1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
13 #include <asm/mmu_context.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
19 #include <mach_apic.h>
24 DEFINE_PER_CPU(struct gdt_page
, gdt_page
) = { .gdt
= {
25 [GDT_ENTRY_KERNEL_CS
] = { 0x0000ffff, 0x00cf9a00 },
26 [GDT_ENTRY_KERNEL_DS
] = { 0x0000ffff, 0x00cf9200 },
27 [GDT_ENTRY_DEFAULT_USER_CS
] = { 0x0000ffff, 0x00cffa00 },
28 [GDT_ENTRY_DEFAULT_USER_DS
] = { 0x0000ffff, 0x00cff200 },
30 * Segments used for calling PnP BIOS have byte granularity.
31 * They code segments and data segments have fixed 64k limits,
32 * the transfer segment sizes are set at run time.
34 [GDT_ENTRY_PNPBIOS_CS32
] = { 0x0000ffff, 0x00409a00 },/* 32-bit code */
35 [GDT_ENTRY_PNPBIOS_CS16
] = { 0x0000ffff, 0x00009a00 },/* 16-bit code */
36 [GDT_ENTRY_PNPBIOS_DS
] = { 0x0000ffff, 0x00009200 }, /* 16-bit data */
37 [GDT_ENTRY_PNPBIOS_TS1
] = { 0x00000000, 0x00009200 },/* 16-bit data */
38 [GDT_ENTRY_PNPBIOS_TS2
] = { 0x00000000, 0x00009200 },/* 16-bit data */
40 * The APM segments have byte granularity and their bases
41 * are set at run time. All have 64k limits.
43 [GDT_ENTRY_APMBIOS_BASE
] = { 0x0000ffff, 0x00409a00 },/* 32-bit code */
45 [GDT_ENTRY_APMBIOS_BASE
+1] = { 0x0000ffff, 0x00009a00 },
46 [GDT_ENTRY_APMBIOS_BASE
+2] = { 0x0000ffff, 0x00409200 }, /* data */
48 [GDT_ENTRY_ESPFIX_SS
] = { 0x00000000, 0x00c09200 },
49 [GDT_ENTRY_PERCPU
] = { 0x00000000, 0x00000000 },
51 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page
);
53 static int cachesize_override __cpuinitdata
= -1;
54 static int disable_x86_fxsr __cpuinitdata
;
55 static int disable_x86_serial_nr __cpuinitdata
= 1;
56 static int disable_x86_sep __cpuinitdata
;
58 struct cpu_dev
* cpu_devs
[X86_VENDOR_NUM
] = {};
60 extern int disable_pse
;
62 static void __cpuinit
default_init(struct cpuinfo_x86
* c
)
64 /* Not much we can do here... */
65 /* Check if at least it has cpuid */
66 if (c
->cpuid_level
== -1) {
67 /* No cpuid. It must be an ancient CPU */
69 strcpy(c
->x86_model_id
, "486");
71 strcpy(c
->x86_model_id
, "386");
75 static struct cpu_dev __cpuinitdata default_cpu
= {
76 .c_init
= default_init
,
77 .c_vendor
= "Unknown",
79 static struct cpu_dev
* this_cpu __cpuinitdata
= &default_cpu
;
81 static int __init
cachesize_setup(char *str
)
83 get_option (&str
, &cachesize_override
);
86 __setup("cachesize=", cachesize_setup
);
88 int __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
93 if (cpuid_eax(0x80000000) < 0x80000004)
96 v
= (unsigned int *) c
->x86_model_id
;
97 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
98 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
99 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
100 c
->x86_model_id
[48] = 0;
102 /* Intel chips right-justify this string for some dumb reason;
103 undo that brain damage */
104 p
= q
= &c
->x86_model_id
[0];
110 while ( q
<= &c
->x86_model_id
[48] )
111 *q
++ = '\0'; /* Zero-pad the rest */
118 void __cpuinit
display_cacheinfo(struct cpuinfo_x86
*c
)
120 unsigned int n
, dummy
, ecx
, edx
, l2size
;
122 n
= cpuid_eax(0x80000000);
124 if (n
>= 0x80000005) {
125 cpuid(0x80000005, &dummy
, &dummy
, &ecx
, &edx
);
126 printk(KERN_INFO
"CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
127 edx
>>24, edx
&0xFF, ecx
>>24, ecx
&0xFF);
128 c
->x86_cache_size
=(ecx
>>24)+(edx
>>24);
131 if (n
< 0x80000006) /* Some chips just has a large L1. */
134 ecx
= cpuid_ecx(0x80000006);
137 /* do processor-specific cache resizing */
138 if (this_cpu
->c_size_cache
)
139 l2size
= this_cpu
->c_size_cache(c
,l2size
);
141 /* Allow user to override all this if necessary. */
142 if (cachesize_override
!= -1)
143 l2size
= cachesize_override
;
146 return; /* Again, no L2 cache is possible */
148 c
->x86_cache_size
= l2size
;
150 printk(KERN_INFO
"CPU: L2 Cache: %dK (%d bytes/line)\n",
154 /* Naming convention should be: <Name> [(<Codename>)] */
155 /* This table only is used unless init_<vendor>() below doesn't set it; */
156 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
158 /* Look up CPU names by table lookup. */
159 static char __cpuinit
*table_lookup_model(struct cpuinfo_x86
*c
)
161 struct cpu_model_info
*info
;
163 if ( c
->x86_model
>= 16 )
164 return NULL
; /* Range check */
169 info
= this_cpu
->c_models
;
171 while (info
&& info
->family
) {
172 if (info
->family
== c
->x86
)
173 return info
->model_names
[c
->x86_model
];
176 return NULL
; /* Not found */
180 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
, int early
)
182 char *v
= c
->x86_vendor_id
;
186 for (i
= 0; i
< X86_VENDOR_NUM
; i
++) {
188 if (!strcmp(v
,cpu_devs
[i
]->c_ident
[0]) ||
189 (cpu_devs
[i
]->c_ident
[1] &&
190 !strcmp(v
,cpu_devs
[i
]->c_ident
[1]))) {
193 this_cpu
= cpu_devs
[i
];
200 printk(KERN_ERR
"CPU: Vendor unknown, using generic init.\n");
201 printk(KERN_ERR
"CPU: Your system may be unstable.\n");
203 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
204 this_cpu
= &default_cpu
;
208 static int __init
x86_fxsr_setup(char * s
)
210 /* Tell all the other CPU's to not use it... */
211 disable_x86_fxsr
= 1;
214 * ... and clear the bits early in the boot_cpu_data
215 * so that the bootup process doesn't try to do this
218 clear_bit(X86_FEATURE_FXSR
, boot_cpu_data
.x86_capability
);
219 clear_bit(X86_FEATURE_XMM
, boot_cpu_data
.x86_capability
);
222 __setup("nofxsr", x86_fxsr_setup
);
225 static int __init
x86_sep_setup(char * s
)
230 __setup("nosep", x86_sep_setup
);
233 /* Standard macro to see if a specific flag is changeable */
234 static inline int flag_is_changeable_p(u32 flag
)
248 : "=&r" (f1
), "=&r" (f2
)
251 return ((f1
^f2
) & flag
) != 0;
255 /* Probe for the CPUID instruction */
256 static int __cpuinit
have_cpuid_p(void)
258 return flag_is_changeable_p(X86_EFLAGS_ID
);
261 void __init
cpu_detect(struct cpuinfo_x86
*c
)
263 /* Get vendor name */
264 cpuid(0x00000000, &c
->cpuid_level
,
265 (int *)&c
->x86_vendor_id
[0],
266 (int *)&c
->x86_vendor_id
[8],
267 (int *)&c
->x86_vendor_id
[4]);
270 if (c
->cpuid_level
>= 0x00000001) {
271 u32 junk
, tfms
, cap0
, misc
;
272 cpuid(0x00000001, &tfms
, &misc
, &junk
, &cap0
);
273 c
->x86
= (tfms
>> 8) & 15;
274 c
->x86_model
= (tfms
>> 4) & 15;
276 c
->x86
+= (tfms
>> 20) & 0xff;
278 c
->x86_model
+= ((tfms
>> 16) & 0xF) << 4;
279 c
->x86_mask
= tfms
& 15;
281 c
->x86_cache_alignment
= ((misc
>> 8) & 0xff) * 8;
285 /* Do minimum CPU detection early.
286 Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
287 The others are not touched to avoid unwanted side effects.
289 WARNING: this function is only called on the BP. Don't add code here
290 that is supposed to run on all CPUs. */
291 static void __init
early_cpu_detect(void)
293 struct cpuinfo_x86
*c
= &boot_cpu_data
;
295 c
->x86_cache_alignment
= 32;
302 get_cpu_vendor(c
, 1);
305 static void __cpuinit
generic_identify(struct cpuinfo_x86
* c
)
310 if (have_cpuid_p()) {
311 /* Get vendor name */
312 cpuid(0x00000000, &c
->cpuid_level
,
313 (int *)&c
->x86_vendor_id
[0],
314 (int *)&c
->x86_vendor_id
[8],
315 (int *)&c
->x86_vendor_id
[4]);
317 get_cpu_vendor(c
, 0);
318 /* Initialize the standard set of capabilities */
319 /* Note that the vendor-specific code below might override */
321 /* Intel-defined flags: level 0x00000001 */
322 if ( c
->cpuid_level
>= 0x00000001 ) {
323 u32 capability
, excap
;
324 cpuid(0x00000001, &tfms
, &ebx
, &excap
, &capability
);
325 c
->x86_capability
[0] = capability
;
326 c
->x86_capability
[4] = excap
;
327 c
->x86
= (tfms
>> 8) & 15;
328 c
->x86_model
= (tfms
>> 4) & 15;
330 c
->x86
+= (tfms
>> 20) & 0xff;
332 c
->x86_model
+= ((tfms
>> 16) & 0xF) << 4;
333 c
->x86_mask
= tfms
& 15;
335 c
->apicid
= phys_pkg_id((ebx
>> 24) & 0xFF, 0);
337 c
->apicid
= (ebx
>> 24) & 0xFF;
339 if (c
->x86_capability
[0] & (1<<19))
340 c
->x86_clflush_size
= ((ebx
>> 8) & 0xff) * 8;
342 /* Have CPUID level 0 only - unheard of */
346 /* AMD-defined flags: level 0x80000001 */
347 xlvl
= cpuid_eax(0x80000000);
348 if ( (xlvl
& 0xffff0000) == 0x80000000 ) {
349 if ( xlvl
>= 0x80000001 ) {
350 c
->x86_capability
[1] = cpuid_edx(0x80000001);
351 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
353 if ( xlvl
>= 0x80000004 )
354 get_model_name(c
); /* Default name */
357 init_scattered_cpuid_features(c
);
360 early_intel_workaround(c
);
363 c
->phys_proc_id
= (cpuid_ebx(1) >> 24) & 0xff;
367 static void __cpuinit
squash_the_stupid_serial_number(struct cpuinfo_x86
*c
)
369 if (cpu_has(c
, X86_FEATURE_PN
) && disable_x86_serial_nr
) {
370 /* Disable processor serial number */
372 rdmsr(MSR_IA32_BBL_CR_CTL
,lo
,hi
);
374 wrmsr(MSR_IA32_BBL_CR_CTL
,lo
,hi
);
375 printk(KERN_NOTICE
"CPU serial number disabled.\n");
376 clear_bit(X86_FEATURE_PN
, c
->x86_capability
);
378 /* Disabling the serial number may affect the cpuid level */
379 c
->cpuid_level
= cpuid_eax(0);
383 static int __init
x86_serial_nr_setup(char *s
)
385 disable_x86_serial_nr
= 0;
388 __setup("serialnumber", x86_serial_nr_setup
);
393 * This does the hard work of actually picking apart the CPU stuff...
395 static void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
399 c
->loops_per_jiffy
= loops_per_jiffy
;
400 c
->x86_cache_size
= -1;
401 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
402 c
->cpuid_level
= -1; /* CPUID not detected */
403 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
404 c
->x86_vendor_id
[0] = '\0'; /* Unset */
405 c
->x86_model_id
[0] = '\0'; /* Unset */
406 c
->x86_max_cores
= 1;
407 c
->x86_clflush_size
= 32;
408 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
410 if (!have_cpuid_p()) {
411 /* First of all, decide if this is a 486 or higher */
412 /* It's a 486 if we can modify the AC flag */
413 if ( flag_is_changeable_p(X86_EFLAGS_AC
) )
421 printk(KERN_DEBUG
"CPU: After generic identify, caps:");
422 for (i
= 0; i
< NCAPINTS
; i
++)
423 printk(" %08lx", c
->x86_capability
[i
]);
426 if (this_cpu
->c_identify
) {
427 this_cpu
->c_identify(c
);
429 printk(KERN_DEBUG
"CPU: After vendor identify, caps:");
430 for (i
= 0; i
< NCAPINTS
; i
++)
431 printk(" %08lx", c
->x86_capability
[i
]);
436 * Vendor-specific initialization. In this section we
437 * canonicalize the feature flags, meaning if there are
438 * features a certain CPU supports which CPUID doesn't
439 * tell us, CPUID claiming incorrect flags, or other bugs,
440 * we handle them here.
442 * At the end of this section, c->x86_capability better
443 * indicate the features this CPU genuinely supports!
445 if (this_cpu
->c_init
)
448 /* Disable the PN if appropriate */
449 squash_the_stupid_serial_number(c
);
452 * The vendor-specific functions might have changed features. Now
453 * we do "generic changes."
458 clear_bit(X86_FEATURE_TSC
, c
->x86_capability
);
461 if (disable_x86_fxsr
) {
462 clear_bit(X86_FEATURE_FXSR
, c
->x86_capability
);
463 clear_bit(X86_FEATURE_XMM
, c
->x86_capability
);
468 clear_bit(X86_FEATURE_SEP
, c
->x86_capability
);
471 clear_bit(X86_FEATURE_PSE
, c
->x86_capability
);
473 /* If the model name is still unset, do table lookup. */
474 if ( !c
->x86_model_id
[0] ) {
476 p
= table_lookup_model(c
);
478 strcpy(c
->x86_model_id
, p
);
481 sprintf(c
->x86_model_id
, "%02x/%02x",
482 c
->x86
, c
->x86_model
);
485 /* Now the feature flags better reflect actual CPU features! */
487 printk(KERN_DEBUG
"CPU: After all inits, caps:");
488 for (i
= 0; i
< NCAPINTS
; i
++)
489 printk(" %08lx", c
->x86_capability
[i
]);
493 * On SMP, boot_cpu_data holds the common feature set between
494 * all CPUs; so make sure that we indicate which features are
495 * common between the CPUs. The first time this routine gets
496 * executed, c == &boot_cpu_data.
498 if ( c
!= &boot_cpu_data
) {
499 /* AND the already accumulated flags with these */
500 for ( i
= 0 ; i
< NCAPINTS
; i
++ )
501 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
504 /* Init Machine Check Exception if available. */
508 void __init
identify_boot_cpu(void)
510 identify_cpu(&boot_cpu_data
);
516 void __cpuinit
identify_secondary_cpu(struct cpuinfo_x86
*c
)
518 BUG_ON(c
== &boot_cpu_data
);
525 void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
527 u32 eax
, ebx
, ecx
, edx
;
528 int index_msb
, core_bits
;
530 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
532 if (!cpu_has(c
, X86_FEATURE_HT
) || cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
535 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
537 if (smp_num_siblings
== 1) {
538 printk(KERN_INFO
"CPU: Hyper-Threading is disabled\n");
539 } else if (smp_num_siblings
> 1 ) {
541 if (smp_num_siblings
> NR_CPUS
) {
542 printk(KERN_WARNING
"CPU: Unsupported number of the "
543 "siblings %d", smp_num_siblings
);
544 smp_num_siblings
= 1;
548 index_msb
= get_count_order(smp_num_siblings
);
549 c
->phys_proc_id
= phys_pkg_id((ebx
>> 24) & 0xFF, index_msb
);
551 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n",
554 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
556 index_msb
= get_count_order(smp_num_siblings
) ;
558 core_bits
= get_count_order(c
->x86_max_cores
);
560 c
->cpu_core_id
= phys_pkg_id((ebx
>> 24) & 0xFF, index_msb
) &
561 ((1 << core_bits
) - 1);
563 if (c
->x86_max_cores
> 1)
564 printk(KERN_INFO
"CPU: Processor Core ID: %d\n",
570 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
574 if (c
->x86_vendor
< X86_VENDOR_NUM
)
575 vendor
= this_cpu
->c_vendor
;
576 else if (c
->cpuid_level
>= 0)
577 vendor
= c
->x86_vendor_id
;
579 if (vendor
&& strncmp(c
->x86_model_id
, vendor
, strlen(vendor
)))
580 printk("%s ", vendor
);
582 if (!c
->x86_model_id
[0])
583 printk("%d86", c
->x86
);
585 printk("%s", c
->x86_model_id
);
587 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
588 printk(" stepping %02x\n", c
->x86_mask
);
593 cpumask_t cpu_initialized __cpuinitdata
= CPU_MASK_NONE
;
596 * We're emulating future behavior.
597 * In the future, the cpu-specific init functions will be called implicitly
598 * via the magic of initcalls.
599 * They will insert themselves into the cpu_devs structure.
600 * Then, when cpu_init() is called, we can just iterate over that array.
603 extern int intel_cpu_init(void);
604 extern int cyrix_init_cpu(void);
605 extern int nsc_init_cpu(void);
606 extern int amd_init_cpu(void);
607 extern int centaur_init_cpu(void);
608 extern int transmeta_init_cpu(void);
609 extern int nexgen_init_cpu(void);
610 extern int umc_init_cpu(void);
612 void __init
early_cpu_init(void)
619 transmeta_init_cpu();
624 #ifdef CONFIG_DEBUG_PAGEALLOC
625 /* pse is not compatible with on-the-fly unmapping,
626 * disable it even if the cpus claim to support it.
628 clear_bit(X86_FEATURE_PSE
, boot_cpu_data
.x86_capability
);
633 /* Make sure %fs is initialized properly in idle threads */
634 struct pt_regs
* __devinit
idle_regs(struct pt_regs
*regs
)
636 memset(regs
, 0, sizeof(struct pt_regs
));
637 regs
->xfs
= __KERNEL_PERCPU
;
641 /* Current gdt points %fs at the "master" per-cpu area: after this,
642 * it's on the real one. */
643 void switch_to_new_gdt(void)
645 struct Xgt_desc_struct gdt_descr
;
647 gdt_descr
.address
= (long)get_cpu_gdt_table(smp_processor_id());
648 gdt_descr
.size
= GDT_SIZE
- 1;
649 load_gdt(&gdt_descr
);
650 asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU
) : "memory");
654 * cpu_init() initializes state that is per-CPU. Some data is already
655 * initialized (naturally) in the bootstrap process, such as the GDT
656 * and IDT. We reload them nevertheless, this function acts as a
657 * 'CPU state barrier', nothing should get across.
659 void __cpuinit
cpu_init(void)
661 int cpu
= smp_processor_id();
662 struct task_struct
*curr
= current
;
663 struct tss_struct
* t
= &per_cpu(init_tss
, cpu
);
664 struct thread_struct
*thread
= &curr
->thread
;
666 if (cpu_test_and_set(cpu
, cpu_initialized
)) {
667 printk(KERN_WARNING
"CPU#%d already initialized!\n", cpu
);
668 for (;;) local_irq_enable();
671 printk(KERN_INFO
"Initializing CPU#%d\n", cpu
);
673 if (cpu_has_vme
|| cpu_has_tsc
|| cpu_has_de
)
674 clear_in_cr4(X86_CR4_VME
|X86_CR4_PVI
|X86_CR4_TSD
|X86_CR4_DE
);
675 if (tsc_disable
&& cpu_has_tsc
) {
676 printk(KERN_NOTICE
"Disabling TSC...\n");
677 /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
678 clear_bit(X86_FEATURE_TSC
, boot_cpu_data
.x86_capability
);
679 set_in_cr4(X86_CR4_TSD
);
682 load_idt(&idt_descr
);
686 * Set up and load the per-CPU TSS and LDT
688 atomic_inc(&init_mm
.mm_count
);
689 curr
->active_mm
= &init_mm
;
692 enter_lazy_tlb(&init_mm
, curr
);
694 load_esp0(t
, thread
);
697 load_LDT(&init_mm
.context
);
699 #ifdef CONFIG_DOUBLEFAULT
700 /* Set up doublefault TSS pointer in the GDT */
701 __set_tss_desc(cpu
, GDT_ENTRY_DOUBLEFAULT_TSS
, &doublefault_tss
);
705 asm volatile ("mov %0, %%gs" : : "r" (0));
707 /* Clear all 6 debug registers: */
716 * Force FPU initialization:
718 current_thread_info()->status
= 0;
720 mxcsr_feature_mask_init();
723 #ifdef CONFIG_HOTPLUG_CPU
724 void __cpuinit
cpu_uninit(void)
726 int cpu
= raw_smp_processor_id();
727 cpu_clear(cpu
, cpu_initialized
);
730 per_cpu(cpu_tlbstate
, cpu
).state
= 0;
731 per_cpu(cpu_tlbstate
, cpu
).active_mm
= &init_mm
;