2 * BRIEF MODULE DESCRIPTION
3 * Au1000 interrupt routines.
5 * Copyright 2001 MontaVista Software Inc.
6 * Author: MontaVista Software, Inc.
7 * ppopov@mvista.com or source@mvista.com
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
29 #include <linux/errno.h>
30 #include <linux/init.h>
31 #include <linux/irq.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/module.h>
34 #include <linux/signal.h>
35 #include <linux/sched.h>
36 #include <linux/types.h>
37 #include <linux/interrupt.h>
38 #include <linux/ioport.h>
39 #include <linux/timex.h>
40 #include <linux/slab.h>
41 #include <linux/random.h>
42 #include <linux/delay.h>
43 #include <linux/bitops.h>
45 #include <asm/bootinfo.h>
47 #include <asm/mipsregs.h>
48 #include <asm/system.h>
49 #include <asm/mach-au1x00/au1000.h>
50 #ifdef CONFIG_MIPS_PB1000
51 #include <asm/mach-pb1x00/pb1000.h>
56 /* note: prints function name for you */
57 #define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
59 #define DPRINTK(fmt, args...)
62 #define EXT_INTC0_REQ0 2 /* IP 2 */
63 #define EXT_INTC0_REQ1 3 /* IP 3 */
64 #define EXT_INTC1_REQ0 4 /* IP 4 */
65 #define EXT_INTC1_REQ1 5 /* IP 5 */
66 #define MIPS_TIMER_IP 7 /* IP 7 */
68 void (*board_init_irq
)(void);
70 static DEFINE_SPINLOCK(irq_lock
);
73 inline void local_enable_irq(unsigned int irq_nr
)
75 if (irq_nr
> AU1000_LAST_INTC0_INT
) {
76 au_writel(1<<(irq_nr
-32), IC1_MASKSET
);
77 au_writel(1<<(irq_nr
-32), IC1_WAKESET
);
80 au_writel(1<<irq_nr
, IC0_MASKSET
);
81 au_writel(1<<irq_nr
, IC0_WAKESET
);
87 inline void local_disable_irq(unsigned int irq_nr
)
89 if (irq_nr
> AU1000_LAST_INTC0_INT
) {
90 au_writel(1<<(irq_nr
-32), IC1_MASKCLR
);
91 au_writel(1<<(irq_nr
-32), IC1_WAKECLR
);
94 au_writel(1<<irq_nr
, IC0_MASKCLR
);
95 au_writel(1<<irq_nr
, IC0_WAKECLR
);
101 static inline void mask_and_ack_rise_edge_irq(unsigned int irq_nr
)
103 if (irq_nr
> AU1000_LAST_INTC0_INT
) {
104 au_writel(1<<(irq_nr
-32), IC1_RISINGCLR
);
105 au_writel(1<<(irq_nr
-32), IC1_MASKCLR
);
108 au_writel(1<<irq_nr
, IC0_RISINGCLR
);
109 au_writel(1<<irq_nr
, IC0_MASKCLR
);
115 static inline void mask_and_ack_fall_edge_irq(unsigned int irq_nr
)
117 if (irq_nr
> AU1000_LAST_INTC0_INT
) {
118 au_writel(1<<(irq_nr
-32), IC1_FALLINGCLR
);
119 au_writel(1<<(irq_nr
-32), IC1_MASKCLR
);
122 au_writel(1<<irq_nr
, IC0_FALLINGCLR
);
123 au_writel(1<<irq_nr
, IC0_MASKCLR
);
129 static inline void mask_and_ack_either_edge_irq(unsigned int irq_nr
)
131 /* This may assume that we don't get interrupts from
132 * both edges at once, or if we do, that we don't care.
134 if (irq_nr
> AU1000_LAST_INTC0_INT
) {
135 au_writel(1<<(irq_nr
-32), IC1_FALLINGCLR
);
136 au_writel(1<<(irq_nr
-32), IC1_RISINGCLR
);
137 au_writel(1<<(irq_nr
-32), IC1_MASKCLR
);
140 au_writel(1<<irq_nr
, IC0_FALLINGCLR
);
141 au_writel(1<<irq_nr
, IC0_RISINGCLR
);
142 au_writel(1<<irq_nr
, IC0_MASKCLR
);
148 static inline void mask_and_ack_level_irq(unsigned int irq_nr
)
151 local_disable_irq(irq_nr
);
153 #if defined(CONFIG_MIPS_PB1000)
154 if (irq_nr
== AU1000_GPIO_15
) {
155 au_writel(0x8000, PB1000_MDR
); /* ack int */
163 static void end_irq(unsigned int irq_nr
)
165 if (!(irq_desc
[irq_nr
].status
& (IRQ_DISABLED
|IRQ_INPROGRESS
))) {
166 local_enable_irq(irq_nr
);
168 #if defined(CONFIG_MIPS_PB1000)
169 if (irq_nr
== AU1000_GPIO_15
) {
170 au_writel(0x4000, PB1000_MDR
); /* enable int */
176 unsigned long save_local_and_disable(int controller
)
179 unsigned long flags
, mask
;
181 spin_lock_irqsave(&irq_lock
, flags
);
183 mask
= au_readl(IC1_MASKSET
);
184 for (i
=32; i
<64; i
++) {
185 local_disable_irq(i
);
189 mask
= au_readl(IC0_MASKSET
);
190 for (i
=0; i
<32; i
++) {
191 local_disable_irq(i
);
194 spin_unlock_irqrestore(&irq_lock
, flags
);
199 void restore_local_and_enable(int controller
, unsigned long mask
)
202 unsigned long flags
, new_mask
;
204 spin_lock_irqsave(&irq_lock
, flags
);
205 for (i
=0; i
<32; i
++) {
208 local_enable_irq(i
+32);
214 new_mask
= au_readl(IC1_MASKSET
);
216 new_mask
= au_readl(IC0_MASKSET
);
218 spin_unlock_irqrestore(&irq_lock
, flags
);
222 static struct irq_chip rise_edge_irq_type
= {
223 .name
= "Au1000 Rise Edge",
224 .ack
= mask_and_ack_rise_edge_irq
,
225 .mask
= local_disable_irq
,
226 .mask_ack
= mask_and_ack_rise_edge_irq
,
227 .unmask
= local_enable_irq
,
231 static struct irq_chip fall_edge_irq_type
= {
232 .name
= "Au1000 Fall Edge",
233 .ack
= mask_and_ack_fall_edge_irq
,
234 .mask
= local_disable_irq
,
235 .mask_ack
= mask_and_ack_fall_edge_irq
,
236 .unmask
= local_enable_irq
,
240 static struct irq_chip either_edge_irq_type
= {
241 .name
= "Au1000 Rise or Fall Edge",
242 .ack
= mask_and_ack_either_edge_irq
,
243 .mask
= local_disable_irq
,
244 .mask_ack
= mask_and_ack_either_edge_irq
,
245 .unmask
= local_enable_irq
,
249 static struct irq_chip level_irq_type
= {
250 .name
= "Au1000 Level",
251 .ack
= mask_and_ack_level_irq
,
252 .mask
= local_disable_irq
,
253 .mask_ack
= mask_and_ack_level_irq
,
254 .unmask
= local_enable_irq
,
259 void startup_match20_interrupt(irq_handler_t handler
)
261 struct irq_desc
*desc
= &irq_desc
[AU1000_TOY_MATCH2_INT
];
263 static struct irqaction action
;
264 memset(&action
, 0, sizeof(struct irqaction
));
266 /* This is a big problem.... since we didn't use request_irq
267 * when kernel/irq.c calls probe_irq_xxx this interrupt will
268 * be probed for usage. This will end up disabling the device :(
269 * Give it a bogus "action" pointer -- this will keep it from
270 * getting auto-probed!
272 * By setting the status to match that of request_irq() we
273 * can avoid it. --cgray
275 action
.dev_id
= handler
;
276 action
.flags
= IRQF_DISABLED
;
277 cpus_clear(action
.mask
);
278 action
.name
= "Au1xxx TOY";
279 action
.handler
= handler
;
282 desc
->action
= &action
;
283 desc
->status
&= ~(IRQ_DISABLED
| IRQ_AUTODETECT
| IRQ_WAITING
| IRQ_INPROGRESS
);
285 local_enable_irq(AU1000_TOY_MATCH2_INT
);
289 static void setup_local_irq(unsigned int irq_nr
, int type
, int int_req
)
291 if (irq_nr
> AU1000_MAX_INTR
) return;
292 /* Config2[n], Config1[n], Config0[n] */
293 if (irq_nr
> AU1000_LAST_INTC0_INT
) {
295 case INTC_INT_RISE_EDGE
: /* 0:0:1 */
296 au_writel(1<<(irq_nr
-32), IC1_CFG2CLR
);
297 au_writel(1<<(irq_nr
-32), IC1_CFG1CLR
);
298 au_writel(1<<(irq_nr
-32), IC1_CFG0SET
);
299 set_irq_chip(irq_nr
, &rise_edge_irq_type
);
301 case INTC_INT_FALL_EDGE
: /* 0:1:0 */
302 au_writel(1<<(irq_nr
-32), IC1_CFG2CLR
);
303 au_writel(1<<(irq_nr
-32), IC1_CFG1SET
);
304 au_writel(1<<(irq_nr
-32), IC1_CFG0CLR
);
305 set_irq_chip(irq_nr
, &fall_edge_irq_type
);
307 case INTC_INT_RISE_AND_FALL_EDGE
: /* 0:1:1 */
308 au_writel(1<<(irq_nr
-32), IC1_CFG2CLR
);
309 au_writel(1<<(irq_nr
-32), IC1_CFG1SET
);
310 au_writel(1<<(irq_nr
-32), IC1_CFG0SET
);
311 set_irq_chip(irq_nr
, &either_edge_irq_type
);
313 case INTC_INT_HIGH_LEVEL
: /* 1:0:1 */
314 au_writel(1<<(irq_nr
-32), IC1_CFG2SET
);
315 au_writel(1<<(irq_nr
-32), IC1_CFG1CLR
);
316 au_writel(1<<(irq_nr
-32), IC1_CFG0SET
);
317 set_irq_chip(irq_nr
, &level_irq_type
);
319 case INTC_INT_LOW_LEVEL
: /* 1:1:0 */
320 au_writel(1<<(irq_nr
-32), IC1_CFG2SET
);
321 au_writel(1<<(irq_nr
-32), IC1_CFG1SET
);
322 au_writel(1<<(irq_nr
-32), IC1_CFG0CLR
);
323 set_irq_chip(irq_nr
, &level_irq_type
);
325 case INTC_INT_DISABLED
: /* 0:0:0 */
326 au_writel(1<<(irq_nr
-32), IC1_CFG0CLR
);
327 au_writel(1<<(irq_nr
-32), IC1_CFG1CLR
);
328 au_writel(1<<(irq_nr
-32), IC1_CFG2CLR
);
330 default: /* disable the interrupt */
331 printk("unexpected int type %d (irq %d)\n", type
, irq_nr
);
332 au_writel(1<<(irq_nr
-32), IC1_CFG0CLR
);
333 au_writel(1<<(irq_nr
-32), IC1_CFG1CLR
);
334 au_writel(1<<(irq_nr
-32), IC1_CFG2CLR
);
337 if (int_req
) /* assign to interrupt request 1 */
338 au_writel(1<<(irq_nr
-32), IC1_ASSIGNCLR
);
339 else /* assign to interrupt request 0 */
340 au_writel(1<<(irq_nr
-32), IC1_ASSIGNSET
);
341 au_writel(1<<(irq_nr
-32), IC1_SRCSET
);
342 au_writel(1<<(irq_nr
-32), IC1_MASKCLR
);
343 au_writel(1<<(irq_nr
-32), IC1_WAKECLR
);
347 case INTC_INT_RISE_EDGE
: /* 0:0:1 */
348 au_writel(1<<irq_nr
, IC0_CFG2CLR
);
349 au_writel(1<<irq_nr
, IC0_CFG1CLR
);
350 au_writel(1<<irq_nr
, IC0_CFG0SET
);
351 set_irq_chip(irq_nr
, &rise_edge_irq_type
);
353 case INTC_INT_FALL_EDGE
: /* 0:1:0 */
354 au_writel(1<<irq_nr
, IC0_CFG2CLR
);
355 au_writel(1<<irq_nr
, IC0_CFG1SET
);
356 au_writel(1<<irq_nr
, IC0_CFG0CLR
);
357 set_irq_chip(irq_nr
, &fall_edge_irq_type
);
359 case INTC_INT_RISE_AND_FALL_EDGE
: /* 0:1:1 */
360 au_writel(1<<irq_nr
, IC0_CFG2CLR
);
361 au_writel(1<<irq_nr
, IC0_CFG1SET
);
362 au_writel(1<<irq_nr
, IC0_CFG0SET
);
363 set_irq_chip(irq_nr
, &either_edge_irq_type
);
365 case INTC_INT_HIGH_LEVEL
: /* 1:0:1 */
366 au_writel(1<<irq_nr
, IC0_CFG2SET
);
367 au_writel(1<<irq_nr
, IC0_CFG1CLR
);
368 au_writel(1<<irq_nr
, IC0_CFG0SET
);
369 set_irq_chip(irq_nr
, &level_irq_type
);
371 case INTC_INT_LOW_LEVEL
: /* 1:1:0 */
372 au_writel(1<<irq_nr
, IC0_CFG2SET
);
373 au_writel(1<<irq_nr
, IC0_CFG1SET
);
374 au_writel(1<<irq_nr
, IC0_CFG0CLR
);
375 set_irq_chip(irq_nr
, &level_irq_type
);
377 case INTC_INT_DISABLED
: /* 0:0:0 */
378 au_writel(1<<irq_nr
, IC0_CFG0CLR
);
379 au_writel(1<<irq_nr
, IC0_CFG1CLR
);
380 au_writel(1<<irq_nr
, IC0_CFG2CLR
);
382 default: /* disable the interrupt */
383 printk("unexpected int type %d (irq %d)\n", type
, irq_nr
);
384 au_writel(1<<irq_nr
, IC0_CFG0CLR
);
385 au_writel(1<<irq_nr
, IC0_CFG1CLR
);
386 au_writel(1<<irq_nr
, IC0_CFG2CLR
);
389 if (int_req
) /* assign to interrupt request 1 */
390 au_writel(1<<irq_nr
, IC0_ASSIGNCLR
);
391 else /* assign to interrupt request 0 */
392 au_writel(1<<irq_nr
, IC0_ASSIGNSET
);
393 au_writel(1<<irq_nr
, IC0_SRCSET
);
394 au_writel(1<<irq_nr
, IC0_MASKCLR
);
395 au_writel(1<<irq_nr
, IC0_WAKECLR
);
401 void __init
arch_init_irq(void)
404 unsigned long cp0_status
;
405 au1xxx_irq_map_t
*imp
;
406 extern au1xxx_irq_map_t au1xxx_irq_map
[];
407 extern au1xxx_irq_map_t au1xxx_ic0_map
[];
408 extern int au1xxx_nr_irqs
;
409 extern int au1xxx_ic0_nr_irqs
;
411 cp0_status
= read_c0_status();
413 /* Initialize interrupt controllers to a safe state.
415 au_writel(0xffffffff, IC0_CFG0CLR
);
416 au_writel(0xffffffff, IC0_CFG1CLR
);
417 au_writel(0xffffffff, IC0_CFG2CLR
);
418 au_writel(0xffffffff, IC0_MASKCLR
);
419 au_writel(0xffffffff, IC0_ASSIGNSET
);
420 au_writel(0xffffffff, IC0_WAKECLR
);
421 au_writel(0xffffffff, IC0_SRCSET
);
422 au_writel(0xffffffff, IC0_FALLINGCLR
);
423 au_writel(0xffffffff, IC0_RISINGCLR
);
424 au_writel(0x00000000, IC0_TESTBIT
);
426 au_writel(0xffffffff, IC1_CFG0CLR
);
427 au_writel(0xffffffff, IC1_CFG1CLR
);
428 au_writel(0xffffffff, IC1_CFG2CLR
);
429 au_writel(0xffffffff, IC1_MASKCLR
);
430 au_writel(0xffffffff, IC1_ASSIGNSET
);
431 au_writel(0xffffffff, IC1_WAKECLR
);
432 au_writel(0xffffffff, IC1_SRCSET
);
433 au_writel(0xffffffff, IC1_FALLINGCLR
);
434 au_writel(0xffffffff, IC1_RISINGCLR
);
435 au_writel(0x00000000, IC1_TESTBIT
);
437 /* Initialize IC0, which is fixed per processor.
439 imp
= au1xxx_ic0_map
;
440 for (i
=0; i
<au1xxx_ic0_nr_irqs
; i
++) {
441 setup_local_irq(imp
->im_irq
, imp
->im_type
, imp
->im_request
);
445 /* Now set up the irq mapping for the board.
447 imp
= au1xxx_irq_map
;
448 for (i
=0; i
<au1xxx_nr_irqs
; i
++) {
449 setup_local_irq(imp
->im_irq
, imp
->im_type
, imp
->im_request
);
453 set_c0_status(ALLINTS
);
455 /* Board specific IRQ initialization.
463 * Interrupts are nested. Even if an interrupt handler is registered
464 * as "fast", we might get another interrupt before we return from
465 * intcX_reqX_irqdispatch().
468 static void intc0_req0_irqdispatch(void)
471 static unsigned long intc0_req0
= 0;
473 intc0_req0
|= au_readl(IC0_REQ0INT
);
477 #ifdef AU1000_USB_DEV_REQ_INT
479 * Because of the tight timing of SETUP token to reply
480 * transactions, the USB devices-side packet complete
481 * interrupt needs the highest priority.
483 if ((intc0_req0
& (1<<AU1000_USB_DEV_REQ_INT
))) {
484 intc0_req0
&= ~(1<<AU1000_USB_DEV_REQ_INT
);
485 do_IRQ(AU1000_USB_DEV_REQ_INT
);
489 irq
= au_ffs(intc0_req0
) - 1;
490 intc0_req0
&= ~(1<<irq
);
495 static void intc0_req1_irqdispatch(void)
498 static unsigned long intc0_req1
= 0;
500 intc0_req1
|= au_readl(IC0_REQ1INT
);
505 irq
= au_ffs(intc0_req1
) - 1;
506 intc0_req1
&= ~(1<<irq
);
512 * Interrupt Controller 1:
515 static void intc1_req0_irqdispatch(void)
518 static unsigned long intc1_req0
= 0;
520 intc1_req0
|= au_readl(IC1_REQ0INT
);
525 irq
= au_ffs(intc1_req0
) - 1;
526 intc1_req0
&= ~(1<<irq
);
532 static void intc1_req1_irqdispatch(void)
535 static unsigned long intc1_req1
= 0;
537 intc1_req1
|= au_readl(IC1_REQ1INT
);
542 irq
= au_ffs(intc1_req1
) - 1;
543 intc1_req1
&= ~(1<<irq
);
550 /* Save/restore the interrupt controller state.
551 * Called from the save/restore core registers as part of the
552 * au_sleep function in power.c.....maybe I should just pm_register()
555 static unsigned int sleep_intctl_config0
[2];
556 static unsigned int sleep_intctl_config1
[2];
557 static unsigned int sleep_intctl_config2
[2];
558 static unsigned int sleep_intctl_src
[2];
559 static unsigned int sleep_intctl_assign
[2];
560 static unsigned int sleep_intctl_wake
[2];
561 static unsigned int sleep_intctl_mask
[2];
564 save_au1xxx_intctl(void)
566 sleep_intctl_config0
[0] = au_readl(IC0_CFG0RD
);
567 sleep_intctl_config1
[0] = au_readl(IC0_CFG1RD
);
568 sleep_intctl_config2
[0] = au_readl(IC0_CFG2RD
);
569 sleep_intctl_src
[0] = au_readl(IC0_SRCRD
);
570 sleep_intctl_assign
[0] = au_readl(IC0_ASSIGNRD
);
571 sleep_intctl_wake
[0] = au_readl(IC0_WAKERD
);
572 sleep_intctl_mask
[0] = au_readl(IC0_MASKRD
);
574 sleep_intctl_config0
[1] = au_readl(IC1_CFG0RD
);
575 sleep_intctl_config1
[1] = au_readl(IC1_CFG1RD
);
576 sleep_intctl_config2
[1] = au_readl(IC1_CFG2RD
);
577 sleep_intctl_src
[1] = au_readl(IC1_SRCRD
);
578 sleep_intctl_assign
[1] = au_readl(IC1_ASSIGNRD
);
579 sleep_intctl_wake
[1] = au_readl(IC1_WAKERD
);
580 sleep_intctl_mask
[1] = au_readl(IC1_MASKRD
);
583 /* For most restore operations, we clear the entire register and
584 * then set the bits we found during the save.
587 restore_au1xxx_intctl(void)
589 au_writel(0xffffffff, IC0_MASKCLR
); au_sync();
591 au_writel(0xffffffff, IC0_CFG0CLR
); au_sync();
592 au_writel(sleep_intctl_config0
[0], IC0_CFG0SET
); au_sync();
593 au_writel(0xffffffff, IC0_CFG1CLR
); au_sync();
594 au_writel(sleep_intctl_config1
[0], IC0_CFG1SET
); au_sync();
595 au_writel(0xffffffff, IC0_CFG2CLR
); au_sync();
596 au_writel(sleep_intctl_config2
[0], IC0_CFG2SET
); au_sync();
597 au_writel(0xffffffff, IC0_SRCCLR
); au_sync();
598 au_writel(sleep_intctl_src
[0], IC0_SRCSET
); au_sync();
599 au_writel(0xffffffff, IC0_ASSIGNCLR
); au_sync();
600 au_writel(sleep_intctl_assign
[0], IC0_ASSIGNSET
); au_sync();
601 au_writel(0xffffffff, IC0_WAKECLR
); au_sync();
602 au_writel(sleep_intctl_wake
[0], IC0_WAKESET
); au_sync();
603 au_writel(0xffffffff, IC0_RISINGCLR
); au_sync();
604 au_writel(0xffffffff, IC0_FALLINGCLR
); au_sync();
605 au_writel(0x00000000, IC0_TESTBIT
); au_sync();
607 au_writel(0xffffffff, IC1_MASKCLR
); au_sync();
609 au_writel(0xffffffff, IC1_CFG0CLR
); au_sync();
610 au_writel(sleep_intctl_config0
[1], IC1_CFG0SET
); au_sync();
611 au_writel(0xffffffff, IC1_CFG1CLR
); au_sync();
612 au_writel(sleep_intctl_config1
[1], IC1_CFG1SET
); au_sync();
613 au_writel(0xffffffff, IC1_CFG2CLR
); au_sync();
614 au_writel(sleep_intctl_config2
[1], IC1_CFG2SET
); au_sync();
615 au_writel(0xffffffff, IC1_SRCCLR
); au_sync();
616 au_writel(sleep_intctl_src
[1], IC1_SRCSET
); au_sync();
617 au_writel(0xffffffff, IC1_ASSIGNCLR
); au_sync();
618 au_writel(sleep_intctl_assign
[1], IC1_ASSIGNSET
); au_sync();
619 au_writel(0xffffffff, IC1_WAKECLR
); au_sync();
620 au_writel(sleep_intctl_wake
[1], IC1_WAKESET
); au_sync();
621 au_writel(0xffffffff, IC1_RISINGCLR
); au_sync();
622 au_writel(0xffffffff, IC1_FALLINGCLR
); au_sync();
623 au_writel(0x00000000, IC1_TESTBIT
); au_sync();
625 au_writel(sleep_intctl_mask
[1], IC1_MASKSET
); au_sync();
627 au_writel(sleep_intctl_mask
[0], IC0_MASKSET
); au_sync();
629 #endif /* CONFIG_PM */
631 asmlinkage
void plat_irq_dispatch(void)
633 unsigned int pending
= read_c0_status() & read_c0_cause() & ST0_IM
;
635 if (pending
& CAUSEF_IP7
)
637 else if (pending
& CAUSEF_IP2
)
638 intc0_req0_irqdispatch();
639 else if (pending
& CAUSEF_IP3
)
640 intc0_req1_irqdispatch();
641 else if (pending
& CAUSEF_IP4
)
642 intc1_req0_irqdispatch();
643 else if (pending
& CAUSEF_IP5
)
644 intc1_req1_irqdispatch();
646 spurious_interrupt();