some commands, e.g. create session and process op,
3111 needs additional checks. Those are handled in the command handling functions. */
3112 if (_IOC_DIR(cmd
) & _IOC_READ
)
3113 err
= !access_ok(VERIFY_WRITE
, (void *)arg
, _IOC_SIZE(cmd
));
3114 else if (_IOC_DIR(cmd
) & _IOC_WRITE
)
3115 err
= !access_ok(VERIFY_READ
, (void *)arg
, _IOC_SIZE(cmd
));
3116 if (err
) return -EFAULT
;
3119 case CRYPTOCOP_IO_CREATE_SESSION
:
3120 return cryptocop_ioctl_create_session(inode
, filp
, cmd
, arg
);
3121 case CRYPTOCOP_IO_CLOSE_SESSION
:
3122 return cryptocop_ioctl_close_session(inode
, filp
, cmd
, arg
);
3123 case CRYPTOCOP_IO_PROCESS_OP
:
3124 return cryptocop_ioctl_process(inode
, filp
, cmd
, arg
);
3126 DEBUG_API(printk("cryptocop_ioctl: unknown command\n"));
3134 static void print_dma_descriptors(struct cryptocop_int_operation
*iop
)
3136 struct cryptocop_dma_desc
*cdesc_out
= iop
->cdesc_out
;
3137 struct cryptocop_dma_desc
*cdesc_in
= iop
->cdesc_in
;
3140 printk("print_dma_descriptors start\n");
3143 printk("\tsid: 0x%lld\n", iop
->sid
);
3145 printk("\tcdesc_out: 0x%p\n", iop
->cdesc_out
);
3146 printk("\tcdesc_in: 0x%p\n", iop
->cdesc_in
);
3147 printk("\tddesc_out: 0x%p\n", iop
->ddesc_out
);
3148 printk("\tddesc_in: 0x%p\n", iop
->ddesc_in
);
3150 printk("\niop->ctx_out: 0x%p phys: 0x%p\n", &iop
->ctx_out
, (char*)virt_to_phys(&iop
->ctx_out
));
3151 printk("\tnext: 0x%p\n"
3152 "\tsaved_data: 0x%p\n"
3153 "\tsaved_data_buf: 0x%p\n",
3155 iop
->ctx_out
.saved_data
,
3156 iop
->ctx_out
.saved_data_buf
);
3158 printk("\niop->ctx_in: 0x%p phys: 0x%p\n", &iop
->ctx_in
, (char*)virt_to_phys(&iop
->ctx_in
));
3159 printk("\tnext: 0x%p\n"
3160 "\tsaved_data: 0x%p\n"
3161 "\tsaved_data_buf: 0x%p\n",
3163 iop
->ctx_in
.saved_data
,
3164 iop
->ctx_in
.saved_data_buf
);
3169 printk("cdesc_out %d, desc=0x%p\n", i
, cdesc_out
->dma_descr
);
3170 printk("\n\tvirt_to_phys(desc): 0x%p\n", (char*)virt_to_phys(cdesc_out
->dma_descr
));
3171 td
= cdesc_out
->dma_descr
;
3172 printk("\n\tbuf: 0x%p\n"
3191 cdesc_out
= cdesc_out
->next
;
3197 printk("cdesc_in %d, desc=0x%p\n", i
, cdesc_in
->dma_descr
);
3198 printk("\n\tvirt_to_phys(desc): 0x%p\n", (char*)virt_to_phys(cdesc_in
->dma_descr
));
3199 td
= cdesc_in
->dma_descr
;
3200 printk("\n\tbuf: 0x%p\n"
3219 cdesc_in
= cdesc_in
->next
;
3223 printk("print_dma_descriptors end\n");
3227 static void print_strcop_crypto_op(struct strcop_crypto_op
*cop
)
3229 printk("print_strcop_crypto_op, 0x%p\n", cop
);
3232 printk("indata=0x%p\n"
3236 "cipher_explicit=%d\n"
3245 cop
->cipher_explicit
,
3248 cop
->cipher_outdata
,
3249 cop
->cipher_outlen
);
3251 printk("do_digest=%d\n"
3258 printk("do_csum=%d\n"
3266 static void print_cryptocop_operation(struct cryptocop_operation
*cop
)
3268 struct cryptocop_desc
*d
;
3269 struct cryptocop_tfrm_cfg
*tc
;
3270 struct cryptocop_desc_cfg
*dc
;
3273 printk("print_cryptocop_operation, cop=0x%p\n\n", cop
);
3274 printk("sid: %lld\n", cop
->sid
);
3275 printk("operation_status=%d\n"
3278 "fast_callback=%d\n",
3279 cop
->operation_status
,
3282 cop
->fast_callback
);
3284 if (cop
->use_dmalists
){
3285 print_user_dma_lists(&cop
->list_op
);
3287 printk("cop->tfrm_op\n"
3296 cop
->tfrm_op
.tfrm_cfg
,
3298 cop
->tfrm_op
.indata
,
3299 cop
->tfrm_op
.incount
,
3301 cop
->tfrm_op
.outdata
,
3302 cop
->tfrm_op
.outcount
,
3303 cop
->tfrm_op
.outlen
);
3305 tc
= cop
->tfrm_op
.tfrm_cfg
;
3307 printk("tfrm_cfg, 0x%p\n"
3319 d
= cop
->tfrm_op
.desc
;
3321 printk("\n======================desc, 0x%p\n"
3331 printk("=========desc_cfg, 0x%p\n"
3345 printk("\n====iniov\n");
3346 for (i
= 0; i
< cop
->tfrm_op
.incount
; i
++){
3347 printk("indata[%d]\n"
3351 cop
->tfrm_op
.indata
[i
].iov_base
,
3352 cop
->tfrm_op
.indata
[i
].iov_len
);
3354 printk("\n====outiov\n");
3355 for (i
= 0; i
< cop
->tfrm_op
.outcount
; i
++){
3356 printk("outdata[%d]\n"
3360 cop
->tfrm_op
.outdata
[i
].iov_base
,
3361 cop
->tfrm_op
.outdata
[i
].iov_len
);
3364 printk("------------end print_cryptocop_operation\n");
3368 static void print_user_dma_lists(struct cryptocop_dma_list_operation
*dma_op
)
3373 printk("print_user_dma_lists, dma_op=0x%p\n", dma_op
);
3375 printk("out_data_buf = 0x%p, phys_to_virt(out_data_buf) = 0x%p\n", dma_op
->out_data_buf
, phys_to_virt((unsigned long int)dma_op
->out_data_buf
));
3376 printk("in_data_buf = 0x%p, phys_to_virt(in_data_buf) = 0x%p\n", dma_op
->in_data_buf
, phys_to_virt((unsigned long int)dma_op
->in_data_buf
));
3378 printk("##############outlist\n");
3379 dd
= phys_to_virt((unsigned long int)dma_op
->outlist
);
3381 while (dd
!= NULL
) {
3382 printk("#%d phys_to_virt(desc) 0x%p\n", i
, dd
);
3383 printk("\n\tbuf: 0x%p\n"
3405 dd
= phys_to_virt((unsigned long int)dd
->next
);
3409 printk("##############inlist\n");
3410 dd
= phys_to_virt((unsigned long int)dma_op
->inlist
);
3412 while (dd
!= NULL
) {
3413 printk("#%d phys_to_virt(desc) 0x%p\n", i
, dd
);
3414 printk("\n\tbuf: 0x%p\n"
3436 dd
= phys_to_virt((unsigned long int)dd
->next
);
3442 static void print_lock_status(void)
3444 printk("**********************print_lock_status\n");
3445 printk("cryptocop_completed_jobs_lock %d\n", spin_is_locked(&cryptocop_completed_jobs_lock
));
3446 printk("cryptocop_job_queue_lock %d\n", spin_is_locked(&cryptocop_job_queue_lock
));
3447 printk("descr_pool_lock %d\n", spin_is_locked(&descr_pool_lock
));
3448 printk("cryptocop_sessions_lock %d\n", spin_is_locked(cryptocop_sessions_lock
));
3449 printk("running_job_lock %d\n", spin_is_locked(running_job_lock
));
3450 printk("cryptocop_process_lock %d\n", spin_is_locked(cryptocop_process_lock
));
3455 static const char cryptocop_name
[] = "ETRAX FS stream co-processor";
3457 static int init_stream_coprocessor(void)
3461 static int initialized
= 0;
3468 printk("ETRAX FS stream co-processor driver v0.01, (c) 2003 Axis Communications AB\n");
3470 err
= register_chrdev(CRYPTOCOP_MAJOR
, cryptocop_name
, &cryptocop_fops
);
3472 printk(KERN_ERR
"stream co-processor: could not get major number.\n");
3476 err
= init_cryptocop();
3478 (void)unregister_chrdev(CRYPTOCOP_MAJOR
, cryptocop_name
);
3481 err
= cryptocop_job_queue_init();
3483 release_cryptocop();
3484 (void)unregister_chrdev(CRYPTOCOP_MAJOR
, cryptocop_name
);
3487 /* Init the descriptor pool. */
3488 for (i
= 0; i
< CRYPTOCOP_DESCRIPTOR_POOL_SIZE
- 1; i
++) {
3489 descr_pool
[i
].from_pool
= 1;
3490 descr_pool
[i
].next
= &descr_pool
[i
+ 1];
3492 descr_pool
[i
].from_pool
= 1;
3493 descr_pool
[i
].next
= NULL
;
3494 descr_pool_free_list
= &descr_pool
[0];
3495 descr_pool_no_free
= CRYPTOCOP_DESCRIPTOR_POOL_SIZE
;
3497 spin_lock_init(&cryptocop_completed_jobs_lock
);
3498 spin_lock_init(&cryptocop_job_queue_lock
);
3499 spin_lock_init(&descr_pool_lock
);
3500 spin_lock_init(&cryptocop_sessions_lock
);
3501 spin_lock_init(&running_job_lock
);
3502 spin_lock_init(&cryptocop_process_lock
);
3504 cryptocop_sessions
= NULL
;
3507 cryptocop_running_job
= NULL
;
3509 printk("stream co-processor: init done.\n");
3513 static void __exit
exit_stream_coprocessor(void)
3515 release_cryptocop();
3516 cryptocop_job_queue_close();
3519 module_init(init_stream_coprocessor
);
3520 module_exit(exit_stream_coprocessor
);