2 * VMI specific paravirt-ops implementation
4 * Copyright (C) 2005, VMware, Inc.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 * Send feedback to zach@vmware.com
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/bootmem.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
33 #include <asm/fixmap.h>
34 #include <asm/apicdef.h>
36 #include <asm/processor.h>
37 #include <asm/timer.h>
38 #include <asm/vmi_time.h>
39 #include <asm/kmap_types.h>
41 /* Convenient for calling VMI functions indirectly in the ROM */
42 typedef u32
__attribute__((regparm(1))) (VROMFUNC
)(void);
43 typedef u64
__attribute__((regparm(2))) (VROMLONGFUNC
)(int);
45 #define call_vrom_func(rom,func) \
46 (((VROMFUNC *)(rom->func))())
48 #define call_vrom_long_func(rom,func,arg) \
49 (((VROMLONGFUNC *)(rom->func)) (arg))
51 static struct vrom_header
*vmi_rom
;
52 static int disable_pge
;
53 static int disable_pse
;
54 static int disable_sep
;
55 static int disable_tsc
;
56 static int disable_mtrr
;
57 static int disable_noidle
;
58 static int disable_vmi_timer
;
60 /* Cached VMI operations */
62 void (*cpuid
)(void /* non-c */);
63 void (*_set_ldt
)(u32 selector
);
64 void (*set_tr
)(u32 selector
);
65 void (*set_kernel_stack
)(u32 selector
, u32 esp0
);
66 void (*allocate_page
)(u32
, u32
, u32
, u32
, u32
);
67 void (*release_page
)(u32
, u32
);
68 void (*set_pte
)(pte_t
, pte_t
*, unsigned);
69 void (*update_pte
)(pte_t
*, unsigned);
70 void (*set_linear_mapping
)(int, void *, u32
, u32
);
71 void (*_flush_tlb
)(int);
72 void (*set_initial_ap_state
)(int, int);
74 void (*set_lazy_mode
)(int mode
);
77 /* Cached VMI operations */
78 struct vmi_timer_ops vmi_timer_ops
;
81 * VMI patching routines.
83 #define MNEM_CALL 0xe8
87 #define IRQ_PATCH_INT_MASK 0
88 #define IRQ_PATCH_DISABLE 5
90 static inline void patch_offset(void *insnbuf
,
91 unsigned long eip
, unsigned long dest
)
93 *(unsigned long *)(insnbuf
+1) = dest
-eip
-5;
96 static unsigned patch_internal(int call
, unsigned len
, void *insnbuf
,
100 struct vmi_relocation_info
*const rel
= (struct vmi_relocation_info
*)&reloc
;
101 reloc
= call_vrom_long_func(vmi_rom
, get_reloc
, call
);
103 case VMI_RELOCATION_CALL_REL
:
105 *(char *)insnbuf
= MNEM_CALL
;
106 patch_offset(insnbuf
, eip
, (unsigned long)rel
->eip
);
109 case VMI_RELOCATION_JUMP_REL
:
111 *(char *)insnbuf
= MNEM_JMP
;
112 patch_offset(insnbuf
, eip
, (unsigned long)rel
->eip
);
115 case VMI_RELOCATION_NOP
:
116 /* obliterate the whole thing */
119 case VMI_RELOCATION_NONE
:
120 /* leave native code in place */
130 * Apply patch if appropriate, return length of new instruction
131 * sequence. The callee does nop padding for us.
133 static unsigned vmi_patch(u8 type
, u16 clobbers
, void *insns
,
134 unsigned long eip
, unsigned len
)
137 case PARAVIRT_PATCH(irq_disable
):
138 return patch_internal(VMI_CALL_DisableInterrupts
, len
,
140 case PARAVIRT_PATCH(irq_enable
):
141 return patch_internal(VMI_CALL_EnableInterrupts
, len
,
143 case PARAVIRT_PATCH(restore_fl
):
144 return patch_internal(VMI_CALL_SetInterruptMask
, len
,
146 case PARAVIRT_PATCH(save_fl
):
147 return patch_internal(VMI_CALL_GetInterruptMask
, len
,
149 case PARAVIRT_PATCH(iret
):
150 return patch_internal(VMI_CALL_IRET
, len
, insns
, eip
);
151 case PARAVIRT_PATCH(irq_enable_sysexit
):
152 return patch_internal(VMI_CALL_SYSEXIT
, len
, insns
, eip
);
159 /* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
160 static void vmi_cpuid(unsigned int *eax
, unsigned int *ebx
,
161 unsigned int *ecx
, unsigned int *edx
)
166 asm volatile ("call *%6"
171 : "0" (*eax
), "2" (*ecx
), "r" (vmi_ops
.cpuid
));
174 *edx
&= ~X86_FEATURE_PSE
;
176 *edx
&= ~X86_FEATURE_PGE
;
178 *edx
&= ~X86_FEATURE_SEP
;
180 *edx
&= ~X86_FEATURE_TSC
;
182 *edx
&= ~X86_FEATURE_MTRR
;
186 static inline void vmi_maybe_load_tls(struct desc_struct
*gdt
, int nr
, struct desc_struct
*new)
188 if (gdt
[nr
].a
!= new->a
|| gdt
[nr
].b
!= new->b
)
189 write_gdt_entry(gdt
, nr
, new->a
, new->b
);
192 static void vmi_load_tls(struct thread_struct
*t
, unsigned int cpu
)
194 struct desc_struct
*gdt
= get_cpu_gdt_table(cpu
);
195 vmi_maybe_load_tls(gdt
, GDT_ENTRY_TLS_MIN
+ 0, &t
->tls_array
[0]);
196 vmi_maybe_load_tls(gdt
, GDT_ENTRY_TLS_MIN
+ 1, &t
->tls_array
[1]);
197 vmi_maybe_load_tls(gdt
, GDT_ENTRY_TLS_MIN
+ 2, &t
->tls_array
[2]);
200 static void vmi_set_ldt(const void *addr
, unsigned entries
)
202 unsigned cpu
= smp_processor_id();
205 pack_descriptor(&low
, &high
, (unsigned long)addr
,
206 entries
* sizeof(struct desc_struct
) - 1,
208 write_gdt_entry(get_cpu_gdt_table(cpu
), GDT_ENTRY_LDT
, low
, high
);
209 vmi_ops
._set_ldt(entries
? GDT_ENTRY_LDT
*sizeof(struct desc_struct
) : 0);
212 static void vmi_set_tr(void)
214 vmi_ops
.set_tr(GDT_ENTRY_TSS
*sizeof(struct desc_struct
));
217 static void vmi_load_esp0(struct tss_struct
*tss
,
218 struct thread_struct
*thread
)
220 tss
->x86_tss
.esp0
= thread
->esp0
;
222 /* This can only happen when SEP is enabled, no need to test "SEP"arately */
223 if (unlikely(tss
->x86_tss
.ss1
!= thread
->sysenter_cs
)) {
224 tss
->x86_tss
.ss1
= thread
->sysenter_cs
;
225 wrmsr(MSR_IA32_SYSENTER_CS
, thread
->sysenter_cs
, 0);
227 vmi_ops
.set_kernel_stack(__KERNEL_DS
, tss
->x86_tss
.esp0
);
230 static void vmi_flush_tlb_user(void)
232 vmi_ops
._flush_tlb(VMI_FLUSH_TLB
);
235 static void vmi_flush_tlb_kernel(void)
237 vmi_ops
._flush_tlb(VMI_FLUSH_TLB
| VMI_FLUSH_GLOBAL
);
240 /* Stub to do nothing at all; used for delays and unimplemented calls */
241 static void vmi_nop(void)
245 #ifdef CONFIG_DEBUG_PAGE_TYPE
247 #ifdef CONFIG_X86_PAE
248 #define MAX_BOOT_PTS (2048+4+1)
250 #define MAX_BOOT_PTS (1024+1)
254 * During boot, mem_map is not yet available in paging_init, so stash
255 * all the boot page allocations here.
260 } boot_page_allocations
[MAX_BOOT_PTS
];
261 static int num_boot_page_allocations
;
262 static int boot_allocations_applied
;
264 void vmi_apply_boot_page_allocations(void)
268 for (i
= 0; i
< num_boot_page_allocations
; i
++) {
269 struct page
*page
= pfn_to_page(boot_page_allocations
[i
].pfn
);
270 page
->type
= boot_page_allocations
[i
].type
;
271 page
->type
= boot_page_allocations
[i
].type
&
272 ~(VMI_PAGE_ZEROED
| VMI_PAGE_CLONE
);
274 boot_allocations_applied
= 1;
277 static void record_page_type(u32 pfn
, int type
)
279 BUG_ON(num_boot_page_allocations
>= MAX_BOOT_PTS
);
280 boot_page_allocations
[num_boot_page_allocations
].pfn
= pfn
;
281 boot_page_allocations
[num_boot_page_allocations
].type
= type
;
282 num_boot_page_allocations
++;
285 static void check_zeroed_page(u32 pfn
, int type
, struct page
*page
)
289 int limit
= PAGE_SIZE
/ sizeof(int);
291 if (page_address(page
))
292 ptr
= (u32
*)page_address(page
);
294 ptr
= (u32
*)__va(pfn
<< PAGE_SHIFT
);
296 * When cloning the root in non-PAE mode, only the userspace
297 * pdes need to be zeroed.
299 if (type
& VMI_PAGE_CLONE
)
300 limit
= USER_PTRS_PER_PGD
;
301 for (i
= 0; i
< limit
; i
++)
306 * We stash the page type into struct page so we can verify the page
307 * types are used properly.
309 static void vmi_set_page_type(u32 pfn
, int type
)
311 /* PAE can have multiple roots per page - don't track */
312 if (PTRS_PER_PMD
> 1 && (type
& VMI_PAGE_PDP
))
315 if (boot_allocations_applied
) {
316 struct page
*page
= pfn_to_page(pfn
);
317 if (type
!= VMI_PAGE_NORMAL
)
320 BUG_ON(page
->type
== VMI_PAGE_NORMAL
);
321 page
->type
= type
& ~(VMI_PAGE_ZEROED
| VMI_PAGE_CLONE
);
322 if (type
& VMI_PAGE_ZEROED
)
323 check_zeroed_page(pfn
, type
, page
);
325 record_page_type(pfn
, type
);
329 static void vmi_check_page_type(u32 pfn
, int type
)
331 /* PAE can have multiple roots per page - skip checks */
332 if (PTRS_PER_PMD
> 1 && (type
& VMI_PAGE_PDP
))
335 type
&= ~(VMI_PAGE_ZEROED
| VMI_PAGE_CLONE
);
336 if (boot_allocations_applied
) {
337 struct page
*page
= pfn_to_page(pfn
);
338 BUG_ON((page
->type
^ type
) & VMI_PAGE_PAE
);
339 BUG_ON(type
== VMI_PAGE_NORMAL
&& page
->type
);
340 BUG_ON((type
& page
->type
) == 0);
344 #define vmi_set_page_type(p,t) do { } while (0)
345 #define vmi_check_page_type(p,t) do { } while (0)
348 #ifdef CONFIG_HIGHPTE
349 static void *vmi_kmap_atomic_pte(struct page
*page
, enum km_type type
)
351 void *va
= kmap_atomic(page
, type
);
354 * Internally, the VMI ROM must map virtual addresses to physical
355 * addresses for processing MMU updates. By the time MMU updates
356 * are issued, this information is typically already lost.
357 * Fortunately, the VMI provides a cache of mapping slots for active
360 * We use slot zero for the linear mapping of physical memory, and
361 * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
363 * args: SLOT VA COUNT PFN
365 BUG_ON(type
!= KM_PTE0
&& type
!= KM_PTE1
);
366 vmi_ops
.set_linear_mapping((type
- KM_PTE0
)+1, va
, 1, page_to_pfn(page
));
372 static void vmi_allocate_pt(struct mm_struct
*mm
, u32 pfn
)
374 vmi_set_page_type(pfn
, VMI_PAGE_L1
);
375 vmi_ops
.allocate_page(pfn
, VMI_PAGE_L1
, 0, 0, 0);
378 static void vmi_allocate_pd(u32 pfn
)
381 * This call comes in very early, before mem_map is setup.
382 * It is called only for swapper_pg_dir, which already has
385 vmi_set_page_type(pfn
, VMI_PAGE_L2
);
386 vmi_ops
.allocate_page(pfn
, VMI_PAGE_L2
, 0, 0, 0);
389 static void vmi_allocate_pd_clone(u32 pfn
, u32 clonepfn
, u32 start
, u32 count
)
391 vmi_set_page_type(pfn
, VMI_PAGE_L2
| VMI_PAGE_CLONE
);
392 vmi_check_page_type(clonepfn
, VMI_PAGE_L2
);
393 vmi_ops
.allocate_page(pfn
, VMI_PAGE_L2
| VMI_PAGE_CLONE
, clonepfn
, start
, count
);
396 static void vmi_release_pt(u32 pfn
)
398 vmi_ops
.release_page(pfn
, VMI_PAGE_L1
);
399 vmi_set_page_type(pfn
, VMI_PAGE_NORMAL
);
402 static void vmi_release_pd(u32 pfn
)
404 vmi_ops
.release_page(pfn
, VMI_PAGE_L2
);
405 vmi_set_page_type(pfn
, VMI_PAGE_NORMAL
);
409 * Helper macros for MMU update flags. We can defer updates until a flush
410 * or page invalidation only if the update is to the current address space
411 * (otherwise, there is no flush). We must check against init_mm, since
412 * this could be a kernel update, which usually passes init_mm, although
413 * sometimes this check can be skipped if we know the particular function
414 * is only called on user mode PTEs. We could change the kernel to pass
415 * current->active_mm here, but in particular, I was unsure if changing
416 * mm/highmem.c to do this would still be correct on other architectures.
418 #define is_current_as(mm, mustbeuser) ((mm) == current->active_mm || \
419 (!mustbeuser && (mm) == &init_mm))
420 #define vmi_flags_addr(mm, addr, level, user) \
421 ((level) | (is_current_as(mm, user) ? \
422 (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
423 #define vmi_flags_addr_defer(mm, addr, level, user) \
424 ((level) | (is_current_as(mm, user) ? \
425 (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
427 static void vmi_update_pte(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
429 vmi_check_page_type(__pa(ptep
) >> PAGE_SHIFT
, VMI_PAGE_PTE
);
430 vmi_ops
.update_pte(ptep
, vmi_flags_addr(mm
, addr
, VMI_PAGE_PT
, 0));
433 static void vmi_update_pte_defer(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
435 vmi_check_page_type(__pa(ptep
) >> PAGE_SHIFT
, VMI_PAGE_PTE
);
436 vmi_ops
.update_pte(ptep
, vmi_flags_addr_defer(mm
, addr
, VMI_PAGE_PT
, 0));
439 static void vmi_set_pte(pte_t
*ptep
, pte_t pte
)
441 /* XXX because of set_pmd_pte, this can be called on PT or PD layers */
442 vmi_check_page_type(__pa(ptep
) >> PAGE_SHIFT
, VMI_PAGE_PTE
| VMI_PAGE_PD
);
443 vmi_ops
.set_pte(pte
, ptep
, VMI_PAGE_PT
);
446 static void vmi_set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
, pte_t pte
)
448 vmi_check_page_type(__pa(ptep
) >> PAGE_SHIFT
, VMI_PAGE_PTE
);
449 vmi_ops
.set_pte(pte
, ptep
, vmi_flags_addr(mm
, addr
, VMI_PAGE_PT
, 0));
452 static void vmi_set_pmd(pmd_t
*pmdp
, pmd_t pmdval
)
454 #ifdef CONFIG_X86_PAE
455 const pte_t pte
= { pmdval
.pmd
, pmdval
.pmd
>> 32 };
456 vmi_check_page_type(__pa(pmdp
) >> PAGE_SHIFT
, VMI_PAGE_PMD
);
458 const pte_t pte
= { pmdval
.pud
.pgd
.pgd
};
459 vmi_check_page_type(__pa(pmdp
) >> PAGE_SHIFT
, VMI_PAGE_PGD
);
461 vmi_ops
.set_pte(pte
, (pte_t
*)pmdp
, VMI_PAGE_PD
);
464 #ifdef CONFIG_X86_PAE
466 static void vmi_set_pte_atomic(pte_t
*ptep
, pte_t pteval
)
469 * XXX This is called from set_pmd_pte, but at both PT
470 * and PD layers so the VMI_PAGE_PT flag is wrong. But
471 * it is only called for large page mapping changes,
472 * the Xen backend, doesn't support large pages, and the
473 * ESX backend doesn't depend on the flag.
475 set_64bit((unsigned long long *)ptep
,pte_val(pteval
));
476 vmi_ops
.update_pte(ptep
, VMI_PAGE_PT
);
479 static void vmi_set_pte_present(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
, pte_t pte
)
481 vmi_check_page_type(__pa(ptep
) >> PAGE_SHIFT
, VMI_PAGE_PTE
);
482 vmi_ops
.set_pte(pte
, ptep
, vmi_flags_addr_defer(mm
, addr
, VMI_PAGE_PT
, 1));
485 static void vmi_set_pud(pud_t
*pudp
, pud_t pudval
)
488 const pte_t pte
= { pudval
.pgd
.pgd
, pudval
.pgd
.pgd
>> 32 };
489 vmi_check_page_type(__pa(pudp
) >> PAGE_SHIFT
, VMI_PAGE_PGD
);
490 vmi_ops
.set_pte(pte
, (pte_t
*)pudp
, VMI_PAGE_PDP
);
493 static void vmi_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
495 const pte_t pte
= { 0 };
496 vmi_check_page_type(__pa(ptep
) >> PAGE_SHIFT
, VMI_PAGE_PTE
);
497 vmi_ops
.set_pte(pte
, ptep
, vmi_flags_addr(mm
, addr
, VMI_PAGE_PT
, 0));
500 static void vmi_pmd_clear(pmd_t
*pmd
)
502 const pte_t pte
= { 0 };
503 vmi_check_page_type(__pa(pmd
) >> PAGE_SHIFT
, VMI_PAGE_PMD
);
504 vmi_ops
.set_pte(pte
, (pte_t
*)pmd
, VMI_PAGE_PD
);
509 static void __devinit
510 vmi_startup_ipi_hook(int phys_apicid
, unsigned long start_eip
,
511 unsigned long start_esp
)
513 struct vmi_ap_state ap
;
515 /* Default everything to zero. This is fine for most GPRs. */
516 memset(&ap
, 0, sizeof(struct vmi_ap_state
));
518 ap
.gdtr_limit
= GDT_SIZE
- 1;
519 ap
.gdtr_base
= (unsigned long) get_cpu_gdt_table(phys_apicid
);
521 ap
.idtr_limit
= IDT_ENTRIES
* 8 - 1;
522 ap
.idtr_base
= (unsigned long) idt_table
;
527 ap
.eip
= (unsigned long) start_eip
;
529 ap
.esp
= (unsigned long) start_esp
;
533 ap
.fs
= __KERNEL_PERCPU
;
538 #ifdef CONFIG_X86_PAE
539 /* efer should match BSP efer. */
542 rdmsr(MSR_EFER
, l
, h
);
543 ap
.efer
= (unsigned long long) h
<< 32 | l
;
547 ap
.cr3
= __pa(swapper_pg_dir
);
548 /* Protected mode, paging, AM, WP, NE, MP. */
550 ap
.cr4
= mmu_cr4_features
;
551 vmi_ops
.set_initial_ap_state((u32
)&ap
, phys_apicid
);
555 static void vmi_set_lazy_mode(enum paravirt_lazy_mode mode
)
557 static DEFINE_PER_CPU(enum paravirt_lazy_mode
, lazy_mode
);
559 if (!vmi_ops
.set_lazy_mode
)
562 /* Modes should never nest or overlap */
563 BUG_ON(__get_cpu_var(lazy_mode
) && !(mode
== PARAVIRT_LAZY_NONE
||
564 mode
== PARAVIRT_LAZY_FLUSH
));
566 if (mode
== PARAVIRT_LAZY_FLUSH
) {
567 vmi_ops
.set_lazy_mode(0);
568 vmi_ops
.set_lazy_mode(__get_cpu_var(lazy_mode
));
570 vmi_ops
.set_lazy_mode(mode
);
571 __get_cpu_var(lazy_mode
) = mode
;
575 static inline int __init
check_vmi_rom(struct vrom_header
*rom
)
577 struct pci_header
*pci
;
578 struct pnp_header
*pnp
;
579 const char *manufacturer
= "UNKNOWN";
580 const char *product
= "UNKNOWN";
581 const char *license
= "unspecified";
583 if (rom
->rom_signature
!= 0xaa55)
585 if (rom
->vrom_signature
!= VMI_SIGNATURE
)
587 if (rom
->api_version_maj
!= VMI_API_REV_MAJOR
||
588 rom
->api_version_min
+1 < VMI_API_REV_MINOR
+1) {
589 printk(KERN_WARNING
"VMI: Found mismatched rom version %d.%d\n",
590 rom
->api_version_maj
,
591 rom
->api_version_min
);
596 * Relying on the VMI_SIGNATURE field is not 100% safe, so check
597 * the PCI header and device type to make sure this is really a
600 if (!rom
->pci_header_offs
) {
601 printk(KERN_WARNING
"VMI: ROM does not contain PCI header.\n");
605 pci
= (struct pci_header
*)((char *)rom
+rom
->pci_header_offs
);
606 if (pci
->vendorID
!= PCI_VENDOR_ID_VMWARE
||
607 pci
->deviceID
!= PCI_DEVICE_ID_VMWARE_VMI
) {
608 /* Allow it to run... anyways, but warn */
609 printk(KERN_WARNING
"VMI: ROM from unknown manufacturer\n");
612 if (rom
->pnp_header_offs
) {
613 pnp
= (struct pnp_header
*)((char *)rom
+rom
->pnp_header_offs
);
614 if (pnp
->manufacturer_offset
)
615 manufacturer
= (const char *)rom
+pnp
->manufacturer_offset
;
616 if (pnp
->product_offset
)
617 product
= (const char *)rom
+pnp
->product_offset
;
620 if (rom
->license_offs
)
621 license
= (char *)rom
+rom
->license_offs
;
623 printk(KERN_INFO
"VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
624 manufacturer
, product
,
625 rom
->api_version_maj
, rom
->api_version_min
,
626 pci
->rom_version_maj
, pci
->rom_version_min
);
628 /* Don't allow BSD/MIT here for now because we don't want to end up
629 with any binary only shim layers */
630 if (strcmp(license
, "GPL") && strcmp(license
, "GPL v2")) {
631 printk(KERN_WARNING
"VMI: Non GPL license `%s' found for ROM. Not used.\n",
640 * Probe for the VMI option ROM
642 static inline int __init
probe_vmi_rom(void)
646 /* VMI ROM is in option ROM area, check signature */
647 for (base
= 0xC0000; base
< 0xE0000; base
+= 2048) {
648 struct vrom_header
*romstart
;
649 romstart
= (struct vrom_header
*)isa_bus_to_virt(base
);
650 if (check_vmi_rom(romstart
)) {
659 * VMI setup common to all processors
661 void vmi_bringup(void)
663 /* We must establish the lowmem mapping for MMU ops to work */
664 if (vmi_ops
.set_linear_mapping
)
665 vmi_ops
.set_linear_mapping(0, (void *)__PAGE_OFFSET
, max_low_pfn
, 0);
669 * Return a pointer to a VMI function or NULL if unimplemented
671 static void *vmi_get_function(int vmicall
)
674 const struct vmi_relocation_info
*rel
= (struct vmi_relocation_info
*)&reloc
;
675 reloc
= call_vrom_long_func(vmi_rom
, get_reloc
, vmicall
);
676 BUG_ON(rel
->type
== VMI_RELOCATION_JUMP_REL
);
677 if (rel
->type
== VMI_RELOCATION_CALL_REL
)
678 return (void *)rel
->eip
;
684 * Helper macro for making the VMI paravirt-ops fill code readable.
685 * For unimplemented operations, fall back to default, unless nop
686 * is returned by the ROM.
688 #define para_fill(opname, vmicall) \
690 reloc = call_vrom_long_func(vmi_rom, get_reloc, \
691 VMI_CALL_##vmicall); \
692 if (rel->type == VMI_RELOCATION_CALL_REL) \
693 paravirt_ops.opname = (void *)rel->eip; \
694 else if (rel->type == VMI_RELOCATION_NOP) \
695 paravirt_ops.opname = (void *)vmi_nop; \
696 else if (rel->type != VMI_RELOCATION_NONE) \
697 printk(KERN_WARNING "VMI: Unknown relocation " \
698 "type %d for " #vmicall"\n",\
703 * Helper macro for making the VMI paravirt-ops fill code readable.
704 * For cached operations which do not match the VMI ROM ABI and must
705 * go through a tranlation stub. Ignore NOPs, since it is not clear
706 * a NOP * VMI function corresponds to a NOP paravirt-op when the
707 * functions are not in 1-1 correspondence.
709 #define para_wrap(opname, wrapper, cache, vmicall) \
711 reloc = call_vrom_long_func(vmi_rom, get_reloc, \
712 VMI_CALL_##vmicall); \
713 BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL); \
714 if (rel->type == VMI_RELOCATION_CALL_REL) { \
715 paravirt_ops.opname = wrapper; \
716 vmi_ops.cache = (void *)rel->eip; \
721 * Activate the VMI interface and switch into paravirtualized mode
723 static inline int __init
activate_vmi(void)
727 const struct vmi_relocation_info
*rel
= (struct vmi_relocation_info
*)&reloc
;
729 if (call_vrom_func(vmi_rom
, vmi_init
) != 0) {
730 printk(KERN_ERR
"VMI ROM failed to initialize!");
733 savesegment(cs
, kernel_cs
);
735 paravirt_ops
.paravirt_enabled
= 1;
736 paravirt_ops
.kernel_rpl
= kernel_cs
& SEGMENT_RPL_MASK
;
738 paravirt_ops
.patch
= vmi_patch
;
739 paravirt_ops
.name
= "vmi";
742 * Many of these operations are ABI compatible with VMI.
743 * This means we can fill in the paravirt-ops with direct
744 * pointers into the VMI ROM. If the calling convention for
745 * these operations changes, this code needs to be updated.
748 * CPUID paravirt-op uses pointers, not the native ISA
749 * halt has no VMI equivalent; all VMI halts are "safe"
750 * no MSR support yet - just trap and emulate. VMI uses the
751 * same ABI as the native ISA, but Linux wants exceptions
752 * from bogus MSR read / write handled
753 * rdpmc is not yet used in Linux
756 /* CPUID is special, so very special it gets wrapped like a present */
757 para_wrap(cpuid
, vmi_cpuid
, cpuid
, CPUID
);
759 para_fill(clts
, CLTS
);
760 para_fill(get_debugreg
, GetDR
);
761 para_fill(set_debugreg
, SetDR
);
762 para_fill(read_cr0
, GetCR0
);
763 para_fill(read_cr2
, GetCR2
);
764 para_fill(read_cr3
, GetCR3
);
765 para_fill(read_cr4
, GetCR4
);
766 para_fill(write_cr0
, SetCR0
);
767 para_fill(write_cr2
, SetCR2
);
768 para_fill(write_cr3
, SetCR3
);
769 para_fill(write_cr4
, SetCR4
);
770 para_fill(save_fl
, GetInterruptMask
);
771 para_fill(restore_fl
, SetInterruptMask
);
772 para_fill(irq_disable
, DisableInterrupts
);
773 para_fill(irq_enable
, EnableInterrupts
);
775 para_fill(wbinvd
, WBINVD
);
776 para_fill(read_tsc
, RDTSC
);
778 /* The following we emulate with trap and emulate for now */
779 /* paravirt_ops.read_msr = vmi_rdmsr */
780 /* paravirt_ops.write_msr = vmi_wrmsr */
781 /* paravirt_ops.rdpmc = vmi_rdpmc */
783 /* TR interface doesn't pass TR value, wrap */
784 para_wrap(load_tr_desc
, vmi_set_tr
, set_tr
, SetTR
);
786 /* LDT is special, too */
787 para_wrap(set_ldt
, vmi_set_ldt
, _set_ldt
, SetLDT
);
789 para_fill(load_gdt
, SetGDT
);
790 para_fill(load_idt
, SetIDT
);
791 para_fill(store_gdt
, GetGDT
);
792 para_fill(store_idt
, GetIDT
);
793 para_fill(store_tr
, GetTR
);
794 paravirt_ops
.load_tls
= vmi_load_tls
;
795 para_fill(write_ldt_entry
, WriteLDTEntry
);
796 para_fill(write_gdt_entry
, WriteGDTEntry
);
797 para_fill(write_idt_entry
, WriteIDTEntry
);
798 para_wrap(load_esp0
, vmi_load_esp0
, set_kernel_stack
, UpdateKernelStack
);
799 para_fill(set_iopl_mask
, SetIOPLMask
);
800 para_fill(io_delay
, IODelay
);
801 para_wrap(set_lazy_mode
, vmi_set_lazy_mode
, set_lazy_mode
, SetLazyMode
);
803 /* user and kernel flush are just handled with different flags to FlushTLB */
804 para_wrap(flush_tlb_user
, vmi_flush_tlb_user
, _flush_tlb
, FlushTLB
);
805 para_wrap(flush_tlb_kernel
, vmi_flush_tlb_kernel
, _flush_tlb
, FlushTLB
);
806 para_fill(flush_tlb_single
, InvalPage
);
809 * Until a standard flag format can be agreed on, we need to
810 * implement these as wrappers in Linux. Get the VMI ROM
811 * function pointers for the two backend calls.
813 #ifdef CONFIG_X86_PAE
814 vmi_ops
.set_pte
= vmi_get_function(VMI_CALL_SetPxELong
);
815 vmi_ops
.update_pte
= vmi_get_function(VMI_CALL_UpdatePxELong
);
817 vmi_ops
.set_pte
= vmi_get_function(VMI_CALL_SetPxE
);
818 vmi_ops
.update_pte
= vmi_get_function(VMI_CALL_UpdatePxE
);
821 if (vmi_ops
.set_pte
) {
822 paravirt_ops
.set_pte
= vmi_set_pte
;
823 paravirt_ops
.set_pte_at
= vmi_set_pte_at
;
824 paravirt_ops
.set_pmd
= vmi_set_pmd
;
825 #ifdef CONFIG_X86_PAE
826 paravirt_ops
.set_pte_atomic
= vmi_set_pte_atomic
;
827 paravirt_ops
.set_pte_present
= vmi_set_pte_present
;
828 paravirt_ops
.set_pud
= vmi_set_pud
;
829 paravirt_ops
.pte_clear
= vmi_pte_clear
;
830 paravirt_ops
.pmd_clear
= vmi_pmd_clear
;
834 if (vmi_ops
.update_pte
) {
835 paravirt_ops
.pte_update
= vmi_update_pte
;
836 paravirt_ops
.pte_update_defer
= vmi_update_pte_defer
;
839 vmi_ops
.allocate_page
= vmi_get_function(VMI_CALL_AllocatePage
);
840 if (vmi_ops
.allocate_page
) {
841 paravirt_ops
.alloc_pt
= vmi_allocate_pt
;
842 paravirt_ops
.alloc_pd
= vmi_allocate_pd
;
843 paravirt_ops
.alloc_pd_clone
= vmi_allocate_pd_clone
;
846 vmi_ops
.release_page
= vmi_get_function(VMI_CALL_ReleasePage
);
847 if (vmi_ops
.release_page
) {
848 paravirt_ops
.release_pt
= vmi_release_pt
;
849 paravirt_ops
.release_pd
= vmi_release_pd
;
852 /* Set linear is needed in all cases */
853 vmi_ops
.set_linear_mapping
= vmi_get_function(VMI_CALL_SetLinearMapping
);
854 #ifdef CONFIG_HIGHPTE
855 if (vmi_ops
.set_linear_mapping
)
856 paravirt_ops
.kmap_atomic_pte
= vmi_kmap_atomic_pte
;
860 * These MUST always be patched. Don't support indirect jumps
861 * through these operations, as the VMI interface may use either
862 * a jump or a call to get to these operations, depending on
863 * the backend. They are performance critical anyway, so requiring
864 * a patch is not a big problem.
866 paravirt_ops
.irq_enable_sysexit
= (void *)0xfeedbab0;
867 paravirt_ops
.iret
= (void *)0xbadbab0;
870 para_wrap(startup_ipi_hook
, vmi_startup_ipi_hook
, set_initial_ap_state
, SetInitialAPState
);
873 #ifdef CONFIG_X86_LOCAL_APIC
874 para_fill(apic_read
, APICRead
);
875 para_fill(apic_write
, APICWrite
);
876 para_fill(apic_write_atomic
, APICWrite
);
880 * Check for VMI timer functionality by probing for a cycle frequency method
882 reloc
= call_vrom_long_func(vmi_rom
, get_reloc
, VMI_CALL_GetCycleFrequency
);
883 if (!disable_vmi_timer
&& rel
->type
!= VMI_RELOCATION_NONE
) {
884 vmi_timer_ops
.get_cycle_frequency
= (void *)rel
->eip
;
885 vmi_timer_ops
.get_cycle_counter
=
886 vmi_get_function(VMI_CALL_GetCycleCounter
);
887 vmi_timer_ops
.get_wallclock
=
888 vmi_get_function(VMI_CALL_GetWallclockTime
);
889 vmi_timer_ops
.wallclock_updated
=
890 vmi_get_function(VMI_CALL_WallclockUpdated
);
891 vmi_timer_ops
.set_alarm
= vmi_get_function(VMI_CALL_SetAlarm
);
892 vmi_timer_ops
.cancel_alarm
=
893 vmi_get_function(VMI_CALL_CancelAlarm
);
894 paravirt_ops
.time_init
= vmi_time_init
;
895 paravirt_ops
.get_wallclock
= vmi_get_wallclock
;
896 paravirt_ops
.set_wallclock
= vmi_set_wallclock
;
897 #ifdef CONFIG_X86_LOCAL_APIC
898 paravirt_ops
.setup_boot_clock
= vmi_time_bsp_init
;
899 paravirt_ops
.setup_secondary_clock
= vmi_time_ap_init
;
901 paravirt_ops
.sched_clock
= vmi_sched_clock
;
902 paravirt_ops
.get_cpu_khz
= vmi_cpu_khz
;
904 /* We have true wallclock functions; disable CMOS clock sync */
905 no_sync_cmos_clock
= 1;
908 disable_vmi_timer
= 1;
911 para_fill(safe_halt
, Halt
);
914 * Alternative instruction rewriting doesn't happen soon enough
915 * to convert VMI_IRET to a call instead of a jump; so we have
916 * to do this before IRQs get reenabled. Fortunately, it is
919 apply_paravirt(__parainstructions
, __parainstructions_end
);
928 void __init
vmi_init(void)
935 check_vmi_rom(vmi_rom
);
937 /* In case probing for or validating the ROM failed, basil */
941 reserve_top_address(-vmi_rom
->virtual_top
);
943 local_irq_save(flags
);
946 #ifdef CONFIG_X86_IO_APIC
947 /* This is virtual hardware; timer routing is wired correctly */
950 local_irq_restore(flags
& X86_EFLAGS_IF
);
953 static int __init
parse_vmi(char *arg
)
958 if (!strcmp(arg
, "disable_pge")) {
959 clear_bit(X86_FEATURE_PGE
, boot_cpu_data
.x86_capability
);
961 } else if (!strcmp(arg
, "disable_pse")) {
962 clear_bit(X86_FEATURE_PSE
, boot_cpu_data
.x86_capability
);
964 } else if (!strcmp(arg
, "disable_sep")) {
965 clear_bit(X86_FEATURE_SEP
, boot_cpu_data
.x86_capability
);
967 } else if (!strcmp(arg
, "disable_tsc")) {
968 clear_bit(X86_FEATURE_TSC
, boot_cpu_data
.x86_capability
);
970 } else if (!strcmp(arg
, "disable_mtrr")) {
971 clear_bit(X86_FEATURE_MTRR
, boot_cpu_data
.x86_capability
);
973 } else if (!strcmp(arg
, "disable_timer")) {
974 disable_vmi_timer
= 1;
976 } else if (!strcmp(arg
, "disable_noidle"))
981 early_param("vmi", parse_vmi
);