[ALSA] cs4231-lib: replace common delay loop by function
[linux-2.6/verdex.git] / arch / mips / kernel / traps.c
blob632bce1bf420c51c2925fad5d44148b59145585e
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
14 #include <linux/bug.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/types.h>
43 #include <asm/stacktrace.h>
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_ri_rdhwr_vivt(void);
57 extern asmlinkage void handle_ri_rdhwr(void);
58 extern asmlinkage void handle_cpu(void);
59 extern asmlinkage void handle_ov(void);
60 extern asmlinkage void handle_tr(void);
61 extern asmlinkage void handle_fpe(void);
62 extern asmlinkage void handle_mdmx(void);
63 extern asmlinkage void handle_watch(void);
64 extern asmlinkage void handle_mt(void);
65 extern asmlinkage void handle_dsp(void);
66 extern asmlinkage void handle_mcheck(void);
67 extern asmlinkage void handle_reserved(void);
69 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
70 struct mips_fpu_struct *ctx, int has_fpu);
72 void (*board_watchpoint_handler)(struct pt_regs *regs);
73 void (*board_be_init)(void);
74 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
75 void (*board_nmi_handler_setup)(void);
76 void (*board_ejtag_handler_setup)(void);
77 void (*board_bind_eic_interrupt)(int irq, int regset);
80 static void show_raw_backtrace(unsigned long reg29)
82 unsigned long *sp = (unsigned long *)reg29;
83 unsigned long addr;
85 printk("Call Trace:");
86 #ifdef CONFIG_KALLSYMS
87 printk("\n");
88 #endif
89 while (!kstack_end(sp)) {
90 addr = *sp++;
91 if (__kernel_text_address(addr))
92 print_ip_sym(addr);
94 printk("\n");
97 #ifdef CONFIG_KALLSYMS
98 int raw_show_trace;
99 static int __init set_raw_show_trace(char *str)
101 raw_show_trace = 1;
102 return 1;
104 __setup("raw_show_trace", set_raw_show_trace);
105 #endif
107 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
109 unsigned long sp = regs->regs[29];
110 unsigned long ra = regs->regs[31];
111 unsigned long pc = regs->cp0_epc;
113 if (raw_show_trace || !__kernel_text_address(pc)) {
114 show_raw_backtrace(sp);
115 return;
117 printk("Call Trace:\n");
118 do {
119 print_ip_sym(pc);
120 pc = unwind_stack(task, &sp, pc, &ra);
121 } while (pc);
122 printk("\n");
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
129 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
131 const int field = 2 * sizeof(unsigned long);
132 long stackdata;
133 int i;
134 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
136 printk("Stack :");
137 i = 0;
138 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
139 if (i && ((i % (64 / field)) == 0))
140 printk("\n ");
141 if (i > 39) {
142 printk(" ...");
143 break;
146 if (__get_user(stackdata, sp++)) {
147 printk(" (Bad stack address)");
148 break;
151 printk(" %0*lx", field, stackdata);
152 i++;
154 printk("\n");
155 show_backtrace(task, regs);
158 void show_stack(struct task_struct *task, unsigned long *sp)
160 struct pt_regs regs;
161 if (sp) {
162 regs.regs[29] = (unsigned long)sp;
163 regs.regs[31] = 0;
164 regs.cp0_epc = 0;
165 } else {
166 if (task && task != current) {
167 regs.regs[29] = task->thread.reg29;
168 regs.regs[31] = 0;
169 regs.cp0_epc = task->thread.reg31;
170 } else {
171 prepare_frametrace(&regs);
174 show_stacktrace(task, &regs);
178 * The architecture-independent dump_stack generator
180 void dump_stack(void)
182 struct pt_regs regs;
184 prepare_frametrace(&regs);
185 show_backtrace(current, &regs);
188 EXPORT_SYMBOL(dump_stack);
190 static void show_code(unsigned int __user *pc)
192 long i;
194 printk("\nCode:");
196 for(i = -3 ; i < 6 ; i++) {
197 unsigned int insn;
198 if (__get_user(insn, pc + i)) {
199 printk(" (Bad address in epc)\n");
200 break;
202 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
206 void show_regs(struct pt_regs *regs)
208 const int field = 2 * sizeof(unsigned long);
209 unsigned int cause = regs->cp0_cause;
210 int i;
212 printk("Cpu %d\n", smp_processor_id());
215 * Saved main processor registers
217 for (i = 0; i < 32; ) {
218 if ((i % 4) == 0)
219 printk("$%2d :", i);
220 if (i == 0)
221 printk(" %0*lx", field, 0UL);
222 else if (i == 26 || i == 27)
223 printk(" %*s", field, "");
224 else
225 printk(" %0*lx", field, regs->regs[i]);
227 i++;
228 if ((i % 4) == 0)
229 printk("\n");
232 #ifdef CONFIG_CPU_HAS_SMARTMIPS
233 printk("Acx : %0*lx\n", field, regs->acx);
234 #endif
235 printk("Hi : %0*lx\n", field, regs->hi);
236 printk("Lo : %0*lx\n", field, regs->lo);
239 * Saved cp0 registers
241 printk("epc : %0*lx ", field, regs->cp0_epc);
242 print_symbol("%s ", regs->cp0_epc);
243 printk(" %s\n", print_tainted());
244 printk("ra : %0*lx ", field, regs->regs[31]);
245 print_symbol("%s\n", regs->regs[31]);
247 printk("Status: %08x ", (uint32_t) regs->cp0_status);
249 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
250 if (regs->cp0_status & ST0_KUO)
251 printk("KUo ");
252 if (regs->cp0_status & ST0_IEO)
253 printk("IEo ");
254 if (regs->cp0_status & ST0_KUP)
255 printk("KUp ");
256 if (regs->cp0_status & ST0_IEP)
257 printk("IEp ");
258 if (regs->cp0_status & ST0_KUC)
259 printk("KUc ");
260 if (regs->cp0_status & ST0_IEC)
261 printk("IEc ");
262 } else {
263 if (regs->cp0_status & ST0_KX)
264 printk("KX ");
265 if (regs->cp0_status & ST0_SX)
266 printk("SX ");
267 if (regs->cp0_status & ST0_UX)
268 printk("UX ");
269 switch (regs->cp0_status & ST0_KSU) {
270 case KSU_USER:
271 printk("USER ");
272 break;
273 case KSU_SUPERVISOR:
274 printk("SUPERVISOR ");
275 break;
276 case KSU_KERNEL:
277 printk("KERNEL ");
278 break;
279 default:
280 printk("BAD_MODE ");
281 break;
283 if (regs->cp0_status & ST0_ERL)
284 printk("ERL ");
285 if (regs->cp0_status & ST0_EXL)
286 printk("EXL ");
287 if (regs->cp0_status & ST0_IE)
288 printk("IE ");
290 printk("\n");
292 printk("Cause : %08x\n", cause);
294 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
295 if (1 <= cause && cause <= 5)
296 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
298 printk("PrId : %08x (%s)\n", read_c0_prid(),
299 cpu_name_string());
302 void show_registers(struct pt_regs *regs)
304 show_regs(regs);
305 print_modules();
306 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
307 current->comm, current->pid, current_thread_info(), current);
308 show_stacktrace(current, regs);
309 show_code((unsigned int __user *) regs->cp0_epc);
310 printk("\n");
313 static DEFINE_SPINLOCK(die_lock);
315 void __noreturn die(const char * str, struct pt_regs * regs)
317 static int die_counter;
318 #ifdef CONFIG_MIPS_MT_SMTC
319 unsigned long dvpret = dvpe();
320 #endif /* CONFIG_MIPS_MT_SMTC */
322 console_verbose();
323 spin_lock_irq(&die_lock);
324 bust_spinlocks(1);
325 #ifdef CONFIG_MIPS_MT_SMTC
326 mips_mt_regdump(dvpret);
327 #endif /* CONFIG_MIPS_MT_SMTC */
328 printk("%s[#%d]:\n", str, ++die_counter);
329 show_registers(regs);
330 add_taint(TAINT_DIE);
331 spin_unlock_irq(&die_lock);
333 if (in_interrupt())
334 panic("Fatal exception in interrupt");
336 if (panic_on_oops) {
337 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
338 ssleep(5);
339 panic("Fatal exception");
342 do_exit(SIGSEGV);
345 extern const struct exception_table_entry __start___dbe_table[];
346 extern const struct exception_table_entry __stop___dbe_table[];
348 __asm__(
349 " .section __dbe_table, \"a\"\n"
350 " .previous \n");
352 /* Given an address, look for it in the exception tables. */
353 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
355 const struct exception_table_entry *e;
357 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
358 if (!e)
359 e = search_module_dbetables(addr);
360 return e;
363 asmlinkage void do_be(struct pt_regs *regs)
365 const int field = 2 * sizeof(unsigned long);
366 const struct exception_table_entry *fixup = NULL;
367 int data = regs->cp0_cause & 4;
368 int action = MIPS_BE_FATAL;
370 /* XXX For now. Fixme, this searches the wrong table ... */
371 if (data && !user_mode(regs))
372 fixup = search_dbe_tables(exception_epc(regs));
374 if (fixup)
375 action = MIPS_BE_FIXUP;
377 if (board_be_handler)
378 action = board_be_handler(regs, fixup != NULL);
380 switch (action) {
381 case MIPS_BE_DISCARD:
382 return;
383 case MIPS_BE_FIXUP:
384 if (fixup) {
385 regs->cp0_epc = fixup->nextinsn;
386 return;
388 break;
389 default:
390 break;
394 * Assume it would be too dangerous to continue ...
396 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
397 data ? "Data" : "Instruction",
398 field, regs->cp0_epc, field, regs->regs[31]);
399 die_if_kernel("Oops", regs);
400 force_sig(SIGBUS, current);
404 * ll/sc emulation
407 #define OPCODE 0xfc000000
408 #define BASE 0x03e00000
409 #define RT 0x001f0000
410 #define OFFSET 0x0000ffff
411 #define LL 0xc0000000
412 #define SC 0xe0000000
413 #define SPEC3 0x7c000000
414 #define RD 0x0000f800
415 #define FUNC 0x0000003f
416 #define RDHWR 0x0000003b
419 * The ll_bit is cleared by r*_switch.S
422 unsigned long ll_bit;
424 static struct task_struct *ll_task = NULL;
426 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
428 unsigned long value, __user *vaddr;
429 long offset;
430 int signal = 0;
433 * analyse the ll instruction that just caused a ri exception
434 * and put the referenced address to addr.
437 /* sign extend offset */
438 offset = opcode & OFFSET;
439 offset <<= 16;
440 offset >>= 16;
442 vaddr = (unsigned long __user *)
443 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
445 if ((unsigned long)vaddr & 3) {
446 signal = SIGBUS;
447 goto sig;
449 if (get_user(value, vaddr)) {
450 signal = SIGSEGV;
451 goto sig;
454 preempt_disable();
456 if (ll_task == NULL || ll_task == current) {
457 ll_bit = 1;
458 } else {
459 ll_bit = 0;
461 ll_task = current;
463 preempt_enable();
465 compute_return_epc(regs);
467 regs->regs[(opcode & RT) >> 16] = value;
469 return;
471 sig:
472 force_sig(signal, current);
475 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
477 unsigned long __user *vaddr;
478 unsigned long reg;
479 long offset;
480 int signal = 0;
483 * analyse the sc instruction that just caused a ri exception
484 * and put the referenced address to addr.
487 /* sign extend offset */
488 offset = opcode & OFFSET;
489 offset <<= 16;
490 offset >>= 16;
492 vaddr = (unsigned long __user *)
493 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
494 reg = (opcode & RT) >> 16;
496 if ((unsigned long)vaddr & 3) {
497 signal = SIGBUS;
498 goto sig;
501 preempt_disable();
503 if (ll_bit == 0 || ll_task != current) {
504 compute_return_epc(regs);
505 regs->regs[reg] = 0;
506 preempt_enable();
507 return;
510 preempt_enable();
512 if (put_user(regs->regs[reg], vaddr)) {
513 signal = SIGSEGV;
514 goto sig;
517 compute_return_epc(regs);
518 regs->regs[reg] = 1;
520 return;
522 sig:
523 force_sig(signal, current);
527 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
528 * opcodes are supposed to result in coprocessor unusable exceptions if
529 * executed on ll/sc-less processors. That's the theory. In practice a
530 * few processors such as NEC's VR4100 throw reserved instruction exceptions
531 * instead, so we're doing the emulation thing in both exception handlers.
533 static inline int simulate_llsc(struct pt_regs *regs)
535 unsigned int opcode;
537 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
538 goto out_sigsegv;
540 if ((opcode & OPCODE) == LL) {
541 simulate_ll(regs, opcode);
542 return 0;
544 if ((opcode & OPCODE) == SC) {
545 simulate_sc(regs, opcode);
546 return 0;
549 return -EFAULT; /* Strange things going on ... */
551 out_sigsegv:
552 force_sig(SIGSEGV, current);
553 return -EFAULT;
557 * Simulate trapping 'rdhwr' instructions to provide user accessible
558 * registers not implemented in hardware. The only current use of this
559 * is the thread area pointer.
561 static inline int simulate_rdhwr(struct pt_regs *regs)
563 struct thread_info *ti = task_thread_info(current);
564 unsigned int opcode;
566 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
567 goto out_sigsegv;
569 if (unlikely(compute_return_epc(regs)))
570 return -EFAULT;
572 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
573 int rd = (opcode & RD) >> 11;
574 int rt = (opcode & RT) >> 16;
575 switch (rd) {
576 case 29:
577 regs->regs[rt] = ti->tp_value;
578 return 0;
579 default:
580 return -EFAULT;
584 /* Not ours. */
585 return -EFAULT;
587 out_sigsegv:
588 force_sig(SIGSEGV, current);
589 return -EFAULT;
592 asmlinkage void do_ov(struct pt_regs *regs)
594 siginfo_t info;
596 die_if_kernel("Integer overflow", regs);
598 info.si_code = FPE_INTOVF;
599 info.si_signo = SIGFPE;
600 info.si_errno = 0;
601 info.si_addr = (void __user *) regs->cp0_epc;
602 force_sig_info(SIGFPE, &info, current);
606 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
608 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
610 siginfo_t info;
612 die_if_kernel("FP exception in kernel code", regs);
614 if (fcr31 & FPU_CSR_UNI_X) {
615 int sig;
618 * Unimplemented operation exception. If we've got the full
619 * software emulator on-board, let's use it...
621 * Force FPU to dump state into task/thread context. We're
622 * moving a lot of data here for what is probably a single
623 * instruction, but the alternative is to pre-decode the FP
624 * register operands before invoking the emulator, which seems
625 * a bit extreme for what should be an infrequent event.
627 /* Ensure 'resume' not overwrite saved fp context again. */
628 lose_fpu(1);
630 /* Run the emulator */
631 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1);
634 * We can't allow the emulated instruction to leave any of
635 * the cause bit set in $fcr31.
637 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
639 /* Restore the hardware register state */
640 own_fpu(1); /* Using the FPU again. */
642 /* If something went wrong, signal */
643 if (sig)
644 force_sig(sig, current);
646 return;
647 } else if (fcr31 & FPU_CSR_INV_X)
648 info.si_code = FPE_FLTINV;
649 else if (fcr31 & FPU_CSR_DIV_X)
650 info.si_code = FPE_FLTDIV;
651 else if (fcr31 & FPU_CSR_OVF_X)
652 info.si_code = FPE_FLTOVF;
653 else if (fcr31 & FPU_CSR_UDF_X)
654 info.si_code = FPE_FLTUND;
655 else if (fcr31 & FPU_CSR_INE_X)
656 info.si_code = FPE_FLTRES;
657 else
658 info.si_code = __SI_FAULT;
659 info.si_signo = SIGFPE;
660 info.si_errno = 0;
661 info.si_addr = (void __user *) regs->cp0_epc;
662 force_sig_info(SIGFPE, &info, current);
665 asmlinkage void do_bp(struct pt_regs *regs)
667 unsigned int opcode, bcode;
668 siginfo_t info;
670 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
671 goto out_sigsegv;
674 * There is the ancient bug in the MIPS assemblers that the break
675 * code starts left to bit 16 instead to bit 6 in the opcode.
676 * Gas is bug-compatible, but not always, grrr...
677 * We handle both cases with a simple heuristics. --macro
679 bcode = ((opcode >> 6) & ((1 << 20) - 1));
680 if (bcode < (1 << 10))
681 bcode <<= 10;
684 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
685 * insns, even for break codes that indicate arithmetic failures.
686 * Weird ...)
687 * But should we continue the brokenness??? --macro
689 switch (bcode) {
690 case BRK_OVERFLOW << 10:
691 case BRK_DIVZERO << 10:
692 die_if_kernel("Break instruction in kernel code", regs);
693 if (bcode == (BRK_DIVZERO << 10))
694 info.si_code = FPE_INTDIV;
695 else
696 info.si_code = FPE_INTOVF;
697 info.si_signo = SIGFPE;
698 info.si_errno = 0;
699 info.si_addr = (void __user *) regs->cp0_epc;
700 force_sig_info(SIGFPE, &info, current);
701 break;
702 case BRK_BUG:
703 die("Kernel bug detected", regs);
704 break;
705 default:
706 die_if_kernel("Break instruction in kernel code", regs);
707 force_sig(SIGTRAP, current);
709 return;
711 out_sigsegv:
712 force_sig(SIGSEGV, current);
715 asmlinkage void do_tr(struct pt_regs *regs)
717 unsigned int opcode, tcode = 0;
718 siginfo_t info;
720 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
721 goto out_sigsegv;
723 /* Immediate versions don't provide a code. */
724 if (!(opcode & OPCODE))
725 tcode = ((opcode >> 6) & ((1 << 10) - 1));
728 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
729 * insns, even for trap codes that indicate arithmetic failures.
730 * Weird ...)
731 * But should we continue the brokenness??? --macro
733 switch (tcode) {
734 case BRK_OVERFLOW:
735 case BRK_DIVZERO:
736 die_if_kernel("Trap instruction in kernel code", regs);
737 if (tcode == BRK_DIVZERO)
738 info.si_code = FPE_INTDIV;
739 else
740 info.si_code = FPE_INTOVF;
741 info.si_signo = SIGFPE;
742 info.si_errno = 0;
743 info.si_addr = (void __user *) regs->cp0_epc;
744 force_sig_info(SIGFPE, &info, current);
745 break;
746 case BRK_BUG:
747 die("Kernel bug detected", regs);
748 break;
749 default:
750 die_if_kernel("Trap instruction in kernel code", regs);
751 force_sig(SIGTRAP, current);
753 return;
755 out_sigsegv:
756 force_sig(SIGSEGV, current);
759 asmlinkage void do_ri(struct pt_regs *regs)
761 die_if_kernel("Reserved instruction in kernel code", regs);
763 if (!cpu_has_llsc)
764 if (!simulate_llsc(regs))
765 return;
767 if (!simulate_rdhwr(regs))
768 return;
770 force_sig(SIGILL, current);
774 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
775 * emulated more than some threshold number of instructions, force migration to
776 * a "CPU" that has FP support.
778 static void mt_ase_fp_affinity(void)
780 #ifdef CONFIG_MIPS_MT_FPAFF
781 if (mt_fpemul_threshold > 0 &&
782 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
784 * If there's no FPU present, or if the application has already
785 * restricted the allowed set to exclude any CPUs with FPUs,
786 * we'll skip the procedure.
788 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
789 cpumask_t tmask;
791 cpus_and(tmask, current->thread.user_cpus_allowed,
792 mt_fpu_cpumask);
793 set_cpus_allowed(current, tmask);
794 set_thread_flag(TIF_FPUBOUND);
797 #endif /* CONFIG_MIPS_MT_FPAFF */
800 asmlinkage void do_cpu(struct pt_regs *regs)
802 unsigned int cpid;
804 die_if_kernel("do_cpu invoked from kernel context!", regs);
806 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
808 switch (cpid) {
809 case 0:
810 if (!cpu_has_llsc)
811 if (!simulate_llsc(regs))
812 return;
814 if (!simulate_rdhwr(regs))
815 return;
817 break;
819 case 1:
820 if (used_math()) /* Using the FPU again. */
821 own_fpu(1);
822 else { /* First time FPU user. */
823 init_fpu();
824 set_used_math();
827 if (!raw_cpu_has_fpu) {
828 int sig;
829 sig = fpu_emulator_cop1Handler(regs,
830 &current->thread.fpu, 0);
831 if (sig)
832 force_sig(sig, current);
833 else
834 mt_ase_fp_affinity();
837 return;
839 case 2:
840 case 3:
841 break;
844 force_sig(SIGILL, current);
847 asmlinkage void do_mdmx(struct pt_regs *regs)
849 force_sig(SIGILL, current);
852 asmlinkage void do_watch(struct pt_regs *regs)
854 if (board_watchpoint_handler) {
855 (*board_watchpoint_handler)(regs);
856 return;
860 * We use the watch exception where available to detect stack
861 * overflows.
863 dump_tlb_all();
864 show_regs(regs);
865 panic("Caught WATCH exception - probably caused by stack overflow.");
868 asmlinkage void do_mcheck(struct pt_regs *regs)
870 const int field = 2 * sizeof(unsigned long);
871 int multi_match = regs->cp0_status & ST0_TS;
873 show_regs(regs);
875 if (multi_match) {
876 printk("Index : %0x\n", read_c0_index());
877 printk("Pagemask: %0x\n", read_c0_pagemask());
878 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
879 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
880 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
881 printk("\n");
882 dump_tlb_all();
885 show_code((unsigned int __user *) regs->cp0_epc);
888 * Some chips may have other causes of machine check (e.g. SB1
889 * graduation timer)
891 panic("Caught Machine Check exception - %scaused by multiple "
892 "matching entries in the TLB.",
893 (multi_match) ? "" : "not ");
896 asmlinkage void do_mt(struct pt_regs *regs)
898 int subcode;
900 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
901 >> VPECONTROL_EXCPT_SHIFT;
902 switch (subcode) {
903 case 0:
904 printk(KERN_DEBUG "Thread Underflow\n");
905 break;
906 case 1:
907 printk(KERN_DEBUG "Thread Overflow\n");
908 break;
909 case 2:
910 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
911 break;
912 case 3:
913 printk(KERN_DEBUG "Gating Storage Exception\n");
914 break;
915 case 4:
916 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
917 break;
918 case 5:
919 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
920 break;
921 default:
922 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
923 subcode);
924 break;
926 die_if_kernel("MIPS MT Thread exception in kernel", regs);
928 force_sig(SIGILL, current);
932 asmlinkage void do_dsp(struct pt_regs *regs)
934 if (cpu_has_dsp)
935 panic("Unexpected DSP exception\n");
937 force_sig(SIGILL, current);
940 asmlinkage void do_reserved(struct pt_regs *regs)
943 * Game over - no way to handle this if it ever occurs. Most probably
944 * caused by a new unknown cpu type or after another deadly
945 * hard/software error.
947 show_regs(regs);
948 panic("Caught reserved exception %ld - should not happen.",
949 (regs->cp0_cause & 0x7f) >> 2);
953 * Some MIPS CPUs can enable/disable for cache parity detection, but do
954 * it different ways.
956 static inline void parity_protection_init(void)
958 switch (current_cpu_type()) {
959 case CPU_24K:
960 case CPU_34K:
961 case CPU_5KC:
962 write_c0_ecc(0x80000000);
963 back_to_back_c0_hazard();
964 /* Set the PE bit (bit 31) in the c0_errctl register. */
965 printk(KERN_INFO "Cache parity protection %sabled\n",
966 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
967 break;
968 case CPU_20KC:
969 case CPU_25KF:
970 /* Clear the DE bit (bit 16) in the c0_status register. */
971 printk(KERN_INFO "Enable cache parity protection for "
972 "MIPS 20KC/25KF CPUs.\n");
973 clear_c0_status(ST0_DE);
974 break;
975 default:
976 break;
980 asmlinkage void cache_parity_error(void)
982 const int field = 2 * sizeof(unsigned long);
983 unsigned int reg_val;
985 /* For the moment, report the problem and hang. */
986 printk("Cache error exception:\n");
987 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
988 reg_val = read_c0_cacheerr();
989 printk("c0_cacheerr == %08x\n", reg_val);
991 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
992 reg_val & (1<<30) ? "secondary" : "primary",
993 reg_val & (1<<31) ? "data" : "insn");
994 printk("Error bits: %s%s%s%s%s%s%s\n",
995 reg_val & (1<<29) ? "ED " : "",
996 reg_val & (1<<28) ? "ET " : "",
997 reg_val & (1<<26) ? "EE " : "",
998 reg_val & (1<<25) ? "EB " : "",
999 reg_val & (1<<24) ? "EI " : "",
1000 reg_val & (1<<23) ? "E1 " : "",
1001 reg_val & (1<<22) ? "E0 " : "");
1002 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1004 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1005 if (reg_val & (1<<22))
1006 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1008 if (reg_val & (1<<23))
1009 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1010 #endif
1012 panic("Can't handle the cache error!");
1016 * SDBBP EJTAG debug exception handler.
1017 * We skip the instruction and return to the next instruction.
1019 void ejtag_exception_handler(struct pt_regs *regs)
1021 const int field = 2 * sizeof(unsigned long);
1022 unsigned long depc, old_epc;
1023 unsigned int debug;
1025 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1026 depc = read_c0_depc();
1027 debug = read_c0_debug();
1028 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1029 if (debug & 0x80000000) {
1031 * In branch delay slot.
1032 * We cheat a little bit here and use EPC to calculate the
1033 * debug return address (DEPC). EPC is restored after the
1034 * calculation.
1036 old_epc = regs->cp0_epc;
1037 regs->cp0_epc = depc;
1038 __compute_return_epc(regs);
1039 depc = regs->cp0_epc;
1040 regs->cp0_epc = old_epc;
1041 } else
1042 depc += 4;
1043 write_c0_depc(depc);
1045 #if 0
1046 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1047 write_c0_debug(debug | 0x100);
1048 #endif
1052 * NMI exception handler.
1054 NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
1056 bust_spinlocks(1);
1057 printk("NMI taken!!!!\n");
1058 die("NMI", regs);
1061 #define VECTORSPACING 0x100 /* for EI/VI mode */
1063 unsigned long ebase;
1064 unsigned long exception_handlers[32];
1065 unsigned long vi_handlers[64];
1068 * As a side effect of the way this is implemented we're limited
1069 * to interrupt handlers in the address range from
1070 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1072 void *set_except_vector(int n, void *addr)
1074 unsigned long handler = (unsigned long) addr;
1075 unsigned long old_handler = exception_handlers[n];
1077 exception_handlers[n] = handler;
1078 if (n == 0 && cpu_has_divec) {
1079 *(u32 *)(ebase + 0x200) = 0x08000000 |
1080 (0x03ffffff & (handler >> 2));
1081 flush_icache_range(ebase + 0x200, ebase + 0x204);
1083 return (void *)old_handler;
1086 #ifdef CONFIG_CPU_MIPSR2_SRS
1088 * MIPSR2 shadow register set allocation
1089 * FIXME: SMP...
1092 static struct shadow_registers {
1094 * Number of shadow register sets supported
1096 unsigned long sr_supported;
1098 * Bitmap of allocated shadow registers
1100 unsigned long sr_allocated;
1101 } shadow_registers;
1103 static void mips_srs_init(void)
1105 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1106 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
1107 shadow_registers.sr_supported);
1108 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1111 int mips_srs_max(void)
1113 return shadow_registers.sr_supported;
1116 int mips_srs_alloc(void)
1118 struct shadow_registers *sr = &shadow_registers;
1119 int set;
1121 again:
1122 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1123 if (set >= sr->sr_supported)
1124 return -1;
1126 if (test_and_set_bit(set, &sr->sr_allocated))
1127 goto again;
1129 return set;
1132 void mips_srs_free(int set)
1134 struct shadow_registers *sr = &shadow_registers;
1136 clear_bit(set, &sr->sr_allocated);
1139 static asmlinkage void do_default_vi(void)
1141 show_regs(get_irq_regs());
1142 panic("Caught unexpected vectored interrupt.");
1145 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1147 unsigned long handler;
1148 unsigned long old_handler = vi_handlers[n];
1149 u32 *w;
1150 unsigned char *b;
1152 if (!cpu_has_veic && !cpu_has_vint)
1153 BUG();
1155 if (addr == NULL) {
1156 handler = (unsigned long) do_default_vi;
1157 srs = 0;
1158 } else
1159 handler = (unsigned long) addr;
1160 vi_handlers[n] = (unsigned long) addr;
1162 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1164 if (srs >= mips_srs_max())
1165 panic("Shadow register set %d not supported", srs);
1167 if (cpu_has_veic) {
1168 if (board_bind_eic_interrupt)
1169 board_bind_eic_interrupt(n, srs);
1170 } else if (cpu_has_vint) {
1171 /* SRSMap is only defined if shadow sets are implemented */
1172 if (mips_srs_max() > 1)
1173 change_c0_srsmap(0xf << n*4, srs << n*4);
1176 if (srs == 0) {
1178 * If no shadow set is selected then use the default handler
1179 * that does normal register saving and a standard interrupt exit
1182 extern char except_vec_vi, except_vec_vi_lui;
1183 extern char except_vec_vi_ori, except_vec_vi_end;
1184 #ifdef CONFIG_MIPS_MT_SMTC
1186 * We need to provide the SMTC vectored interrupt handler
1187 * not only with the address of the handler, but with the
1188 * Status.IM bit to be masked before going there.
1190 extern char except_vec_vi_mori;
1191 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1192 #endif /* CONFIG_MIPS_MT_SMTC */
1193 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1194 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1195 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1197 if (handler_len > VECTORSPACING) {
1199 * Sigh... panicing won't help as the console
1200 * is probably not configured :(
1202 panic("VECTORSPACING too small");
1205 memcpy(b, &except_vec_vi, handler_len);
1206 #ifdef CONFIG_MIPS_MT_SMTC
1207 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1209 w = (u32 *)(b + mori_offset);
1210 *w = (*w & 0xffff0000) | (0x100 << n);
1211 #endif /* CONFIG_MIPS_MT_SMTC */
1212 w = (u32 *)(b + lui_offset);
1213 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1214 w = (u32 *)(b + ori_offset);
1215 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1216 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1218 else {
1220 * In other cases jump directly to the interrupt handler
1222 * It is the handlers responsibility to save registers if required
1223 * (eg hi/lo) and return from the exception using "eret"
1225 w = (u32 *)b;
1226 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1227 *w = 0;
1228 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1231 return (void *)old_handler;
1234 void *set_vi_handler(int n, vi_handler_t addr)
1236 return set_vi_srs_handler(n, addr, 0);
1239 #else
1241 static inline void mips_srs_init(void)
1245 #endif /* CONFIG_CPU_MIPSR2_SRS */
1248 * This is used by native signal handling
1250 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1251 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1253 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1254 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1256 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1257 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1259 #ifdef CONFIG_SMP
1260 static int smp_save_fp_context(struct sigcontext __user *sc)
1262 return raw_cpu_has_fpu
1263 ? _save_fp_context(sc)
1264 : fpu_emulator_save_context(sc);
1267 static int smp_restore_fp_context(struct sigcontext __user *sc)
1269 return raw_cpu_has_fpu
1270 ? _restore_fp_context(sc)
1271 : fpu_emulator_restore_context(sc);
1273 #endif
1275 static inline void signal_init(void)
1277 #ifdef CONFIG_SMP
1278 /* For now just do the cpu_has_fpu check when the functions are invoked */
1279 save_fp_context = smp_save_fp_context;
1280 restore_fp_context = smp_restore_fp_context;
1281 #else
1282 if (cpu_has_fpu) {
1283 save_fp_context = _save_fp_context;
1284 restore_fp_context = _restore_fp_context;
1285 } else {
1286 save_fp_context = fpu_emulator_save_context;
1287 restore_fp_context = fpu_emulator_restore_context;
1289 #endif
1292 #ifdef CONFIG_MIPS32_COMPAT
1295 * This is used by 32-bit signal stuff on the 64-bit kernel
1297 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1298 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1300 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1301 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1303 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1304 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1306 static inline void signal32_init(void)
1308 if (cpu_has_fpu) {
1309 save_fp_context32 = _save_fp_context32;
1310 restore_fp_context32 = _restore_fp_context32;
1311 } else {
1312 save_fp_context32 = fpu_emulator_save_context32;
1313 restore_fp_context32 = fpu_emulator_restore_context32;
1316 #endif
1318 extern void cpu_cache_init(void);
1319 extern void tlb_init(void);
1320 extern void flush_tlb_handlers(void);
1322 void __init per_cpu_trap_init(void)
1324 unsigned int cpu = smp_processor_id();
1325 unsigned int status_set = ST0_CU0;
1326 #ifdef CONFIG_MIPS_MT_SMTC
1327 int secondaryTC = 0;
1328 int bootTC = (cpu == 0);
1331 * Only do per_cpu_trap_init() for first TC of Each VPE.
1332 * Note that this hack assumes that the SMTC init code
1333 * assigns TCs consecutively and in ascending order.
1336 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1337 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1338 secondaryTC = 1;
1339 #endif /* CONFIG_MIPS_MT_SMTC */
1342 * Disable coprocessors and select 32-bit or 64-bit addressing
1343 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1344 * flag that some firmware may have left set and the TS bit (for
1345 * IP27). Set XX for ISA IV code to work.
1347 #ifdef CONFIG_64BIT
1348 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1349 #endif
1350 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1351 status_set |= ST0_XX;
1352 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1353 status_set);
1355 if (cpu_has_dsp)
1356 set_c0_status(ST0_MX);
1358 #ifdef CONFIG_CPU_MIPSR2
1359 if (cpu_has_mips_r2) {
1360 unsigned int enable = 0x0000000f;
1362 if (cpu_has_userlocal)
1363 enable |= (1 << 29);
1365 write_c0_hwrena(enable);
1367 #endif
1369 #ifdef CONFIG_MIPS_MT_SMTC
1370 if (!secondaryTC) {
1371 #endif /* CONFIG_MIPS_MT_SMTC */
1373 if (cpu_has_veic || cpu_has_vint) {
1374 write_c0_ebase(ebase);
1375 /* Setting vector spacing enables EI/VI mode */
1376 change_c0_intctl(0x3e0, VECTORSPACING);
1378 if (cpu_has_divec) {
1379 if (cpu_has_mipsmt) {
1380 unsigned int vpflags = dvpe();
1381 set_c0_cause(CAUSEF_IV);
1382 evpe(vpflags);
1383 } else
1384 set_c0_cause(CAUSEF_IV);
1388 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1390 * o read IntCtl.IPTI to determine the timer interrupt
1391 * o read IntCtl.IPPCI to determine the performance counter interrupt
1393 if (cpu_has_mips_r2) {
1394 cp0_compare_irq = (read_c0_intctl() >> 29) & 7;
1395 cp0_perfcount_irq = (read_c0_intctl() >> 26) & 7;
1396 if (cp0_perfcount_irq == cp0_compare_irq)
1397 cp0_perfcount_irq = -1;
1398 } else {
1399 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1400 cp0_perfcount_irq = -1;
1403 #ifdef CONFIG_MIPS_MT_SMTC
1405 #endif /* CONFIG_MIPS_MT_SMTC */
1407 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1408 TLBMISS_HANDLER_SETUP();
1410 atomic_inc(&init_mm.mm_count);
1411 current->active_mm = &init_mm;
1412 BUG_ON(current->mm);
1413 enter_lazy_tlb(&init_mm, current);
1415 #ifdef CONFIG_MIPS_MT_SMTC
1416 if (bootTC) {
1417 #endif /* CONFIG_MIPS_MT_SMTC */
1418 cpu_cache_init();
1419 tlb_init();
1420 #ifdef CONFIG_MIPS_MT_SMTC
1421 } else if (!secondaryTC) {
1423 * First TC in non-boot VPE must do subset of tlb_init()
1424 * for MMU countrol registers.
1426 write_c0_pagemask(PM_DEFAULT_MASK);
1427 write_c0_wired(0);
1429 #endif /* CONFIG_MIPS_MT_SMTC */
1432 /* Install CPU exception handler */
1433 void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1435 memcpy((void *)(ebase + offset), addr, size);
1436 flush_icache_range(ebase + offset, ebase + offset + size);
1439 static char panic_null_cerr[] __initdata =
1440 "Trying to set NULL cache error exception handler";
1442 /* Install uncached CPU exception handler */
1443 void __init set_uncached_handler(unsigned long offset, void *addr, unsigned long size)
1445 #ifdef CONFIG_32BIT
1446 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1447 #endif
1448 #ifdef CONFIG_64BIT
1449 unsigned long uncached_ebase = TO_UNCAC(ebase);
1450 #endif
1452 if (!addr)
1453 panic(panic_null_cerr);
1455 memcpy((void *)(uncached_ebase + offset), addr, size);
1458 static int __initdata rdhwr_noopt;
1459 static int __init set_rdhwr_noopt(char *str)
1461 rdhwr_noopt = 1;
1462 return 1;
1465 __setup("rdhwr_noopt", set_rdhwr_noopt);
1467 void __init trap_init(void)
1469 extern char except_vec3_generic, except_vec3_r4000;
1470 extern char except_vec4;
1471 unsigned long i;
1473 if (cpu_has_veic || cpu_has_vint)
1474 ebase = (unsigned long) alloc_bootmem_low_pages(0x200 + VECTORSPACING*64);
1475 else
1476 ebase = CAC_BASE;
1478 mips_srs_init();
1480 per_cpu_trap_init();
1483 * Copy the generic exception handlers to their final destination.
1484 * This will be overriden later as suitable for a particular
1485 * configuration.
1487 set_handler(0x180, &except_vec3_generic, 0x80);
1490 * Setup default vectors
1492 for (i = 0; i <= 31; i++)
1493 set_except_vector(i, handle_reserved);
1496 * Copy the EJTAG debug exception vector handler code to it's final
1497 * destination.
1499 if (cpu_has_ejtag && board_ejtag_handler_setup)
1500 board_ejtag_handler_setup();
1503 * Only some CPUs have the watch exceptions.
1505 if (cpu_has_watch)
1506 set_except_vector(23, handle_watch);
1509 * Initialise interrupt handlers
1511 if (cpu_has_veic || cpu_has_vint) {
1512 int nvec = cpu_has_veic ? 64 : 8;
1513 for (i = 0; i < nvec; i++)
1514 set_vi_handler(i, NULL);
1516 else if (cpu_has_divec)
1517 set_handler(0x200, &except_vec4, 0x8);
1520 * Some CPUs can enable/disable for cache parity detection, but does
1521 * it different ways.
1523 parity_protection_init();
1526 * The Data Bus Errors / Instruction Bus Errors are signaled
1527 * by external hardware. Therefore these two exceptions
1528 * may have board specific handlers.
1530 if (board_be_init)
1531 board_be_init();
1533 set_except_vector(0, handle_int);
1534 set_except_vector(1, handle_tlbm);
1535 set_except_vector(2, handle_tlbl);
1536 set_except_vector(3, handle_tlbs);
1538 set_except_vector(4, handle_adel);
1539 set_except_vector(5, handle_ades);
1541 set_except_vector(6, handle_ibe);
1542 set_except_vector(7, handle_dbe);
1544 set_except_vector(8, handle_sys);
1545 set_except_vector(9, handle_bp);
1546 set_except_vector(10, rdhwr_noopt ? handle_ri :
1547 (cpu_has_vtag_icache ?
1548 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1549 set_except_vector(11, handle_cpu);
1550 set_except_vector(12, handle_ov);
1551 set_except_vector(13, handle_tr);
1553 if (current_cpu_type() == CPU_R6000 ||
1554 current_cpu_type() == CPU_R6000A) {
1556 * The R6000 is the only R-series CPU that features a machine
1557 * check exception (similar to the R4000 cache error) and
1558 * unaligned ldc1/sdc1 exception. The handlers have not been
1559 * written yet. Well, anyway there is no R6000 machine on the
1560 * current list of targets for Linux/MIPS.
1561 * (Duh, crap, there is someone with a triple R6k machine)
1563 //set_except_vector(14, handle_mc);
1564 //set_except_vector(15, handle_ndc);
1568 if (board_nmi_handler_setup)
1569 board_nmi_handler_setup();
1571 if (cpu_has_fpu && !cpu_has_nofpuex)
1572 set_except_vector(15, handle_fpe);
1574 set_except_vector(22, handle_mdmx);
1576 if (cpu_has_mcheck)
1577 set_except_vector(24, handle_mcheck);
1579 if (cpu_has_mipsmt)
1580 set_except_vector(25, handle_mt);
1582 set_except_vector(26, handle_dsp);
1584 if (cpu_has_vce)
1585 /* Special exception: R4[04]00 uses also the divec space. */
1586 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1587 else if (cpu_has_4kex)
1588 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1589 else
1590 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1592 signal_init();
1593 #ifdef CONFIG_MIPS32_COMPAT
1594 signal32_init();
1595 #endif
1597 flush_icache_range(ebase, ebase + 0x400);
1598 flush_tlb_handlers();