[ALSA] cs4231-lib: replace common delay loop by function
[linux-2.6/verdex.git] / arch / mips / kernel / setup.c
bloba06a27d6cfcdef8050f57f48d31d933c00b9ddbc
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/cache.h>
28 #include <asm/cpu.h>
29 #include <asm/sections.h>
30 #include <asm/setup.h>
31 #include <asm/system.h>
33 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
35 EXPORT_SYMBOL(cpu_data);
37 #ifdef CONFIG_VT
38 struct screen_info screen_info;
39 #endif
42 * Despite it's name this variable is even if we don't have PCI
44 unsigned int PCI_DMA_BUS_IS_PHYS;
46 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49 * Setup information
51 * These are initialized so they are in the .data section
53 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
55 EXPORT_SYMBOL(mips_machtype);
57 struct boot_mem_map boot_mem_map;
59 static char command_line[CL_SIZE];
60 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63 * mips_io_port_base is the begin of the address space to which x86 style
64 * I/O ports are mapped.
66 const unsigned long mips_io_port_base __read_mostly = -1;
67 EXPORT_SYMBOL(mips_io_port_base);
70 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
71 * for the processor.
73 unsigned long isa_slot_offset;
74 EXPORT_SYMBOL(isa_slot_offset);
76 static struct resource code_resource = { .name = "Kernel code", };
77 static struct resource data_resource = { .name = "Kernel data", };
79 void __init add_memory_region(phys_t start, phys_t size, long type)
81 int x = boot_mem_map.nr_map;
82 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
84 /* Sanity check */
85 if (start + size < start) {
86 printk("Trying to add an invalid memory region, skipped\n");
87 return;
91 * Try to merge with previous entry if any. This is far less than
92 * perfect but is sufficient for most real world cases.
94 if (x && prev->addr + prev->size == start && prev->type == type) {
95 prev->size += size;
96 return;
99 if (x == BOOT_MEM_MAP_MAX) {
100 printk("Ooops! Too many entries in the memory map!\n");
101 return;
104 boot_mem_map.map[x].addr = start;
105 boot_mem_map.map[x].size = size;
106 boot_mem_map.map[x].type = type;
107 boot_mem_map.nr_map++;
110 static void __init print_memory_map(void)
112 int i;
113 const int field = 2 * sizeof(unsigned long);
115 for (i = 0; i < boot_mem_map.nr_map; i++) {
116 printk(" memory: %0*Lx @ %0*Lx ",
117 field, (unsigned long long) boot_mem_map.map[i].size,
118 field, (unsigned long long) boot_mem_map.map[i].addr);
120 switch (boot_mem_map.map[i].type) {
121 case BOOT_MEM_RAM:
122 printk("(usable)\n");
123 break;
124 case BOOT_MEM_ROM_DATA:
125 printk("(ROM data)\n");
126 break;
127 case BOOT_MEM_RESERVED:
128 printk("(reserved)\n");
129 break;
130 default:
131 printk("type %lu\n", boot_mem_map.map[i].type);
132 break;
138 * Manage initrd
140 #ifdef CONFIG_BLK_DEV_INITRD
142 static int __init rd_start_early(char *p)
144 unsigned long start = memparse(p, &p);
146 #ifdef CONFIG_64BIT
147 /* Guess if the sign extension was forgotten by bootloader */
148 if (start < XKPHYS)
149 start = (int)start;
150 #endif
151 initrd_start = start;
152 initrd_end += start;
153 return 0;
155 early_param("rd_start", rd_start_early);
157 static int __init rd_size_early(char *p)
159 initrd_end += memparse(p, &p);
160 return 0;
162 early_param("rd_size", rd_size_early);
164 /* it returns the next free pfn after initrd */
165 static unsigned long __init init_initrd(void)
167 unsigned long end;
168 u32 *initrd_header;
171 * Board specific code or command line parser should have
172 * already set up initrd_start and initrd_end. In these cases
173 * perfom sanity checks and use them if all looks good.
175 if (initrd_start && initrd_end > initrd_start)
176 goto sanitize;
179 * See if initrd has been added to the kernel image by
180 * arch/mips/boot/addinitrd.c. In that case a header is
181 * prepended to initrd and is made up by 8 bytes. The fisrt
182 * word is a magic number and the second one is the size of
183 * initrd. Initrd start must be page aligned in any cases.
185 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
186 if (initrd_header[0] != 0x494E5244)
187 goto disable;
188 initrd_start = (unsigned long)(initrd_header + 2);
189 initrd_end = initrd_start + initrd_header[1];
191 sanitize:
192 if (initrd_start & ~PAGE_MASK) {
193 printk(KERN_ERR "initrd start must be page aligned\n");
194 goto disable;
196 if (initrd_start < PAGE_OFFSET) {
197 printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
198 goto disable;
202 * Sanitize initrd addresses. For example firmware
203 * can't guess if they need to pass them through
204 * 64-bits values if the kernel has been built in pure
205 * 32-bit. We need also to switch from KSEG0 to XKPHYS
206 * addresses now, so the code can now safely use __pa().
208 end = __pa(initrd_end);
209 initrd_end = (unsigned long)__va(end);
210 initrd_start = (unsigned long)__va(__pa(initrd_start));
212 ROOT_DEV = Root_RAM0;
213 return PFN_UP(end);
214 disable:
215 initrd_start = 0;
216 initrd_end = 0;
217 return 0;
220 static void __init finalize_initrd(void)
222 unsigned long size = initrd_end - initrd_start;
224 if (size == 0) {
225 printk(KERN_INFO "Initrd not found or empty");
226 goto disable;
228 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
229 printk("Initrd extends beyond end of memory");
230 goto disable;
233 reserve_bootmem(__pa(initrd_start), size);
234 initrd_below_start_ok = 1;
236 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
237 initrd_start, size);
238 return;
239 disable:
240 printk(" - disabling initrd\n");
241 initrd_start = 0;
242 initrd_end = 0;
245 #else /* !CONFIG_BLK_DEV_INITRD */
247 static unsigned long __init init_initrd(void)
249 return 0;
252 #define finalize_initrd() do {} while (0)
254 #endif
257 * Initialize the bootmem allocator. It also setup initrd related data
258 * if needed.
260 #ifdef CONFIG_SGI_IP27
262 static void __init bootmem_init(void)
264 init_initrd();
265 finalize_initrd();
268 #else /* !CONFIG_SGI_IP27 */
270 static void __init bootmem_init(void)
272 unsigned long reserved_end;
273 unsigned long mapstart = ~0UL;
274 unsigned long bootmap_size;
275 int i;
278 * Init any data related to initrd. It's a nop if INITRD is
279 * not selected. Once that done we can determine the low bound
280 * of usable memory.
282 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
285 * max_low_pfn is not a number of pages. The number of pages
286 * of the system is given by 'max_low_pfn - min_low_pfn'.
288 min_low_pfn = ~0UL;
289 max_low_pfn = 0;
292 * Find the highest page frame number we have available.
294 for (i = 0; i < boot_mem_map.nr_map; i++) {
295 unsigned long start, end;
297 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
298 continue;
300 start = PFN_UP(boot_mem_map.map[i].addr);
301 end = PFN_DOWN(boot_mem_map.map[i].addr
302 + boot_mem_map.map[i].size);
304 if (end > max_low_pfn)
305 max_low_pfn = end;
306 if (start < min_low_pfn)
307 min_low_pfn = start;
308 if (end <= reserved_end)
309 continue;
310 if (start >= mapstart)
311 continue;
312 mapstart = max(reserved_end, start);
315 if (min_low_pfn >= max_low_pfn)
316 panic("Incorrect memory mapping !!!");
317 if (min_low_pfn > ARCH_PFN_OFFSET) {
318 printk(KERN_INFO
319 "Wasting %lu bytes for tracking %lu unused pages\n",
320 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
321 min_low_pfn - ARCH_PFN_OFFSET);
322 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
323 printk(KERN_INFO
324 "%lu free pages won't be used\n",
325 ARCH_PFN_OFFSET - min_low_pfn);
327 min_low_pfn = ARCH_PFN_OFFSET;
330 * Determine low and high memory ranges
332 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
333 #ifdef CONFIG_HIGHMEM
334 highstart_pfn = PFN_DOWN(HIGHMEM_START);
335 highend_pfn = max_low_pfn;
336 #endif
337 max_low_pfn = PFN_DOWN(HIGHMEM_START);
341 * Initialize the boot-time allocator with low memory only.
343 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
344 min_low_pfn, max_low_pfn);
346 * Register fully available low RAM pages with the bootmem allocator.
348 for (i = 0; i < boot_mem_map.nr_map; i++) {
349 unsigned long start, end, size;
352 * Reserve usable memory.
354 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
355 continue;
357 start = PFN_UP(boot_mem_map.map[i].addr);
358 end = PFN_DOWN(boot_mem_map.map[i].addr
359 + boot_mem_map.map[i].size);
361 * We are rounding up the start address of usable memory
362 * and at the end of the usable range downwards.
364 if (start >= max_low_pfn)
365 continue;
366 if (start < reserved_end)
367 start = reserved_end;
368 if (end > max_low_pfn)
369 end = max_low_pfn;
372 * ... finally, is the area going away?
374 if (end <= start)
375 continue;
376 size = end - start;
378 /* Register lowmem ranges */
379 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
380 memory_present(0, start, end);
384 * Reserve the bootmap memory.
386 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
389 * Reserve initrd memory if needed.
391 finalize_initrd();
394 #endif /* CONFIG_SGI_IP27 */
397 * arch_mem_init - initialize memory managment subsystem
399 * o plat_mem_setup() detects the memory configuration and will record detected
400 * memory areas using add_memory_region.
402 * At this stage the memory configuration of the system is known to the
403 * kernel but generic memory managment system is still entirely uninitialized.
405 * o bootmem_init()
406 * o sparse_init()
407 * o paging_init()
409 * At this stage the bootmem allocator is ready to use.
411 * NOTE: historically plat_mem_setup did the entire platform initialization.
412 * This was rather impractical because it meant plat_mem_setup had to
413 * get away without any kind of memory allocator. To keep old code from
414 * breaking plat_setup was just renamed to plat_setup and a second platform
415 * initialization hook for anything else was introduced.
418 static int usermem __initdata = 0;
420 static int __init early_parse_mem(char *p)
422 unsigned long start, size;
425 * If a user specifies memory size, we
426 * blow away any automatically generated
427 * size.
429 if (usermem == 0) {
430 boot_mem_map.nr_map = 0;
431 usermem = 1;
433 start = 0;
434 size = memparse(p, &p);
435 if (*p == '@')
436 start = memparse(p + 1, &p);
438 add_memory_region(start, size, BOOT_MEM_RAM);
439 return 0;
441 early_param("mem", early_parse_mem);
443 static void __init arch_mem_init(char **cmdline_p)
445 extern void plat_mem_setup(void);
447 /* call board setup routine */
448 plat_mem_setup();
450 printk("Determined physical RAM map:\n");
451 print_memory_map();
453 strlcpy(command_line, arcs_cmdline, sizeof(command_line));
454 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
456 *cmdline_p = command_line;
458 parse_early_param();
460 if (usermem) {
461 printk("User-defined physical RAM map:\n");
462 print_memory_map();
465 bootmem_init();
466 sparse_init();
467 paging_init();
470 static void __init resource_init(void)
472 int i;
474 if (UNCAC_BASE != IO_BASE)
475 return;
477 code_resource.start = __pa_symbol(&_text);
478 code_resource.end = __pa_symbol(&_etext) - 1;
479 data_resource.start = __pa_symbol(&_etext);
480 data_resource.end = __pa_symbol(&_edata) - 1;
483 * Request address space for all standard RAM.
485 for (i = 0; i < boot_mem_map.nr_map; i++) {
486 struct resource *res;
487 unsigned long start, end;
489 start = boot_mem_map.map[i].addr;
490 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
491 if (start >= HIGHMEM_START)
492 continue;
493 if (end >= HIGHMEM_START)
494 end = HIGHMEM_START - 1;
496 res = alloc_bootmem(sizeof(struct resource));
497 switch (boot_mem_map.map[i].type) {
498 case BOOT_MEM_RAM:
499 case BOOT_MEM_ROM_DATA:
500 res->name = "System RAM";
501 break;
502 case BOOT_MEM_RESERVED:
503 default:
504 res->name = "reserved";
507 res->start = start;
508 res->end = end;
510 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
511 request_resource(&iomem_resource, res);
514 * We don't know which RAM region contains kernel data,
515 * so we try it repeatedly and let the resource manager
516 * test it.
518 request_resource(res, &code_resource);
519 request_resource(res, &data_resource);
523 void __init setup_arch(char **cmdline_p)
525 cpu_probe();
526 prom_init();
528 #ifdef CONFIG_EARLY_PRINTK
530 extern void setup_early_printk(void);
532 setup_early_printk();
534 #endif
535 cpu_report();
537 #if defined(CONFIG_VT)
538 #if defined(CONFIG_VGA_CONSOLE)
539 conswitchp = &vga_con;
540 #elif defined(CONFIG_DUMMY_CONSOLE)
541 conswitchp = &dummy_con;
542 #endif
543 #endif
545 arch_mem_init(cmdline_p);
547 resource_init();
548 #ifdef CONFIG_SMP
549 plat_smp_setup();
550 #endif
553 static int __init fpu_disable(char *s)
555 int i;
557 for (i = 0; i < NR_CPUS; i++)
558 cpu_data[i].options &= ~MIPS_CPU_FPU;
560 return 1;
563 __setup("nofpu", fpu_disable);
565 static int __init dsp_disable(char *s)
567 cpu_data[0].ases &= ~MIPS_ASE_DSP;
569 return 1;
572 __setup("nodsp", dsp_disable);
574 unsigned long kernelsp[NR_CPUS];
575 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
577 #ifdef CONFIG_DEBUG_FS
578 struct dentry *mips_debugfs_dir;
579 static int __init debugfs_mips(void)
581 struct dentry *d;
583 d = debugfs_create_dir("mips", NULL);
584 if (IS_ERR(d))
585 return PTR_ERR(d);
586 mips_debugfs_dir = d;
587 return 0;
589 arch_initcall(debugfs_mips);
590 #endif