[ALSA] cs4231-lib: replace common delay loop by function
[linux-2.6/verdex.git] / fs / ext4 / inode.c
bloba4848e04a5edf1cb4b48aa02ea58eb5b55585adc
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext4_jbd2.h>
29 #include <linux/jbd2.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "xattr.h"
40 #include "acl.h"
43 * Test whether an inode is a fast symlink.
45 static int ext4_inode_is_fast_symlink(struct inode *inode)
47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
48 (inode->i_sb->s_blocksize >> 9) : 0;
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
54 * The ext4 forget function must perform a revoke if we are freeing data
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
62 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
65 int err;
67 might_sleep();
69 BUFFER_TRACE(bh, "enter");
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
83 if (bh) {
84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
85 return ext4_journal_forget(handle, bh);
87 return 0;
91 * data!=journal && (is_metadata || should_journal_data(inode))
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
95 if (err)
96 ext4_abort(inode->i_sb, __FUNCTION__,
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
106 static unsigned long blocks_for_truncate(struct inode *inode)
108 unsigned long needed;
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
115 * like a regular file for ext4 to try to delete it. Things
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
139 static handle_t *start_transaction(struct inode *inode)
141 handle_t *result;
143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
144 if (!IS_ERR(result))
145 return result;
147 ext4_std_error(inode->i_sb, PTR_ERR(result));
148 return result;
152 * Try to extend this transaction for the purposes of truncation.
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
157 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
160 return 0;
161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
162 return 0;
163 return 1;
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
171 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
173 jbd_debug(2, "restarting handle %p\n", handle);
174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
178 * Called at the last iput() if i_nlink is zero.
180 void ext4_delete_inode (struct inode * inode)
182 handle_t *handle;
184 truncate_inode_pages(&inode->i_data, 0);
186 if (is_bad_inode(inode))
187 goto no_delete;
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
196 ext4_orphan_del(NULL, inode);
197 goto no_delete;
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
204 ext4_truncate(inode);
206 * Kill off the orphan record which ext4_truncate created.
207 * AKPM: I think this can be inside the above `if'.
208 * Note that ext4_orphan_del() has to be able to cope with the
209 * deletion of a non-existent orphan - this is because we don't
210 * know if ext4_truncate() actually created an orphan record.
211 * (Well, we could do this if we need to, but heck - it works)
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
223 if (ext4_mark_inode_dirty(handle, inode))
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
229 return;
230 no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
234 typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238 } Indirect;
240 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
242 p->key = *(p->p = v);
243 p->bh = bh;
246 static int verify_chain(Indirect *from, Indirect *to)
248 while (from <= to && from->key == *from->p)
249 from++;
250 return (from > to);
254 * ext4_block_to_path - parse the block number into array of offsets
255 * @inode: inode in question (we are only interested in its superblock)
256 * @i_block: block number to be parsed
257 * @offsets: array to store the offsets in
258 * @boundary: set this non-zero if the referred-to block is likely to be
259 * followed (on disk) by an indirect block.
261 * To store the locations of file's data ext4 uses a data structure common
262 * for UNIX filesystems - tree of pointers anchored in the inode, with
263 * data blocks at leaves and indirect blocks in intermediate nodes.
264 * This function translates the block number into path in that tree -
265 * return value is the path length and @offsets[n] is the offset of
266 * pointer to (n+1)th node in the nth one. If @block is out of range
267 * (negative or too large) warning is printed and zero returned.
269 * Note: function doesn't find node addresses, so no IO is needed. All
270 * we need to know is the capacity of indirect blocks (taken from the
271 * inode->i_sb).
275 * Portability note: the last comparison (check that we fit into triple
276 * indirect block) is spelled differently, because otherwise on an
277 * architecture with 32-bit longs and 8Kb pages we might get into trouble
278 * if our filesystem had 8Kb blocks. We might use long long, but that would
279 * kill us on x86. Oh, well, at least the sign propagation does not matter -
280 * i_block would have to be negative in the very beginning, so we would not
281 * get there at all.
284 static int ext4_block_to_path(struct inode *inode,
285 long i_block, int offsets[4], int *boundary)
287 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
288 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
289 const long direct_blocks = EXT4_NDIR_BLOCKS,
290 indirect_blocks = ptrs,
291 double_blocks = (1 << (ptrs_bits * 2));
292 int n = 0;
293 int final = 0;
295 if (i_block < 0) {
296 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
297 } else if (i_block < direct_blocks) {
298 offsets[n++] = i_block;
299 final = direct_blocks;
300 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
301 offsets[n++] = EXT4_IND_BLOCK;
302 offsets[n++] = i_block;
303 final = ptrs;
304 } else if ((i_block -= indirect_blocks) < double_blocks) {
305 offsets[n++] = EXT4_DIND_BLOCK;
306 offsets[n++] = i_block >> ptrs_bits;
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
310 offsets[n++] = EXT4_TIND_BLOCK;
311 offsets[n++] = i_block >> (ptrs_bits * 2);
312 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
313 offsets[n++] = i_block & (ptrs - 1);
314 final = ptrs;
315 } else {
316 ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
318 if (boundary)
319 *boundary = final - 1 - (i_block & (ptrs - 1));
320 return n;
324 * ext4_get_branch - read the chain of indirect blocks leading to data
325 * @inode: inode in question
326 * @depth: depth of the chain (1 - direct pointer, etc.)
327 * @offsets: offsets of pointers in inode/indirect blocks
328 * @chain: place to store the result
329 * @err: here we store the error value
331 * Function fills the array of triples <key, p, bh> and returns %NULL
332 * if everything went OK or the pointer to the last filled triple
333 * (incomplete one) otherwise. Upon the return chain[i].key contains
334 * the number of (i+1)-th block in the chain (as it is stored in memory,
335 * i.e. little-endian 32-bit), chain[i].p contains the address of that
336 * number (it points into struct inode for i==0 and into the bh->b_data
337 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
338 * block for i>0 and NULL for i==0. In other words, it holds the block
339 * numbers of the chain, addresses they were taken from (and where we can
340 * verify that chain did not change) and buffer_heads hosting these
341 * numbers.
343 * Function stops when it stumbles upon zero pointer (absent block)
344 * (pointer to last triple returned, *@err == 0)
345 * or when it gets an IO error reading an indirect block
346 * (ditto, *@err == -EIO)
347 * or when it notices that chain had been changed while it was reading
348 * (ditto, *@err == -EAGAIN)
349 * or when it reads all @depth-1 indirect blocks successfully and finds
350 * the whole chain, all way to the data (returns %NULL, *err == 0).
352 static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
353 Indirect chain[4], int *err)
355 struct super_block *sb = inode->i_sb;
356 Indirect *p = chain;
357 struct buffer_head *bh;
359 *err = 0;
360 /* i_data is not going away, no lock needed */
361 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
362 if (!p->key)
363 goto no_block;
364 while (--depth) {
365 bh = sb_bread(sb, le32_to_cpu(p->key));
366 if (!bh)
367 goto failure;
368 /* Reader: pointers */
369 if (!verify_chain(chain, p))
370 goto changed;
371 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
372 /* Reader: end */
373 if (!p->key)
374 goto no_block;
376 return NULL;
378 changed:
379 brelse(bh);
380 *err = -EAGAIN;
381 goto no_block;
382 failure:
383 *err = -EIO;
384 no_block:
385 return p;
389 * ext4_find_near - find a place for allocation with sufficient locality
390 * @inode: owner
391 * @ind: descriptor of indirect block.
393 * This function returns the prefered place for block allocation.
394 * It is used when heuristic for sequential allocation fails.
395 * Rules are:
396 * + if there is a block to the left of our position - allocate near it.
397 * + if pointer will live in indirect block - allocate near that block.
398 * + if pointer will live in inode - allocate in the same
399 * cylinder group.
401 * In the latter case we colour the starting block by the callers PID to
402 * prevent it from clashing with concurrent allocations for a different inode
403 * in the same block group. The PID is used here so that functionally related
404 * files will be close-by on-disk.
406 * Caller must make sure that @ind is valid and will stay that way.
408 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
410 struct ext4_inode_info *ei = EXT4_I(inode);
411 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
412 __le32 *p;
413 ext4_fsblk_t bg_start;
414 ext4_grpblk_t colour;
416 /* Try to find previous block */
417 for (p = ind->p - 1; p >= start; p--) {
418 if (*p)
419 return le32_to_cpu(*p);
422 /* No such thing, so let's try location of indirect block */
423 if (ind->bh)
424 return ind->bh->b_blocknr;
427 * It is going to be referred to from the inode itself? OK, just put it
428 * into the same cylinder group then.
430 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
431 colour = (current->pid % 16) *
432 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
433 return bg_start + colour;
437 * ext4_find_goal - find a prefered place for allocation.
438 * @inode: owner
439 * @block: block we want
440 * @chain: chain of indirect blocks
441 * @partial: pointer to the last triple within a chain
442 * @goal: place to store the result.
444 * Normally this function find the prefered place for block allocation,
445 * stores it in *@goal and returns zero.
448 static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
449 Indirect chain[4], Indirect *partial)
451 struct ext4_block_alloc_info *block_i;
453 block_i = EXT4_I(inode)->i_block_alloc_info;
456 * try the heuristic for sequential allocation,
457 * failing that at least try to get decent locality.
459 if (block_i && (block == block_i->last_alloc_logical_block + 1)
460 && (block_i->last_alloc_physical_block != 0)) {
461 return block_i->last_alloc_physical_block + 1;
464 return ext4_find_near(inode, partial);
468 * ext4_blks_to_allocate: Look up the block map and count the number
469 * of direct blocks need to be allocated for the given branch.
471 * @branch: chain of indirect blocks
472 * @k: number of blocks need for indirect blocks
473 * @blks: number of data blocks to be mapped.
474 * @blocks_to_boundary: the offset in the indirect block
476 * return the total number of blocks to be allocate, including the
477 * direct and indirect blocks.
479 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
480 int blocks_to_boundary)
482 unsigned long count = 0;
485 * Simple case, [t,d]Indirect block(s) has not allocated yet
486 * then it's clear blocks on that path have not allocated
488 if (k > 0) {
489 /* right now we don't handle cross boundary allocation */
490 if (blks < blocks_to_boundary + 1)
491 count += blks;
492 else
493 count += blocks_to_boundary + 1;
494 return count;
497 count++;
498 while (count < blks && count <= blocks_to_boundary &&
499 le32_to_cpu(*(branch[0].p + count)) == 0) {
500 count++;
502 return count;
506 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
507 * @indirect_blks: the number of blocks need to allocate for indirect
508 * blocks
510 * @new_blocks: on return it will store the new block numbers for
511 * the indirect blocks(if needed) and the first direct block,
512 * @blks: on return it will store the total number of allocated
513 * direct blocks
515 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
516 ext4_fsblk_t goal, int indirect_blks, int blks,
517 ext4_fsblk_t new_blocks[4], int *err)
519 int target, i;
520 unsigned long count = 0;
521 int index = 0;
522 ext4_fsblk_t current_block = 0;
523 int ret = 0;
526 * Here we try to allocate the requested multiple blocks at once,
527 * on a best-effort basis.
528 * To build a branch, we should allocate blocks for
529 * the indirect blocks(if not allocated yet), and at least
530 * the first direct block of this branch. That's the
531 * minimum number of blocks need to allocate(required)
533 target = blks + indirect_blks;
535 while (1) {
536 count = target;
537 /* allocating blocks for indirect blocks and direct blocks */
538 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
539 if (*err)
540 goto failed_out;
542 target -= count;
543 /* allocate blocks for indirect blocks */
544 while (index < indirect_blks && count) {
545 new_blocks[index++] = current_block++;
546 count--;
549 if (count > 0)
550 break;
553 /* save the new block number for the first direct block */
554 new_blocks[index] = current_block;
556 /* total number of blocks allocated for direct blocks */
557 ret = count;
558 *err = 0;
559 return ret;
560 failed_out:
561 for (i = 0; i <index; i++)
562 ext4_free_blocks(handle, inode, new_blocks[i], 1);
563 return ret;
567 * ext4_alloc_branch - allocate and set up a chain of blocks.
568 * @inode: owner
569 * @indirect_blks: number of allocated indirect blocks
570 * @blks: number of allocated direct blocks
571 * @offsets: offsets (in the blocks) to store the pointers to next.
572 * @branch: place to store the chain in.
574 * This function allocates blocks, zeroes out all but the last one,
575 * links them into chain and (if we are synchronous) writes them to disk.
576 * In other words, it prepares a branch that can be spliced onto the
577 * inode. It stores the information about that chain in the branch[], in
578 * the same format as ext4_get_branch() would do. We are calling it after
579 * we had read the existing part of chain and partial points to the last
580 * triple of that (one with zero ->key). Upon the exit we have the same
581 * picture as after the successful ext4_get_block(), except that in one
582 * place chain is disconnected - *branch->p is still zero (we did not
583 * set the last link), but branch->key contains the number that should
584 * be placed into *branch->p to fill that gap.
586 * If allocation fails we free all blocks we've allocated (and forget
587 * their buffer_heads) and return the error value the from failed
588 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
589 * as described above and return 0.
591 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
592 int indirect_blks, int *blks, ext4_fsblk_t goal,
593 int *offsets, Indirect *branch)
595 int blocksize = inode->i_sb->s_blocksize;
596 int i, n = 0;
597 int err = 0;
598 struct buffer_head *bh;
599 int num;
600 ext4_fsblk_t new_blocks[4];
601 ext4_fsblk_t current_block;
603 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
604 *blks, new_blocks, &err);
605 if (err)
606 return err;
608 branch[0].key = cpu_to_le32(new_blocks[0]);
610 * metadata blocks and data blocks are allocated.
612 for (n = 1; n <= indirect_blks; n++) {
614 * Get buffer_head for parent block, zero it out
615 * and set the pointer to new one, then send
616 * parent to disk.
618 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
619 branch[n].bh = bh;
620 lock_buffer(bh);
621 BUFFER_TRACE(bh, "call get_create_access");
622 err = ext4_journal_get_create_access(handle, bh);
623 if (err) {
624 unlock_buffer(bh);
625 brelse(bh);
626 goto failed;
629 memset(bh->b_data, 0, blocksize);
630 branch[n].p = (__le32 *) bh->b_data + offsets[n];
631 branch[n].key = cpu_to_le32(new_blocks[n]);
632 *branch[n].p = branch[n].key;
633 if ( n == indirect_blks) {
634 current_block = new_blocks[n];
636 * End of chain, update the last new metablock of
637 * the chain to point to the new allocated
638 * data blocks numbers
640 for (i=1; i < num; i++)
641 *(branch[n].p + i) = cpu_to_le32(++current_block);
643 BUFFER_TRACE(bh, "marking uptodate");
644 set_buffer_uptodate(bh);
645 unlock_buffer(bh);
647 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
648 err = ext4_journal_dirty_metadata(handle, bh);
649 if (err)
650 goto failed;
652 *blks = num;
653 return err;
654 failed:
655 /* Allocation failed, free what we already allocated */
656 for (i = 1; i <= n ; i++) {
657 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
658 ext4_journal_forget(handle, branch[i].bh);
660 for (i = 0; i <indirect_blks; i++)
661 ext4_free_blocks(handle, inode, new_blocks[i], 1);
663 ext4_free_blocks(handle, inode, new_blocks[i], num);
665 return err;
669 * ext4_splice_branch - splice the allocated branch onto inode.
670 * @inode: owner
671 * @block: (logical) number of block we are adding
672 * @chain: chain of indirect blocks (with a missing link - see
673 * ext4_alloc_branch)
674 * @where: location of missing link
675 * @num: number of indirect blocks we are adding
676 * @blks: number of direct blocks we are adding
678 * This function fills the missing link and does all housekeeping needed in
679 * inode (->i_blocks, etc.). In case of success we end up with the full
680 * chain to new block and return 0.
682 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
683 long block, Indirect *where, int num, int blks)
685 int i;
686 int err = 0;
687 struct ext4_block_alloc_info *block_i;
688 ext4_fsblk_t current_block;
690 block_i = EXT4_I(inode)->i_block_alloc_info;
692 * If we're splicing into a [td]indirect block (as opposed to the
693 * inode) then we need to get write access to the [td]indirect block
694 * before the splice.
696 if (where->bh) {
697 BUFFER_TRACE(where->bh, "get_write_access");
698 err = ext4_journal_get_write_access(handle, where->bh);
699 if (err)
700 goto err_out;
702 /* That's it */
704 *where->p = where->key;
707 * Update the host buffer_head or inode to point to more just allocated
708 * direct blocks blocks
710 if (num == 0 && blks > 1) {
711 current_block = le32_to_cpu(where->key) + 1;
712 for (i = 1; i < blks; i++)
713 *(where->p + i ) = cpu_to_le32(current_block++);
717 * update the most recently allocated logical & physical block
718 * in i_block_alloc_info, to assist find the proper goal block for next
719 * allocation
721 if (block_i) {
722 block_i->last_alloc_logical_block = block + blks - 1;
723 block_i->last_alloc_physical_block =
724 le32_to_cpu(where[num].key) + blks - 1;
727 /* We are done with atomic stuff, now do the rest of housekeeping */
729 inode->i_ctime = ext4_current_time(inode);
730 ext4_mark_inode_dirty(handle, inode);
732 /* had we spliced it onto indirect block? */
733 if (where->bh) {
735 * If we spliced it onto an indirect block, we haven't
736 * altered the inode. Note however that if it is being spliced
737 * onto an indirect block at the very end of the file (the
738 * file is growing) then we *will* alter the inode to reflect
739 * the new i_size. But that is not done here - it is done in
740 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
742 jbd_debug(5, "splicing indirect only\n");
743 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
744 err = ext4_journal_dirty_metadata(handle, where->bh);
745 if (err)
746 goto err_out;
747 } else {
749 * OK, we spliced it into the inode itself on a direct block.
750 * Inode was dirtied above.
752 jbd_debug(5, "splicing direct\n");
754 return err;
756 err_out:
757 for (i = 1; i <= num; i++) {
758 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
759 ext4_journal_forget(handle, where[i].bh);
760 ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
762 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
764 return err;
768 * Allocation strategy is simple: if we have to allocate something, we will
769 * have to go the whole way to leaf. So let's do it before attaching anything
770 * to tree, set linkage between the newborn blocks, write them if sync is
771 * required, recheck the path, free and repeat if check fails, otherwise
772 * set the last missing link (that will protect us from any truncate-generated
773 * removals - all blocks on the path are immune now) and possibly force the
774 * write on the parent block.
775 * That has a nice additional property: no special recovery from the failed
776 * allocations is needed - we simply release blocks and do not touch anything
777 * reachable from inode.
779 * `handle' can be NULL if create == 0.
781 * The BKL may not be held on entry here. Be sure to take it early.
782 * return > 0, # of blocks mapped or allocated.
783 * return = 0, if plain lookup failed.
784 * return < 0, error case.
786 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
787 sector_t iblock, unsigned long maxblocks,
788 struct buffer_head *bh_result,
789 int create, int extend_disksize)
791 int err = -EIO;
792 int offsets[4];
793 Indirect chain[4];
794 Indirect *partial;
795 ext4_fsblk_t goal;
796 int indirect_blks;
797 int blocks_to_boundary = 0;
798 int depth;
799 struct ext4_inode_info *ei = EXT4_I(inode);
800 int count = 0;
801 ext4_fsblk_t first_block = 0;
804 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
805 J_ASSERT(handle != NULL || create == 0);
806 depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
808 if (depth == 0)
809 goto out;
811 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
813 /* Simplest case - block found, no allocation needed */
814 if (!partial) {
815 first_block = le32_to_cpu(chain[depth - 1].key);
816 clear_buffer_new(bh_result);
817 count++;
818 /*map more blocks*/
819 while (count < maxblocks && count <= blocks_to_boundary) {
820 ext4_fsblk_t blk;
822 if (!verify_chain(chain, partial)) {
824 * Indirect block might be removed by
825 * truncate while we were reading it.
826 * Handling of that case: forget what we've
827 * got now. Flag the err as EAGAIN, so it
828 * will reread.
830 err = -EAGAIN;
831 count = 0;
832 break;
834 blk = le32_to_cpu(*(chain[depth-1].p + count));
836 if (blk == first_block + count)
837 count++;
838 else
839 break;
841 if (err != -EAGAIN)
842 goto got_it;
845 /* Next simple case - plain lookup or failed read of indirect block */
846 if (!create || err == -EIO)
847 goto cleanup;
849 mutex_lock(&ei->truncate_mutex);
852 * If the indirect block is missing while we are reading
853 * the chain(ext4_get_branch() returns -EAGAIN err), or
854 * if the chain has been changed after we grab the semaphore,
855 * (either because another process truncated this branch, or
856 * another get_block allocated this branch) re-grab the chain to see if
857 * the request block has been allocated or not.
859 * Since we already block the truncate/other get_block
860 * at this point, we will have the current copy of the chain when we
861 * splice the branch into the tree.
863 if (err == -EAGAIN || !verify_chain(chain, partial)) {
864 while (partial > chain) {
865 brelse(partial->bh);
866 partial--;
868 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
869 if (!partial) {
870 count++;
871 mutex_unlock(&ei->truncate_mutex);
872 if (err)
873 goto cleanup;
874 clear_buffer_new(bh_result);
875 goto got_it;
880 * Okay, we need to do block allocation. Lazily initialize the block
881 * allocation info here if necessary
883 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
884 ext4_init_block_alloc_info(inode);
886 goal = ext4_find_goal(inode, iblock, chain, partial);
888 /* the number of blocks need to allocate for [d,t]indirect blocks */
889 indirect_blks = (chain + depth) - partial - 1;
892 * Next look up the indirect map to count the totoal number of
893 * direct blocks to allocate for this branch.
895 count = ext4_blks_to_allocate(partial, indirect_blks,
896 maxblocks, blocks_to_boundary);
898 * Block out ext4_truncate while we alter the tree
900 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
901 offsets + (partial - chain), partial);
904 * The ext4_splice_branch call will free and forget any buffers
905 * on the new chain if there is a failure, but that risks using
906 * up transaction credits, especially for bitmaps where the
907 * credits cannot be returned. Can we handle this somehow? We
908 * may need to return -EAGAIN upwards in the worst case. --sct
910 if (!err)
911 err = ext4_splice_branch(handle, inode, iblock,
912 partial, indirect_blks, count);
914 * i_disksize growing is protected by truncate_mutex. Don't forget to
915 * protect it if you're about to implement concurrent
916 * ext4_get_block() -bzzz
918 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
919 ei->i_disksize = inode->i_size;
920 mutex_unlock(&ei->truncate_mutex);
921 if (err)
922 goto cleanup;
924 set_buffer_new(bh_result);
925 got_it:
926 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
927 if (count > blocks_to_boundary)
928 set_buffer_boundary(bh_result);
929 err = count;
930 /* Clean up and exit */
931 partial = chain + depth - 1; /* the whole chain */
932 cleanup:
933 while (partial > chain) {
934 BUFFER_TRACE(partial->bh, "call brelse");
935 brelse(partial->bh);
936 partial--;
938 BUFFER_TRACE(bh_result, "returned");
939 out:
940 return err;
943 #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
945 static int ext4_get_block(struct inode *inode, sector_t iblock,
946 struct buffer_head *bh_result, int create)
948 handle_t *handle = ext4_journal_current_handle();
949 int ret = 0;
950 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
952 if (!create)
953 goto get_block; /* A read */
955 if (max_blocks == 1)
956 goto get_block; /* A single block get */
958 if (handle->h_transaction->t_state == T_LOCKED) {
960 * Huge direct-io writes can hold off commits for long
961 * periods of time. Let this commit run.
963 ext4_journal_stop(handle);
964 handle = ext4_journal_start(inode, DIO_CREDITS);
965 if (IS_ERR(handle))
966 ret = PTR_ERR(handle);
967 goto get_block;
970 if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
972 * Getting low on buffer credits...
974 ret = ext4_journal_extend(handle, DIO_CREDITS);
975 if (ret > 0) {
977 * Couldn't extend the transaction. Start a new one.
979 ret = ext4_journal_restart(handle, DIO_CREDITS);
983 get_block:
984 if (ret == 0) {
985 ret = ext4_get_blocks_wrap(handle, inode, iblock,
986 max_blocks, bh_result, create, 0);
987 if (ret > 0) {
988 bh_result->b_size = (ret << inode->i_blkbits);
989 ret = 0;
992 return ret;
996 * `handle' can be NULL if create is zero
998 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
999 long block, int create, int *errp)
1001 struct buffer_head dummy;
1002 int fatal = 0, err;
1004 J_ASSERT(handle != NULL || create == 0);
1006 dummy.b_state = 0;
1007 dummy.b_blocknr = -1000;
1008 buffer_trace_init(&dummy.b_history);
1009 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1010 &dummy, create, 1);
1012 * ext4_get_blocks_handle() returns number of blocks
1013 * mapped. 0 in case of a HOLE.
1015 if (err > 0) {
1016 if (err > 1)
1017 WARN_ON(1);
1018 err = 0;
1020 *errp = err;
1021 if (!err && buffer_mapped(&dummy)) {
1022 struct buffer_head *bh;
1023 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1024 if (!bh) {
1025 *errp = -EIO;
1026 goto err;
1028 if (buffer_new(&dummy)) {
1029 J_ASSERT(create != 0);
1030 J_ASSERT(handle != 0);
1033 * Now that we do not always journal data, we should
1034 * keep in mind whether this should always journal the
1035 * new buffer as metadata. For now, regular file
1036 * writes use ext4_get_block instead, so it's not a
1037 * problem.
1039 lock_buffer(bh);
1040 BUFFER_TRACE(bh, "call get_create_access");
1041 fatal = ext4_journal_get_create_access(handle, bh);
1042 if (!fatal && !buffer_uptodate(bh)) {
1043 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1044 set_buffer_uptodate(bh);
1046 unlock_buffer(bh);
1047 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1048 err = ext4_journal_dirty_metadata(handle, bh);
1049 if (!fatal)
1050 fatal = err;
1051 } else {
1052 BUFFER_TRACE(bh, "not a new buffer");
1054 if (fatal) {
1055 *errp = fatal;
1056 brelse(bh);
1057 bh = NULL;
1059 return bh;
1061 err:
1062 return NULL;
1065 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1066 int block, int create, int *err)
1068 struct buffer_head * bh;
1070 bh = ext4_getblk(handle, inode, block, create, err);
1071 if (!bh)
1072 return bh;
1073 if (buffer_uptodate(bh))
1074 return bh;
1075 ll_rw_block(READ_META, 1, &bh);
1076 wait_on_buffer(bh);
1077 if (buffer_uptodate(bh))
1078 return bh;
1079 put_bh(bh);
1080 *err = -EIO;
1081 return NULL;
1084 static int walk_page_buffers( handle_t *handle,
1085 struct buffer_head *head,
1086 unsigned from,
1087 unsigned to,
1088 int *partial,
1089 int (*fn)( handle_t *handle,
1090 struct buffer_head *bh))
1092 struct buffer_head *bh;
1093 unsigned block_start, block_end;
1094 unsigned blocksize = head->b_size;
1095 int err, ret = 0;
1096 struct buffer_head *next;
1098 for ( bh = head, block_start = 0;
1099 ret == 0 && (bh != head || !block_start);
1100 block_start = block_end, bh = next)
1102 next = bh->b_this_page;
1103 block_end = block_start + blocksize;
1104 if (block_end <= from || block_start >= to) {
1105 if (partial && !buffer_uptodate(bh))
1106 *partial = 1;
1107 continue;
1109 err = (*fn)(handle, bh);
1110 if (!ret)
1111 ret = err;
1113 return ret;
1117 * To preserve ordering, it is essential that the hole instantiation and
1118 * the data write be encapsulated in a single transaction. We cannot
1119 * close off a transaction and start a new one between the ext4_get_block()
1120 * and the commit_write(). So doing the jbd2_journal_start at the start of
1121 * prepare_write() is the right place.
1123 * Also, this function can nest inside ext4_writepage() ->
1124 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1125 * has generated enough buffer credits to do the whole page. So we won't
1126 * block on the journal in that case, which is good, because the caller may
1127 * be PF_MEMALLOC.
1129 * By accident, ext4 can be reentered when a transaction is open via
1130 * quota file writes. If we were to commit the transaction while thus
1131 * reentered, there can be a deadlock - we would be holding a quota
1132 * lock, and the commit would never complete if another thread had a
1133 * transaction open and was blocking on the quota lock - a ranking
1134 * violation.
1136 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1137 * will _not_ run commit under these circumstances because handle->h_ref
1138 * is elevated. We'll still have enough credits for the tiny quotafile
1139 * write.
1141 static int do_journal_get_write_access(handle_t *handle,
1142 struct buffer_head *bh)
1144 if (!buffer_mapped(bh) || buffer_freed(bh))
1145 return 0;
1146 return ext4_journal_get_write_access(handle, bh);
1149 static int ext4_prepare_write(struct file *file, struct page *page,
1150 unsigned from, unsigned to)
1152 struct inode *inode = page->mapping->host;
1153 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1154 handle_t *handle;
1155 int retries = 0;
1157 retry:
1158 handle = ext4_journal_start(inode, needed_blocks);
1159 if (IS_ERR(handle)) {
1160 ret = PTR_ERR(handle);
1161 goto out;
1163 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1164 ret = nobh_prepare_write(page, from, to, ext4_get_block);
1165 else
1166 ret = block_prepare_write(page, from, to, ext4_get_block);
1167 if (ret)
1168 goto prepare_write_failed;
1170 if (ext4_should_journal_data(inode)) {
1171 ret = walk_page_buffers(handle, page_buffers(page),
1172 from, to, NULL, do_journal_get_write_access);
1174 prepare_write_failed:
1175 if (ret)
1176 ext4_journal_stop(handle);
1177 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1178 goto retry;
1179 out:
1180 return ret;
1183 int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1185 int err = jbd2_journal_dirty_data(handle, bh);
1186 if (err)
1187 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1188 bh, handle,err);
1189 return err;
1192 /* For commit_write() in data=journal mode */
1193 static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1195 if (!buffer_mapped(bh) || buffer_freed(bh))
1196 return 0;
1197 set_buffer_uptodate(bh);
1198 return ext4_journal_dirty_metadata(handle, bh);
1202 * We need to pick up the new inode size which generic_commit_write gave us
1203 * `file' can be NULL - eg, when called from page_symlink().
1205 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1206 * buffers are managed internally.
1208 static int ext4_ordered_commit_write(struct file *file, struct page *page,
1209 unsigned from, unsigned to)
1211 handle_t *handle = ext4_journal_current_handle();
1212 struct inode *inode = page->mapping->host;
1213 int ret = 0, ret2;
1215 ret = walk_page_buffers(handle, page_buffers(page),
1216 from, to, NULL, ext4_journal_dirty_data);
1218 if (ret == 0) {
1220 * generic_commit_write() will run mark_inode_dirty() if i_size
1221 * changes. So let's piggyback the i_disksize mark_inode_dirty
1222 * into that.
1224 loff_t new_i_size;
1226 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1227 if (new_i_size > EXT4_I(inode)->i_disksize)
1228 EXT4_I(inode)->i_disksize = new_i_size;
1229 ret = generic_commit_write(file, page, from, to);
1231 ret2 = ext4_journal_stop(handle);
1232 if (!ret)
1233 ret = ret2;
1234 return ret;
1237 static int ext4_writeback_commit_write(struct file *file, struct page *page,
1238 unsigned from, unsigned to)
1240 handle_t *handle = ext4_journal_current_handle();
1241 struct inode *inode = page->mapping->host;
1242 int ret = 0, ret2;
1243 loff_t new_i_size;
1245 new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1246 if (new_i_size > EXT4_I(inode)->i_disksize)
1247 EXT4_I(inode)->i_disksize = new_i_size;
1249 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1250 ret = nobh_commit_write(file, page, from, to);
1251 else
1252 ret = generic_commit_write(file, page, from, to);
1254 ret2 = ext4_journal_stop(handle);
1255 if (!ret)
1256 ret = ret2;
1257 return ret;
1260 static int ext4_journalled_commit_write(struct file *file,
1261 struct page *page, unsigned from, unsigned to)
1263 handle_t *handle = ext4_journal_current_handle();
1264 struct inode *inode = page->mapping->host;
1265 int ret = 0, ret2;
1266 int partial = 0;
1267 loff_t pos;
1270 * Here we duplicate the generic_commit_write() functionality
1272 pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1274 ret = walk_page_buffers(handle, page_buffers(page), from,
1275 to, &partial, commit_write_fn);
1276 if (!partial)
1277 SetPageUptodate(page);
1278 if (pos > inode->i_size)
1279 i_size_write(inode, pos);
1280 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1281 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1282 EXT4_I(inode)->i_disksize = inode->i_size;
1283 ret2 = ext4_mark_inode_dirty(handle, inode);
1284 if (!ret)
1285 ret = ret2;
1287 ret2 = ext4_journal_stop(handle);
1288 if (!ret)
1289 ret = ret2;
1290 return ret;
1294 * bmap() is special. It gets used by applications such as lilo and by
1295 * the swapper to find the on-disk block of a specific piece of data.
1297 * Naturally, this is dangerous if the block concerned is still in the
1298 * journal. If somebody makes a swapfile on an ext4 data-journaling
1299 * filesystem and enables swap, then they may get a nasty shock when the
1300 * data getting swapped to that swapfile suddenly gets overwritten by
1301 * the original zero's written out previously to the journal and
1302 * awaiting writeback in the kernel's buffer cache.
1304 * So, if we see any bmap calls here on a modified, data-journaled file,
1305 * take extra steps to flush any blocks which might be in the cache.
1307 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1309 struct inode *inode = mapping->host;
1310 journal_t *journal;
1311 int err;
1313 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1315 * This is a REALLY heavyweight approach, but the use of
1316 * bmap on dirty files is expected to be extremely rare:
1317 * only if we run lilo or swapon on a freshly made file
1318 * do we expect this to happen.
1320 * (bmap requires CAP_SYS_RAWIO so this does not
1321 * represent an unprivileged user DOS attack --- we'd be
1322 * in trouble if mortal users could trigger this path at
1323 * will.)
1325 * NB. EXT4_STATE_JDATA is not set on files other than
1326 * regular files. If somebody wants to bmap a directory
1327 * or symlink and gets confused because the buffer
1328 * hasn't yet been flushed to disk, they deserve
1329 * everything they get.
1332 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1333 journal = EXT4_JOURNAL(inode);
1334 jbd2_journal_lock_updates(journal);
1335 err = jbd2_journal_flush(journal);
1336 jbd2_journal_unlock_updates(journal);
1338 if (err)
1339 return 0;
1342 return generic_block_bmap(mapping,block,ext4_get_block);
1345 static int bget_one(handle_t *handle, struct buffer_head *bh)
1347 get_bh(bh);
1348 return 0;
1351 static int bput_one(handle_t *handle, struct buffer_head *bh)
1353 put_bh(bh);
1354 return 0;
1357 static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1359 if (buffer_mapped(bh))
1360 return ext4_journal_dirty_data(handle, bh);
1361 return 0;
1365 * Note that we always start a transaction even if we're not journalling
1366 * data. This is to preserve ordering: any hole instantiation within
1367 * __block_write_full_page -> ext4_get_block() should be journalled
1368 * along with the data so we don't crash and then get metadata which
1369 * refers to old data.
1371 * In all journalling modes block_write_full_page() will start the I/O.
1373 * Problem:
1375 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1376 * ext4_writepage()
1378 * Similar for:
1380 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1382 * Same applies to ext4_get_block(). We will deadlock on various things like
1383 * lock_journal and i_truncate_mutex.
1385 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1386 * allocations fail.
1388 * 16May01: If we're reentered then journal_current_handle() will be
1389 * non-zero. We simply *return*.
1391 * 1 July 2001: @@@ FIXME:
1392 * In journalled data mode, a data buffer may be metadata against the
1393 * current transaction. But the same file is part of a shared mapping
1394 * and someone does a writepage() on it.
1396 * We will move the buffer onto the async_data list, but *after* it has
1397 * been dirtied. So there's a small window where we have dirty data on
1398 * BJ_Metadata.
1400 * Note that this only applies to the last partial page in the file. The
1401 * bit which block_write_full_page() uses prepare/commit for. (That's
1402 * broken code anyway: it's wrong for msync()).
1404 * It's a rare case: affects the final partial page, for journalled data
1405 * where the file is subject to bith write() and writepage() in the same
1406 * transction. To fix it we'll need a custom block_write_full_page().
1407 * We'll probably need that anyway for journalling writepage() output.
1409 * We don't honour synchronous mounts for writepage(). That would be
1410 * disastrous. Any write() or metadata operation will sync the fs for
1411 * us.
1413 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1414 * we don't need to open a transaction here.
1416 static int ext4_ordered_writepage(struct page *page,
1417 struct writeback_control *wbc)
1419 struct inode *inode = page->mapping->host;
1420 struct buffer_head *page_bufs;
1421 handle_t *handle = NULL;
1422 int ret = 0;
1423 int err;
1425 J_ASSERT(PageLocked(page));
1428 * We give up here if we're reentered, because it might be for a
1429 * different filesystem.
1431 if (ext4_journal_current_handle())
1432 goto out_fail;
1434 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1436 if (IS_ERR(handle)) {
1437 ret = PTR_ERR(handle);
1438 goto out_fail;
1441 if (!page_has_buffers(page)) {
1442 create_empty_buffers(page, inode->i_sb->s_blocksize,
1443 (1 << BH_Dirty)|(1 << BH_Uptodate));
1445 page_bufs = page_buffers(page);
1446 walk_page_buffers(handle, page_bufs, 0,
1447 PAGE_CACHE_SIZE, NULL, bget_one);
1449 ret = block_write_full_page(page, ext4_get_block, wbc);
1452 * The page can become unlocked at any point now, and
1453 * truncate can then come in and change things. So we
1454 * can't touch *page from now on. But *page_bufs is
1455 * safe due to elevated refcount.
1459 * And attach them to the current transaction. But only if
1460 * block_write_full_page() succeeded. Otherwise they are unmapped,
1461 * and generally junk.
1463 if (ret == 0) {
1464 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1465 NULL, jbd2_journal_dirty_data_fn);
1466 if (!ret)
1467 ret = err;
1469 walk_page_buffers(handle, page_bufs, 0,
1470 PAGE_CACHE_SIZE, NULL, bput_one);
1471 err = ext4_journal_stop(handle);
1472 if (!ret)
1473 ret = err;
1474 return ret;
1476 out_fail:
1477 redirty_page_for_writepage(wbc, page);
1478 unlock_page(page);
1479 return ret;
1482 static int ext4_writeback_writepage(struct page *page,
1483 struct writeback_control *wbc)
1485 struct inode *inode = page->mapping->host;
1486 handle_t *handle = NULL;
1487 int ret = 0;
1488 int err;
1490 if (ext4_journal_current_handle())
1491 goto out_fail;
1493 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1494 if (IS_ERR(handle)) {
1495 ret = PTR_ERR(handle);
1496 goto out_fail;
1499 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1500 ret = nobh_writepage(page, ext4_get_block, wbc);
1501 else
1502 ret = block_write_full_page(page, ext4_get_block, wbc);
1504 err = ext4_journal_stop(handle);
1505 if (!ret)
1506 ret = err;
1507 return ret;
1509 out_fail:
1510 redirty_page_for_writepage(wbc, page);
1511 unlock_page(page);
1512 return ret;
1515 static int ext4_journalled_writepage(struct page *page,
1516 struct writeback_control *wbc)
1518 struct inode *inode = page->mapping->host;
1519 handle_t *handle = NULL;
1520 int ret = 0;
1521 int err;
1523 if (ext4_journal_current_handle())
1524 goto no_write;
1526 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1527 if (IS_ERR(handle)) {
1528 ret = PTR_ERR(handle);
1529 goto no_write;
1532 if (!page_has_buffers(page) || PageChecked(page)) {
1534 * It's mmapped pagecache. Add buffers and journal it. There
1535 * doesn't seem much point in redirtying the page here.
1537 ClearPageChecked(page);
1538 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1539 ext4_get_block);
1540 if (ret != 0) {
1541 ext4_journal_stop(handle);
1542 goto out_unlock;
1544 ret = walk_page_buffers(handle, page_buffers(page), 0,
1545 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1547 err = walk_page_buffers(handle, page_buffers(page), 0,
1548 PAGE_CACHE_SIZE, NULL, commit_write_fn);
1549 if (ret == 0)
1550 ret = err;
1551 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1552 unlock_page(page);
1553 } else {
1555 * It may be a page full of checkpoint-mode buffers. We don't
1556 * really know unless we go poke around in the buffer_heads.
1557 * But block_write_full_page will do the right thing.
1559 ret = block_write_full_page(page, ext4_get_block, wbc);
1561 err = ext4_journal_stop(handle);
1562 if (!ret)
1563 ret = err;
1564 out:
1565 return ret;
1567 no_write:
1568 redirty_page_for_writepage(wbc, page);
1569 out_unlock:
1570 unlock_page(page);
1571 goto out;
1574 static int ext4_readpage(struct file *file, struct page *page)
1576 return mpage_readpage(page, ext4_get_block);
1579 static int
1580 ext4_readpages(struct file *file, struct address_space *mapping,
1581 struct list_head *pages, unsigned nr_pages)
1583 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1586 static void ext4_invalidatepage(struct page *page, unsigned long offset)
1588 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1591 * If it's a full truncate we just forget about the pending dirtying
1593 if (offset == 0)
1594 ClearPageChecked(page);
1596 jbd2_journal_invalidatepage(journal, page, offset);
1599 static int ext4_releasepage(struct page *page, gfp_t wait)
1601 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1603 WARN_ON(PageChecked(page));
1604 if (!page_has_buffers(page))
1605 return 0;
1606 return jbd2_journal_try_to_free_buffers(journal, page, wait);
1610 * If the O_DIRECT write will extend the file then add this inode to the
1611 * orphan list. So recovery will truncate it back to the original size
1612 * if the machine crashes during the write.
1614 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1615 * crashes then stale disk data _may_ be exposed inside the file.
1617 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1618 const struct iovec *iov, loff_t offset,
1619 unsigned long nr_segs)
1621 struct file *file = iocb->ki_filp;
1622 struct inode *inode = file->f_mapping->host;
1623 struct ext4_inode_info *ei = EXT4_I(inode);
1624 handle_t *handle = NULL;
1625 ssize_t ret;
1626 int orphan = 0;
1627 size_t count = iov_length(iov, nr_segs);
1629 if (rw == WRITE) {
1630 loff_t final_size = offset + count;
1632 handle = ext4_journal_start(inode, DIO_CREDITS);
1633 if (IS_ERR(handle)) {
1634 ret = PTR_ERR(handle);
1635 goto out;
1637 if (final_size > inode->i_size) {
1638 ret = ext4_orphan_add(handle, inode);
1639 if (ret)
1640 goto out_stop;
1641 orphan = 1;
1642 ei->i_disksize = inode->i_size;
1646 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1647 offset, nr_segs,
1648 ext4_get_block, NULL);
1651 * Reacquire the handle: ext4_get_block() can restart the transaction
1653 handle = ext4_journal_current_handle();
1655 out_stop:
1656 if (handle) {
1657 int err;
1659 if (orphan && inode->i_nlink)
1660 ext4_orphan_del(handle, inode);
1661 if (orphan && ret > 0) {
1662 loff_t end = offset + ret;
1663 if (end > inode->i_size) {
1664 ei->i_disksize = end;
1665 i_size_write(inode, end);
1667 * We're going to return a positive `ret'
1668 * here due to non-zero-length I/O, so there's
1669 * no way of reporting error returns from
1670 * ext4_mark_inode_dirty() to userspace. So
1671 * ignore it.
1673 ext4_mark_inode_dirty(handle, inode);
1676 err = ext4_journal_stop(handle);
1677 if (ret == 0)
1678 ret = err;
1680 out:
1681 return ret;
1685 * Pages can be marked dirty completely asynchronously from ext4's journalling
1686 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1687 * much here because ->set_page_dirty is called under VFS locks. The page is
1688 * not necessarily locked.
1690 * We cannot just dirty the page and leave attached buffers clean, because the
1691 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1692 * or jbddirty because all the journalling code will explode.
1694 * So what we do is to mark the page "pending dirty" and next time writepage
1695 * is called, propagate that into the buffers appropriately.
1697 static int ext4_journalled_set_page_dirty(struct page *page)
1699 SetPageChecked(page);
1700 return __set_page_dirty_nobuffers(page);
1703 static const struct address_space_operations ext4_ordered_aops = {
1704 .readpage = ext4_readpage,
1705 .readpages = ext4_readpages,
1706 .writepage = ext4_ordered_writepage,
1707 .sync_page = block_sync_page,
1708 .prepare_write = ext4_prepare_write,
1709 .commit_write = ext4_ordered_commit_write,
1710 .bmap = ext4_bmap,
1711 .invalidatepage = ext4_invalidatepage,
1712 .releasepage = ext4_releasepage,
1713 .direct_IO = ext4_direct_IO,
1714 .migratepage = buffer_migrate_page,
1717 static const struct address_space_operations ext4_writeback_aops = {
1718 .readpage = ext4_readpage,
1719 .readpages = ext4_readpages,
1720 .writepage = ext4_writeback_writepage,
1721 .sync_page = block_sync_page,
1722 .prepare_write = ext4_prepare_write,
1723 .commit_write = ext4_writeback_commit_write,
1724 .bmap = ext4_bmap,
1725 .invalidatepage = ext4_invalidatepage,
1726 .releasepage = ext4_releasepage,
1727 .direct_IO = ext4_direct_IO,
1728 .migratepage = buffer_migrate_page,
1731 static const struct address_space_operations ext4_journalled_aops = {
1732 .readpage = ext4_readpage,
1733 .readpages = ext4_readpages,
1734 .writepage = ext4_journalled_writepage,
1735 .sync_page = block_sync_page,
1736 .prepare_write = ext4_prepare_write,
1737 .commit_write = ext4_journalled_commit_write,
1738 .set_page_dirty = ext4_journalled_set_page_dirty,
1739 .bmap = ext4_bmap,
1740 .invalidatepage = ext4_invalidatepage,
1741 .releasepage = ext4_releasepage,
1744 void ext4_set_aops(struct inode *inode)
1746 if (ext4_should_order_data(inode))
1747 inode->i_mapping->a_ops = &ext4_ordered_aops;
1748 else if (ext4_should_writeback_data(inode))
1749 inode->i_mapping->a_ops = &ext4_writeback_aops;
1750 else
1751 inode->i_mapping->a_ops = &ext4_journalled_aops;
1755 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1756 * up to the end of the block which corresponds to `from'.
1757 * This required during truncate. We need to physically zero the tail end
1758 * of that block so it doesn't yield old data if the file is later grown.
1760 int ext4_block_truncate_page(handle_t *handle, struct page *page,
1761 struct address_space *mapping, loff_t from)
1763 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1764 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1765 unsigned blocksize, iblock, length, pos;
1766 struct inode *inode = mapping->host;
1767 struct buffer_head *bh;
1768 int err = 0;
1770 blocksize = inode->i_sb->s_blocksize;
1771 length = blocksize - (offset & (blocksize - 1));
1772 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1775 * For "nobh" option, we can only work if we don't need to
1776 * read-in the page - otherwise we create buffers to do the IO.
1778 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1779 ext4_should_writeback_data(inode) && PageUptodate(page)) {
1780 zero_user_page(page, offset, length, KM_USER0);
1781 set_page_dirty(page);
1782 goto unlock;
1785 if (!page_has_buffers(page))
1786 create_empty_buffers(page, blocksize, 0);
1788 /* Find the buffer that contains "offset" */
1789 bh = page_buffers(page);
1790 pos = blocksize;
1791 while (offset >= pos) {
1792 bh = bh->b_this_page;
1793 iblock++;
1794 pos += blocksize;
1797 err = 0;
1798 if (buffer_freed(bh)) {
1799 BUFFER_TRACE(bh, "freed: skip");
1800 goto unlock;
1803 if (!buffer_mapped(bh)) {
1804 BUFFER_TRACE(bh, "unmapped");
1805 ext4_get_block(inode, iblock, bh, 0);
1806 /* unmapped? It's a hole - nothing to do */
1807 if (!buffer_mapped(bh)) {
1808 BUFFER_TRACE(bh, "still unmapped");
1809 goto unlock;
1813 /* Ok, it's mapped. Make sure it's up-to-date */
1814 if (PageUptodate(page))
1815 set_buffer_uptodate(bh);
1817 if (!buffer_uptodate(bh)) {
1818 err = -EIO;
1819 ll_rw_block(READ, 1, &bh);
1820 wait_on_buffer(bh);
1821 /* Uhhuh. Read error. Complain and punt. */
1822 if (!buffer_uptodate(bh))
1823 goto unlock;
1826 if (ext4_should_journal_data(inode)) {
1827 BUFFER_TRACE(bh, "get write access");
1828 err = ext4_journal_get_write_access(handle, bh);
1829 if (err)
1830 goto unlock;
1833 zero_user_page(page, offset, length, KM_USER0);
1835 BUFFER_TRACE(bh, "zeroed end of block");
1837 err = 0;
1838 if (ext4_should_journal_data(inode)) {
1839 err = ext4_journal_dirty_metadata(handle, bh);
1840 } else {
1841 if (ext4_should_order_data(inode))
1842 err = ext4_journal_dirty_data(handle, bh);
1843 mark_buffer_dirty(bh);
1846 unlock:
1847 unlock_page(page);
1848 page_cache_release(page);
1849 return err;
1853 * Probably it should be a library function... search for first non-zero word
1854 * or memcmp with zero_page, whatever is better for particular architecture.
1855 * Linus?
1857 static inline int all_zeroes(__le32 *p, __le32 *q)
1859 while (p < q)
1860 if (*p++)
1861 return 0;
1862 return 1;
1866 * ext4_find_shared - find the indirect blocks for partial truncation.
1867 * @inode: inode in question
1868 * @depth: depth of the affected branch
1869 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1870 * @chain: place to store the pointers to partial indirect blocks
1871 * @top: place to the (detached) top of branch
1873 * This is a helper function used by ext4_truncate().
1875 * When we do truncate() we may have to clean the ends of several
1876 * indirect blocks but leave the blocks themselves alive. Block is
1877 * partially truncated if some data below the new i_size is refered
1878 * from it (and it is on the path to the first completely truncated
1879 * data block, indeed). We have to free the top of that path along
1880 * with everything to the right of the path. Since no allocation
1881 * past the truncation point is possible until ext4_truncate()
1882 * finishes, we may safely do the latter, but top of branch may
1883 * require special attention - pageout below the truncation point
1884 * might try to populate it.
1886 * We atomically detach the top of branch from the tree, store the
1887 * block number of its root in *@top, pointers to buffer_heads of
1888 * partially truncated blocks - in @chain[].bh and pointers to
1889 * their last elements that should not be removed - in
1890 * @chain[].p. Return value is the pointer to last filled element
1891 * of @chain.
1893 * The work left to caller to do the actual freeing of subtrees:
1894 * a) free the subtree starting from *@top
1895 * b) free the subtrees whose roots are stored in
1896 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1897 * c) free the subtrees growing from the inode past the @chain[0].
1898 * (no partially truncated stuff there). */
1900 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1901 int offsets[4], Indirect chain[4], __le32 *top)
1903 Indirect *partial, *p;
1904 int k, err;
1906 *top = 0;
1907 /* Make k index the deepest non-null offest + 1 */
1908 for (k = depth; k > 1 && !offsets[k-1]; k--)
1910 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1911 /* Writer: pointers */
1912 if (!partial)
1913 partial = chain + k-1;
1915 * If the branch acquired continuation since we've looked at it -
1916 * fine, it should all survive and (new) top doesn't belong to us.
1918 if (!partial->key && *partial->p)
1919 /* Writer: end */
1920 goto no_top;
1921 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1924 * OK, we've found the last block that must survive. The rest of our
1925 * branch should be detached before unlocking. However, if that rest
1926 * of branch is all ours and does not grow immediately from the inode
1927 * it's easier to cheat and just decrement partial->p.
1929 if (p == chain + k - 1 && p > chain) {
1930 p->p--;
1931 } else {
1932 *top = *p->p;
1933 /* Nope, don't do this in ext4. Must leave the tree intact */
1934 #if 0
1935 *p->p = 0;
1936 #endif
1938 /* Writer: end */
1940 while(partial > p) {
1941 brelse(partial->bh);
1942 partial--;
1944 no_top:
1945 return partial;
1949 * Zero a number of block pointers in either an inode or an indirect block.
1950 * If we restart the transaction we must again get write access to the
1951 * indirect block for further modification.
1953 * We release `count' blocks on disk, but (last - first) may be greater
1954 * than `count' because there can be holes in there.
1956 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
1957 struct buffer_head *bh, ext4_fsblk_t block_to_free,
1958 unsigned long count, __le32 *first, __le32 *last)
1960 __le32 *p;
1961 if (try_to_extend_transaction(handle, inode)) {
1962 if (bh) {
1963 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1964 ext4_journal_dirty_metadata(handle, bh);
1966 ext4_mark_inode_dirty(handle, inode);
1967 ext4_journal_test_restart(handle, inode);
1968 if (bh) {
1969 BUFFER_TRACE(bh, "retaking write access");
1970 ext4_journal_get_write_access(handle, bh);
1975 * Any buffers which are on the journal will be in memory. We find
1976 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
1977 * on them. We've already detached each block from the file, so
1978 * bforget() in jbd2_journal_forget() should be safe.
1980 * AKPM: turn on bforget in jbd2_journal_forget()!!!
1982 for (p = first; p < last; p++) {
1983 u32 nr = le32_to_cpu(*p);
1984 if (nr) {
1985 struct buffer_head *bh;
1987 *p = 0;
1988 bh = sb_find_get_block(inode->i_sb, nr);
1989 ext4_forget(handle, 0, inode, bh, nr);
1993 ext4_free_blocks(handle, inode, block_to_free, count);
1997 * ext4_free_data - free a list of data blocks
1998 * @handle: handle for this transaction
1999 * @inode: inode we are dealing with
2000 * @this_bh: indirect buffer_head which contains *@first and *@last
2001 * @first: array of block numbers
2002 * @last: points immediately past the end of array
2004 * We are freeing all blocks refered from that array (numbers are stored as
2005 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2007 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2008 * blocks are contiguous then releasing them at one time will only affect one
2009 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2010 * actually use a lot of journal space.
2012 * @this_bh will be %NULL if @first and @last point into the inode's direct
2013 * block pointers.
2015 static void ext4_free_data(handle_t *handle, struct inode *inode,
2016 struct buffer_head *this_bh,
2017 __le32 *first, __le32 *last)
2019 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2020 unsigned long count = 0; /* Number of blocks in the run */
2021 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2022 corresponding to
2023 block_to_free */
2024 ext4_fsblk_t nr; /* Current block # */
2025 __le32 *p; /* Pointer into inode/ind
2026 for current block */
2027 int err;
2029 if (this_bh) { /* For indirect block */
2030 BUFFER_TRACE(this_bh, "get_write_access");
2031 err = ext4_journal_get_write_access(handle, this_bh);
2032 /* Important: if we can't update the indirect pointers
2033 * to the blocks, we can't free them. */
2034 if (err)
2035 return;
2038 for (p = first; p < last; p++) {
2039 nr = le32_to_cpu(*p);
2040 if (nr) {
2041 /* accumulate blocks to free if they're contiguous */
2042 if (count == 0) {
2043 block_to_free = nr;
2044 block_to_free_p = p;
2045 count = 1;
2046 } else if (nr == block_to_free + count) {
2047 count++;
2048 } else {
2049 ext4_clear_blocks(handle, inode, this_bh,
2050 block_to_free,
2051 count, block_to_free_p, p);
2052 block_to_free = nr;
2053 block_to_free_p = p;
2054 count = 1;
2059 if (count > 0)
2060 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2061 count, block_to_free_p, p);
2063 if (this_bh) {
2064 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2065 ext4_journal_dirty_metadata(handle, this_bh);
2070 * ext4_free_branches - free an array of branches
2071 * @handle: JBD handle for this transaction
2072 * @inode: inode we are dealing with
2073 * @parent_bh: the buffer_head which contains *@first and *@last
2074 * @first: array of block numbers
2075 * @last: pointer immediately past the end of array
2076 * @depth: depth of the branches to free
2078 * We are freeing all blocks refered from these branches (numbers are
2079 * stored as little-endian 32-bit) and updating @inode->i_blocks
2080 * appropriately.
2082 static void ext4_free_branches(handle_t *handle, struct inode *inode,
2083 struct buffer_head *parent_bh,
2084 __le32 *first, __le32 *last, int depth)
2086 ext4_fsblk_t nr;
2087 __le32 *p;
2089 if (is_handle_aborted(handle))
2090 return;
2092 if (depth--) {
2093 struct buffer_head *bh;
2094 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2095 p = last;
2096 while (--p >= first) {
2097 nr = le32_to_cpu(*p);
2098 if (!nr)
2099 continue; /* A hole */
2101 /* Go read the buffer for the next level down */
2102 bh = sb_bread(inode->i_sb, nr);
2105 * A read failure? Report error and clear slot
2106 * (should be rare).
2108 if (!bh) {
2109 ext4_error(inode->i_sb, "ext4_free_branches",
2110 "Read failure, inode=%lu, block=%llu",
2111 inode->i_ino, nr);
2112 continue;
2115 /* This zaps the entire block. Bottom up. */
2116 BUFFER_TRACE(bh, "free child branches");
2117 ext4_free_branches(handle, inode, bh,
2118 (__le32*)bh->b_data,
2119 (__le32*)bh->b_data + addr_per_block,
2120 depth);
2123 * We've probably journalled the indirect block several
2124 * times during the truncate. But it's no longer
2125 * needed and we now drop it from the transaction via
2126 * jbd2_journal_revoke().
2128 * That's easy if it's exclusively part of this
2129 * transaction. But if it's part of the committing
2130 * transaction then jbd2_journal_forget() will simply
2131 * brelse() it. That means that if the underlying
2132 * block is reallocated in ext4_get_block(),
2133 * unmap_underlying_metadata() will find this block
2134 * and will try to get rid of it. damn, damn.
2136 * If this block has already been committed to the
2137 * journal, a revoke record will be written. And
2138 * revoke records must be emitted *before* clearing
2139 * this block's bit in the bitmaps.
2141 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2144 * Everything below this this pointer has been
2145 * released. Now let this top-of-subtree go.
2147 * We want the freeing of this indirect block to be
2148 * atomic in the journal with the updating of the
2149 * bitmap block which owns it. So make some room in
2150 * the journal.
2152 * We zero the parent pointer *after* freeing its
2153 * pointee in the bitmaps, so if extend_transaction()
2154 * for some reason fails to put the bitmap changes and
2155 * the release into the same transaction, recovery
2156 * will merely complain about releasing a free block,
2157 * rather than leaking blocks.
2159 if (is_handle_aborted(handle))
2160 return;
2161 if (try_to_extend_transaction(handle, inode)) {
2162 ext4_mark_inode_dirty(handle, inode);
2163 ext4_journal_test_restart(handle, inode);
2166 ext4_free_blocks(handle, inode, nr, 1);
2168 if (parent_bh) {
2170 * The block which we have just freed is
2171 * pointed to by an indirect block: journal it
2173 BUFFER_TRACE(parent_bh, "get_write_access");
2174 if (!ext4_journal_get_write_access(handle,
2175 parent_bh)){
2176 *p = 0;
2177 BUFFER_TRACE(parent_bh,
2178 "call ext4_journal_dirty_metadata");
2179 ext4_journal_dirty_metadata(handle,
2180 parent_bh);
2184 } else {
2185 /* We have reached the bottom of the tree. */
2186 BUFFER_TRACE(parent_bh, "free data blocks");
2187 ext4_free_data(handle, inode, parent_bh, first, last);
2192 * ext4_truncate()
2194 * We block out ext4_get_block() block instantiations across the entire
2195 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2196 * simultaneously on behalf of the same inode.
2198 * As we work through the truncate and commmit bits of it to the journal there
2199 * is one core, guiding principle: the file's tree must always be consistent on
2200 * disk. We must be able to restart the truncate after a crash.
2202 * The file's tree may be transiently inconsistent in memory (although it
2203 * probably isn't), but whenever we close off and commit a journal transaction,
2204 * the contents of (the filesystem + the journal) must be consistent and
2205 * restartable. It's pretty simple, really: bottom up, right to left (although
2206 * left-to-right works OK too).
2208 * Note that at recovery time, journal replay occurs *before* the restart of
2209 * truncate against the orphan inode list.
2211 * The committed inode has the new, desired i_size (which is the same as
2212 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
2213 * that this inode's truncate did not complete and it will again call
2214 * ext4_truncate() to have another go. So there will be instantiated blocks
2215 * to the right of the truncation point in a crashed ext4 filesystem. But
2216 * that's fine - as long as they are linked from the inode, the post-crash
2217 * ext4_truncate() run will find them and release them.
2219 void ext4_truncate(struct inode *inode)
2221 handle_t *handle;
2222 struct ext4_inode_info *ei = EXT4_I(inode);
2223 __le32 *i_data = ei->i_data;
2224 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2225 struct address_space *mapping = inode->i_mapping;
2226 int offsets[4];
2227 Indirect chain[4];
2228 Indirect *partial;
2229 __le32 nr = 0;
2230 int n;
2231 long last_block;
2232 unsigned blocksize = inode->i_sb->s_blocksize;
2233 struct page *page;
2235 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2236 S_ISLNK(inode->i_mode)))
2237 return;
2238 if (ext4_inode_is_fast_symlink(inode))
2239 return;
2240 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2241 return;
2244 * We have to lock the EOF page here, because lock_page() nests
2245 * outside jbd2_journal_start().
2247 if ((inode->i_size & (blocksize - 1)) == 0) {
2248 /* Block boundary? Nothing to do */
2249 page = NULL;
2250 } else {
2251 page = grab_cache_page(mapping,
2252 inode->i_size >> PAGE_CACHE_SHIFT);
2253 if (!page)
2254 return;
2257 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
2258 return ext4_ext_truncate(inode, page);
2260 handle = start_transaction(inode);
2261 if (IS_ERR(handle)) {
2262 if (page) {
2263 clear_highpage(page);
2264 flush_dcache_page(page);
2265 unlock_page(page);
2266 page_cache_release(page);
2268 return; /* AKPM: return what? */
2271 last_block = (inode->i_size + blocksize-1)
2272 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2274 if (page)
2275 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2277 n = ext4_block_to_path(inode, last_block, offsets, NULL);
2278 if (n == 0)
2279 goto out_stop; /* error */
2282 * OK. This truncate is going to happen. We add the inode to the
2283 * orphan list, so that if this truncate spans multiple transactions,
2284 * and we crash, we will resume the truncate when the filesystem
2285 * recovers. It also marks the inode dirty, to catch the new size.
2287 * Implication: the file must always be in a sane, consistent
2288 * truncatable state while each transaction commits.
2290 if (ext4_orphan_add(handle, inode))
2291 goto out_stop;
2294 * The orphan list entry will now protect us from any crash which
2295 * occurs before the truncate completes, so it is now safe to propagate
2296 * the new, shorter inode size (held for now in i_size) into the
2297 * on-disk inode. We do this via i_disksize, which is the value which
2298 * ext4 *really* writes onto the disk inode.
2300 ei->i_disksize = inode->i_size;
2303 * From here we block out all ext4_get_block() callers who want to
2304 * modify the block allocation tree.
2306 mutex_lock(&ei->truncate_mutex);
2308 if (n == 1) { /* direct blocks */
2309 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2310 i_data + EXT4_NDIR_BLOCKS);
2311 goto do_indirects;
2314 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2315 /* Kill the top of shared branch (not detached) */
2316 if (nr) {
2317 if (partial == chain) {
2318 /* Shared branch grows from the inode */
2319 ext4_free_branches(handle, inode, NULL,
2320 &nr, &nr+1, (chain+n-1) - partial);
2321 *partial->p = 0;
2323 * We mark the inode dirty prior to restart,
2324 * and prior to stop. No need for it here.
2326 } else {
2327 /* Shared branch grows from an indirect block */
2328 BUFFER_TRACE(partial->bh, "get_write_access");
2329 ext4_free_branches(handle, inode, partial->bh,
2330 partial->p,
2331 partial->p+1, (chain+n-1) - partial);
2334 /* Clear the ends of indirect blocks on the shared branch */
2335 while (partial > chain) {
2336 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2337 (__le32*)partial->bh->b_data+addr_per_block,
2338 (chain+n-1) - partial);
2339 BUFFER_TRACE(partial->bh, "call brelse");
2340 brelse (partial->bh);
2341 partial--;
2343 do_indirects:
2344 /* Kill the remaining (whole) subtrees */
2345 switch (offsets[0]) {
2346 default:
2347 nr = i_data[EXT4_IND_BLOCK];
2348 if (nr) {
2349 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2350 i_data[EXT4_IND_BLOCK] = 0;
2352 case EXT4_IND_BLOCK:
2353 nr = i_data[EXT4_DIND_BLOCK];
2354 if (nr) {
2355 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2356 i_data[EXT4_DIND_BLOCK] = 0;
2358 case EXT4_DIND_BLOCK:
2359 nr = i_data[EXT4_TIND_BLOCK];
2360 if (nr) {
2361 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2362 i_data[EXT4_TIND_BLOCK] = 0;
2364 case EXT4_TIND_BLOCK:
2368 ext4_discard_reservation(inode);
2370 mutex_unlock(&ei->truncate_mutex);
2371 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2372 ext4_mark_inode_dirty(handle, inode);
2375 * In a multi-transaction truncate, we only make the final transaction
2376 * synchronous
2378 if (IS_SYNC(inode))
2379 handle->h_sync = 1;
2380 out_stop:
2382 * If this was a simple ftruncate(), and the file will remain alive
2383 * then we need to clear up the orphan record which we created above.
2384 * However, if this was a real unlink then we were called by
2385 * ext4_delete_inode(), and we allow that function to clean up the
2386 * orphan info for us.
2388 if (inode->i_nlink)
2389 ext4_orphan_del(handle, inode);
2391 ext4_journal_stop(handle);
2394 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2395 unsigned long ino, struct ext4_iloc *iloc)
2397 unsigned long desc, group_desc, block_group;
2398 unsigned long offset;
2399 ext4_fsblk_t block;
2400 struct buffer_head *bh;
2401 struct ext4_group_desc * gdp;
2403 if (!ext4_valid_inum(sb, ino)) {
2405 * This error is already checked for in namei.c unless we are
2406 * looking at an NFS filehandle, in which case no error
2407 * report is needed
2409 return 0;
2412 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2413 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2414 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2415 return 0;
2417 smp_rmb();
2418 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2419 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2420 bh = EXT4_SB(sb)->s_group_desc[group_desc];
2421 if (!bh) {
2422 ext4_error (sb, "ext4_get_inode_block",
2423 "Descriptor not loaded");
2424 return 0;
2427 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2428 desc * EXT4_DESC_SIZE(sb));
2430 * Figure out the offset within the block group inode table
2432 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2433 EXT4_INODE_SIZE(sb);
2434 block = ext4_inode_table(sb, gdp) +
2435 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2437 iloc->block_group = block_group;
2438 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2439 return block;
2443 * ext4_get_inode_loc returns with an extra refcount against the inode's
2444 * underlying buffer_head on success. If 'in_mem' is true, we have all
2445 * data in memory that is needed to recreate the on-disk version of this
2446 * inode.
2448 static int __ext4_get_inode_loc(struct inode *inode,
2449 struct ext4_iloc *iloc, int in_mem)
2451 ext4_fsblk_t block;
2452 struct buffer_head *bh;
2454 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2455 if (!block)
2456 return -EIO;
2458 bh = sb_getblk(inode->i_sb, block);
2459 if (!bh) {
2460 ext4_error (inode->i_sb, "ext4_get_inode_loc",
2461 "unable to read inode block - "
2462 "inode=%lu, block=%llu",
2463 inode->i_ino, block);
2464 return -EIO;
2466 if (!buffer_uptodate(bh)) {
2467 lock_buffer(bh);
2468 if (buffer_uptodate(bh)) {
2469 /* someone brought it uptodate while we waited */
2470 unlock_buffer(bh);
2471 goto has_buffer;
2475 * If we have all information of the inode in memory and this
2476 * is the only valid inode in the block, we need not read the
2477 * block.
2479 if (in_mem) {
2480 struct buffer_head *bitmap_bh;
2481 struct ext4_group_desc *desc;
2482 int inodes_per_buffer;
2483 int inode_offset, i;
2484 int block_group;
2485 int start;
2487 block_group = (inode->i_ino - 1) /
2488 EXT4_INODES_PER_GROUP(inode->i_sb);
2489 inodes_per_buffer = bh->b_size /
2490 EXT4_INODE_SIZE(inode->i_sb);
2491 inode_offset = ((inode->i_ino - 1) %
2492 EXT4_INODES_PER_GROUP(inode->i_sb));
2493 start = inode_offset & ~(inodes_per_buffer - 1);
2495 /* Is the inode bitmap in cache? */
2496 desc = ext4_get_group_desc(inode->i_sb,
2497 block_group, NULL);
2498 if (!desc)
2499 goto make_io;
2501 bitmap_bh = sb_getblk(inode->i_sb,
2502 ext4_inode_bitmap(inode->i_sb, desc));
2503 if (!bitmap_bh)
2504 goto make_io;
2507 * If the inode bitmap isn't in cache then the
2508 * optimisation may end up performing two reads instead
2509 * of one, so skip it.
2511 if (!buffer_uptodate(bitmap_bh)) {
2512 brelse(bitmap_bh);
2513 goto make_io;
2515 for (i = start; i < start + inodes_per_buffer; i++) {
2516 if (i == inode_offset)
2517 continue;
2518 if (ext4_test_bit(i, bitmap_bh->b_data))
2519 break;
2521 brelse(bitmap_bh);
2522 if (i == start + inodes_per_buffer) {
2523 /* all other inodes are free, so skip I/O */
2524 memset(bh->b_data, 0, bh->b_size);
2525 set_buffer_uptodate(bh);
2526 unlock_buffer(bh);
2527 goto has_buffer;
2531 make_io:
2533 * There are other valid inodes in the buffer, this inode
2534 * has in-inode xattrs, or we don't have this inode in memory.
2535 * Read the block from disk.
2537 get_bh(bh);
2538 bh->b_end_io = end_buffer_read_sync;
2539 submit_bh(READ_META, bh);
2540 wait_on_buffer(bh);
2541 if (!buffer_uptodate(bh)) {
2542 ext4_error(inode->i_sb, "ext4_get_inode_loc",
2543 "unable to read inode block - "
2544 "inode=%lu, block=%llu",
2545 inode->i_ino, block);
2546 brelse(bh);
2547 return -EIO;
2550 has_buffer:
2551 iloc->bh = bh;
2552 return 0;
2555 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2557 /* We have all inode data except xattrs in memory here. */
2558 return __ext4_get_inode_loc(inode, iloc,
2559 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2562 void ext4_set_inode_flags(struct inode *inode)
2564 unsigned int flags = EXT4_I(inode)->i_flags;
2566 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2567 if (flags & EXT4_SYNC_FL)
2568 inode->i_flags |= S_SYNC;
2569 if (flags & EXT4_APPEND_FL)
2570 inode->i_flags |= S_APPEND;
2571 if (flags & EXT4_IMMUTABLE_FL)
2572 inode->i_flags |= S_IMMUTABLE;
2573 if (flags & EXT4_NOATIME_FL)
2574 inode->i_flags |= S_NOATIME;
2575 if (flags & EXT4_DIRSYNC_FL)
2576 inode->i_flags |= S_DIRSYNC;
2579 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2580 void ext4_get_inode_flags(struct ext4_inode_info *ei)
2582 unsigned int flags = ei->vfs_inode.i_flags;
2584 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2585 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2586 if (flags & S_SYNC)
2587 ei->i_flags |= EXT4_SYNC_FL;
2588 if (flags & S_APPEND)
2589 ei->i_flags |= EXT4_APPEND_FL;
2590 if (flags & S_IMMUTABLE)
2591 ei->i_flags |= EXT4_IMMUTABLE_FL;
2592 if (flags & S_NOATIME)
2593 ei->i_flags |= EXT4_NOATIME_FL;
2594 if (flags & S_DIRSYNC)
2595 ei->i_flags |= EXT4_DIRSYNC_FL;
2598 void ext4_read_inode(struct inode * inode)
2600 struct ext4_iloc iloc;
2601 struct ext4_inode *raw_inode;
2602 struct ext4_inode_info *ei = EXT4_I(inode);
2603 struct buffer_head *bh;
2604 int block;
2606 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2607 ei->i_acl = EXT4_ACL_NOT_CACHED;
2608 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2609 #endif
2610 ei->i_block_alloc_info = NULL;
2612 if (__ext4_get_inode_loc(inode, &iloc, 0))
2613 goto bad_inode;
2614 bh = iloc.bh;
2615 raw_inode = ext4_raw_inode(&iloc);
2616 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2617 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2618 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2619 if(!(test_opt (inode->i_sb, NO_UID32))) {
2620 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2621 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2623 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2624 inode->i_size = le32_to_cpu(raw_inode->i_size);
2626 ei->i_state = 0;
2627 ei->i_dir_start_lookup = 0;
2628 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2629 /* We now have enough fields to check if the inode was active or not.
2630 * This is needed because nfsd might try to access dead inodes
2631 * the test is that same one that e2fsck uses
2632 * NeilBrown 1999oct15
2634 if (inode->i_nlink == 0) {
2635 if (inode->i_mode == 0 ||
2636 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2637 /* this inode is deleted */
2638 brelse (bh);
2639 goto bad_inode;
2641 /* The only unlinked inodes we let through here have
2642 * valid i_mode and are being read by the orphan
2643 * recovery code: that's fine, we're about to complete
2644 * the process of deleting those. */
2646 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2647 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2648 #ifdef EXT4_FRAGMENTS
2649 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2650 ei->i_frag_no = raw_inode->i_frag;
2651 ei->i_frag_size = raw_inode->i_fsize;
2652 #endif
2653 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2654 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2655 cpu_to_le32(EXT4_OS_HURD))
2656 ei->i_file_acl |=
2657 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2658 if (!S_ISREG(inode->i_mode)) {
2659 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2660 } else {
2661 inode->i_size |=
2662 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2664 ei->i_disksize = inode->i_size;
2665 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2666 ei->i_block_group = iloc.block_group;
2668 * NOTE! The in-memory inode i_data array is in little-endian order
2669 * even on big-endian machines: we do NOT byteswap the block numbers!
2671 for (block = 0; block < EXT4_N_BLOCKS; block++)
2672 ei->i_data[block] = raw_inode->i_block[block];
2673 INIT_LIST_HEAD(&ei->i_orphan);
2675 if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2676 EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2678 * When mke2fs creates big inodes it does not zero out
2679 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2680 * so ignore those first few inodes.
2682 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2683 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2684 EXT4_INODE_SIZE(inode->i_sb)) {
2685 brelse (bh);
2686 goto bad_inode;
2688 if (ei->i_extra_isize == 0) {
2689 /* The extra space is currently unused. Use it. */
2690 ei->i_extra_isize = sizeof(struct ext4_inode) -
2691 EXT4_GOOD_OLD_INODE_SIZE;
2692 } else {
2693 __le32 *magic = (void *)raw_inode +
2694 EXT4_GOOD_OLD_INODE_SIZE +
2695 ei->i_extra_isize;
2696 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2697 ei->i_state |= EXT4_STATE_XATTR;
2699 } else
2700 ei->i_extra_isize = 0;
2702 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2703 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2704 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2705 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2707 if (S_ISREG(inode->i_mode)) {
2708 inode->i_op = &ext4_file_inode_operations;
2709 inode->i_fop = &ext4_file_operations;
2710 ext4_set_aops(inode);
2711 } else if (S_ISDIR(inode->i_mode)) {
2712 inode->i_op = &ext4_dir_inode_operations;
2713 inode->i_fop = &ext4_dir_operations;
2714 } else if (S_ISLNK(inode->i_mode)) {
2715 if (ext4_inode_is_fast_symlink(inode))
2716 inode->i_op = &ext4_fast_symlink_inode_operations;
2717 else {
2718 inode->i_op = &ext4_symlink_inode_operations;
2719 ext4_set_aops(inode);
2721 } else {
2722 inode->i_op = &ext4_special_inode_operations;
2723 if (raw_inode->i_block[0])
2724 init_special_inode(inode, inode->i_mode,
2725 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2726 else
2727 init_special_inode(inode, inode->i_mode,
2728 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2730 brelse (iloc.bh);
2731 ext4_set_inode_flags(inode);
2732 return;
2734 bad_inode:
2735 make_bad_inode(inode);
2736 return;
2740 * Post the struct inode info into an on-disk inode location in the
2741 * buffer-cache. This gobbles the caller's reference to the
2742 * buffer_head in the inode location struct.
2744 * The caller must have write access to iloc->bh.
2746 static int ext4_do_update_inode(handle_t *handle,
2747 struct inode *inode,
2748 struct ext4_iloc *iloc)
2750 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2751 struct ext4_inode_info *ei = EXT4_I(inode);
2752 struct buffer_head *bh = iloc->bh;
2753 int err = 0, rc, block;
2755 /* For fields not not tracking in the in-memory inode,
2756 * initialise them to zero for new inodes. */
2757 if (ei->i_state & EXT4_STATE_NEW)
2758 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2760 ext4_get_inode_flags(ei);
2761 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2762 if(!(test_opt(inode->i_sb, NO_UID32))) {
2763 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2764 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2766 * Fix up interoperability with old kernels. Otherwise, old inodes get
2767 * re-used with the upper 16 bits of the uid/gid intact
2769 if(!ei->i_dtime) {
2770 raw_inode->i_uid_high =
2771 cpu_to_le16(high_16_bits(inode->i_uid));
2772 raw_inode->i_gid_high =
2773 cpu_to_le16(high_16_bits(inode->i_gid));
2774 } else {
2775 raw_inode->i_uid_high = 0;
2776 raw_inode->i_gid_high = 0;
2778 } else {
2779 raw_inode->i_uid_low =
2780 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2781 raw_inode->i_gid_low =
2782 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2783 raw_inode->i_uid_high = 0;
2784 raw_inode->i_gid_high = 0;
2786 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2787 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2789 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2790 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2791 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2792 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2794 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2795 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2796 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2797 #ifdef EXT4_FRAGMENTS
2798 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2799 raw_inode->i_frag = ei->i_frag_no;
2800 raw_inode->i_fsize = ei->i_frag_size;
2801 #endif
2802 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2803 cpu_to_le32(EXT4_OS_HURD))
2804 raw_inode->i_file_acl_high =
2805 cpu_to_le16(ei->i_file_acl >> 32);
2806 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2807 if (!S_ISREG(inode->i_mode)) {
2808 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2809 } else {
2810 raw_inode->i_size_high =
2811 cpu_to_le32(ei->i_disksize >> 32);
2812 if (ei->i_disksize > 0x7fffffffULL) {
2813 struct super_block *sb = inode->i_sb;
2814 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2815 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2816 EXT4_SB(sb)->s_es->s_rev_level ==
2817 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2818 /* If this is the first large file
2819 * created, add a flag to the superblock.
2821 err = ext4_journal_get_write_access(handle,
2822 EXT4_SB(sb)->s_sbh);
2823 if (err)
2824 goto out_brelse;
2825 ext4_update_dynamic_rev(sb);
2826 EXT4_SET_RO_COMPAT_FEATURE(sb,
2827 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2828 sb->s_dirt = 1;
2829 handle->h_sync = 1;
2830 err = ext4_journal_dirty_metadata(handle,
2831 EXT4_SB(sb)->s_sbh);
2835 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2836 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2837 if (old_valid_dev(inode->i_rdev)) {
2838 raw_inode->i_block[0] =
2839 cpu_to_le32(old_encode_dev(inode->i_rdev));
2840 raw_inode->i_block[1] = 0;
2841 } else {
2842 raw_inode->i_block[0] = 0;
2843 raw_inode->i_block[1] =
2844 cpu_to_le32(new_encode_dev(inode->i_rdev));
2845 raw_inode->i_block[2] = 0;
2847 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2848 raw_inode->i_block[block] = ei->i_data[block];
2850 if (ei->i_extra_isize)
2851 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2853 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2854 rc = ext4_journal_dirty_metadata(handle, bh);
2855 if (!err)
2856 err = rc;
2857 ei->i_state &= ~EXT4_STATE_NEW;
2859 out_brelse:
2860 brelse (bh);
2861 ext4_std_error(inode->i_sb, err);
2862 return err;
2866 * ext4_write_inode()
2868 * We are called from a few places:
2870 * - Within generic_file_write() for O_SYNC files.
2871 * Here, there will be no transaction running. We wait for any running
2872 * trasnaction to commit.
2874 * - Within sys_sync(), kupdate and such.
2875 * We wait on commit, if tol to.
2877 * - Within prune_icache() (PF_MEMALLOC == true)
2878 * Here we simply return. We can't afford to block kswapd on the
2879 * journal commit.
2881 * In all cases it is actually safe for us to return without doing anything,
2882 * because the inode has been copied into a raw inode buffer in
2883 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
2884 * knfsd.
2886 * Note that we are absolutely dependent upon all inode dirtiers doing the
2887 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2888 * which we are interested.
2890 * It would be a bug for them to not do this. The code:
2892 * mark_inode_dirty(inode)
2893 * stuff();
2894 * inode->i_size = expr;
2896 * is in error because a kswapd-driven write_inode() could occur while
2897 * `stuff()' is running, and the new i_size will be lost. Plus the inode
2898 * will no longer be on the superblock's dirty inode list.
2900 int ext4_write_inode(struct inode *inode, int wait)
2902 if (current->flags & PF_MEMALLOC)
2903 return 0;
2905 if (ext4_journal_current_handle()) {
2906 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2907 dump_stack();
2908 return -EIO;
2911 if (!wait)
2912 return 0;
2914 return ext4_force_commit(inode->i_sb);
2918 * ext4_setattr()
2920 * Called from notify_change.
2922 * We want to trap VFS attempts to truncate the file as soon as
2923 * possible. In particular, we want to make sure that when the VFS
2924 * shrinks i_size, we put the inode on the orphan list and modify
2925 * i_disksize immediately, so that during the subsequent flushing of
2926 * dirty pages and freeing of disk blocks, we can guarantee that any
2927 * commit will leave the blocks being flushed in an unused state on
2928 * disk. (On recovery, the inode will get truncated and the blocks will
2929 * be freed, so we have a strong guarantee that no future commit will
2930 * leave these blocks visible to the user.)
2932 * Called with inode->sem down.
2934 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
2936 struct inode *inode = dentry->d_inode;
2937 int error, rc = 0;
2938 const unsigned int ia_valid = attr->ia_valid;
2940 error = inode_change_ok(inode, attr);
2941 if (error)
2942 return error;
2944 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2945 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2946 handle_t *handle;
2948 /* (user+group)*(old+new) structure, inode write (sb,
2949 * inode block, ? - but truncate inode update has it) */
2950 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
2951 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
2952 if (IS_ERR(handle)) {
2953 error = PTR_ERR(handle);
2954 goto err_out;
2956 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2957 if (error) {
2958 ext4_journal_stop(handle);
2959 return error;
2961 /* Update corresponding info in inode so that everything is in
2962 * one transaction */
2963 if (attr->ia_valid & ATTR_UID)
2964 inode->i_uid = attr->ia_uid;
2965 if (attr->ia_valid & ATTR_GID)
2966 inode->i_gid = attr->ia_gid;
2967 error = ext4_mark_inode_dirty(handle, inode);
2968 ext4_journal_stop(handle);
2971 if (S_ISREG(inode->i_mode) &&
2972 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2973 handle_t *handle;
2975 handle = ext4_journal_start(inode, 3);
2976 if (IS_ERR(handle)) {
2977 error = PTR_ERR(handle);
2978 goto err_out;
2981 error = ext4_orphan_add(handle, inode);
2982 EXT4_I(inode)->i_disksize = attr->ia_size;
2983 rc = ext4_mark_inode_dirty(handle, inode);
2984 if (!error)
2985 error = rc;
2986 ext4_journal_stop(handle);
2989 rc = inode_setattr(inode, attr);
2991 /* If inode_setattr's call to ext4_truncate failed to get a
2992 * transaction handle at all, we need to clean up the in-core
2993 * orphan list manually. */
2994 if (inode->i_nlink)
2995 ext4_orphan_del(NULL, inode);
2997 if (!rc && (ia_valid & ATTR_MODE))
2998 rc = ext4_acl_chmod(inode);
3000 err_out:
3001 ext4_std_error(inode->i_sb, error);
3002 if (!error)
3003 error = rc;
3004 return error;
3009 * How many blocks doth make a writepage()?
3011 * With N blocks per page, it may be:
3012 * N data blocks
3013 * 2 indirect block
3014 * 2 dindirect
3015 * 1 tindirect
3016 * N+5 bitmap blocks (from the above)
3017 * N+5 group descriptor summary blocks
3018 * 1 inode block
3019 * 1 superblock.
3020 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3022 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3024 * With ordered or writeback data it's the same, less the N data blocks.
3026 * If the inode's direct blocks can hold an integral number of pages then a
3027 * page cannot straddle two indirect blocks, and we can only touch one indirect
3028 * and dindirect block, and the "5" above becomes "3".
3030 * This still overestimates under most circumstances. If we were to pass the
3031 * start and end offsets in here as well we could do block_to_path() on each
3032 * block and work out the exact number of indirects which are touched. Pah.
3035 int ext4_writepage_trans_blocks(struct inode *inode)
3037 int bpp = ext4_journal_blocks_per_page(inode);
3038 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3039 int ret;
3041 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3042 return ext4_ext_writepage_trans_blocks(inode, bpp);
3044 if (ext4_should_journal_data(inode))
3045 ret = 3 * (bpp + indirects) + 2;
3046 else
3047 ret = 2 * (bpp + indirects) + 2;
3049 #ifdef CONFIG_QUOTA
3050 /* We know that structure was already allocated during DQUOT_INIT so
3051 * we will be updating only the data blocks + inodes */
3052 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3053 #endif
3055 return ret;
3059 * The caller must have previously called ext4_reserve_inode_write().
3060 * Give this, we know that the caller already has write access to iloc->bh.
3062 int ext4_mark_iloc_dirty(handle_t *handle,
3063 struct inode *inode, struct ext4_iloc *iloc)
3065 int err = 0;
3067 /* the do_update_inode consumes one bh->b_count */
3068 get_bh(iloc->bh);
3070 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3071 err = ext4_do_update_inode(handle, inode, iloc);
3072 put_bh(iloc->bh);
3073 return err;
3077 * On success, We end up with an outstanding reference count against
3078 * iloc->bh. This _must_ be cleaned up later.
3082 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3083 struct ext4_iloc *iloc)
3085 int err = 0;
3086 if (handle) {
3087 err = ext4_get_inode_loc(inode, iloc);
3088 if (!err) {
3089 BUFFER_TRACE(iloc->bh, "get_write_access");
3090 err = ext4_journal_get_write_access(handle, iloc->bh);
3091 if (err) {
3092 brelse(iloc->bh);
3093 iloc->bh = NULL;
3097 ext4_std_error(inode->i_sb, err);
3098 return err;
3102 * Expand an inode by new_extra_isize bytes.
3103 * Returns 0 on success or negative error number on failure.
3105 int ext4_expand_extra_isize(struct inode *inode, unsigned int new_extra_isize,
3106 struct ext4_iloc iloc, handle_t *handle)
3108 struct ext4_inode *raw_inode;
3109 struct ext4_xattr_ibody_header *header;
3110 struct ext4_xattr_entry *entry;
3112 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3113 return 0;
3115 raw_inode = ext4_raw_inode(&iloc);
3117 header = IHDR(inode, raw_inode);
3118 entry = IFIRST(header);
3120 /* No extended attributes present */
3121 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3122 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3123 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3124 new_extra_isize);
3125 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3126 return 0;
3129 /* try to expand with EAs present */
3130 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3131 raw_inode, handle);
3135 * What we do here is to mark the in-core inode as clean with respect to inode
3136 * dirtiness (it may still be data-dirty).
3137 * This means that the in-core inode may be reaped by prune_icache
3138 * without having to perform any I/O. This is a very good thing,
3139 * because *any* task may call prune_icache - even ones which
3140 * have a transaction open against a different journal.
3142 * Is this cheating? Not really. Sure, we haven't written the
3143 * inode out, but prune_icache isn't a user-visible syncing function.
3144 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3145 * we start and wait on commits.
3147 * Is this efficient/effective? Well, we're being nice to the system
3148 * by cleaning up our inodes proactively so they can be reaped
3149 * without I/O. But we are potentially leaving up to five seconds'
3150 * worth of inodes floating about which prune_icache wants us to
3151 * write out. One way to fix that would be to get prune_icache()
3152 * to do a write_super() to free up some memory. It has the desired
3153 * effect.
3155 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3157 struct ext4_iloc iloc;
3158 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3159 static unsigned int mnt_count;
3160 int err, ret;
3162 might_sleep();
3163 err = ext4_reserve_inode_write(handle, inode, &iloc);
3164 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3165 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3167 * We need extra buffer credits since we may write into EA block
3168 * with this same handle. If journal_extend fails, then it will
3169 * only result in a minor loss of functionality for that inode.
3170 * If this is felt to be critical, then e2fsck should be run to
3171 * force a large enough s_min_extra_isize.
3173 if ((jbd2_journal_extend(handle,
3174 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3175 ret = ext4_expand_extra_isize(inode,
3176 sbi->s_want_extra_isize,
3177 iloc, handle);
3178 if (ret) {
3179 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3180 if (mnt_count != sbi->s_es->s_mnt_count) {
3181 ext4_warning(inode->i_sb, __FUNCTION__,
3182 "Unable to expand inode %lu. Delete"
3183 " some EAs or run e2fsck.",
3184 inode->i_ino);
3185 mnt_count = sbi->s_es->s_mnt_count;
3190 if (!err)
3191 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3192 return err;
3196 * ext4_dirty_inode() is called from __mark_inode_dirty()
3198 * We're really interested in the case where a file is being extended.
3199 * i_size has been changed by generic_commit_write() and we thus need
3200 * to include the updated inode in the current transaction.
3202 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3203 * are allocated to the file.
3205 * If the inode is marked synchronous, we don't honour that here - doing
3206 * so would cause a commit on atime updates, which we don't bother doing.
3207 * We handle synchronous inodes at the highest possible level.
3209 void ext4_dirty_inode(struct inode *inode)
3211 handle_t *current_handle = ext4_journal_current_handle();
3212 handle_t *handle;
3214 handle = ext4_journal_start(inode, 2);
3215 if (IS_ERR(handle))
3216 goto out;
3217 if (current_handle &&
3218 current_handle->h_transaction != handle->h_transaction) {
3219 /* This task has a transaction open against a different fs */
3220 printk(KERN_EMERG "%s: transactions do not match!\n",
3221 __FUNCTION__);
3222 } else {
3223 jbd_debug(5, "marking dirty. outer handle=%p\n",
3224 current_handle);
3225 ext4_mark_inode_dirty(handle, inode);
3227 ext4_journal_stop(handle);
3228 out:
3229 return;
3232 #if 0
3234 * Bind an inode's backing buffer_head into this transaction, to prevent
3235 * it from being flushed to disk early. Unlike
3236 * ext4_reserve_inode_write, this leaves behind no bh reference and
3237 * returns no iloc structure, so the caller needs to repeat the iloc
3238 * lookup to mark the inode dirty later.
3240 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3242 struct ext4_iloc iloc;
3244 int err = 0;
3245 if (handle) {
3246 err = ext4_get_inode_loc(inode, &iloc);
3247 if (!err) {
3248 BUFFER_TRACE(iloc.bh, "get_write_access");
3249 err = jbd2_journal_get_write_access(handle, iloc.bh);
3250 if (!err)
3251 err = ext4_journal_dirty_metadata(handle,
3252 iloc.bh);
3253 brelse(iloc.bh);
3256 ext4_std_error(inode->i_sb, err);
3257 return err;
3259 #endif
3261 int ext4_change_inode_journal_flag(struct inode *inode, int val)
3263 journal_t *journal;
3264 handle_t *handle;
3265 int err;
3268 * We have to be very careful here: changing a data block's
3269 * journaling status dynamically is dangerous. If we write a
3270 * data block to the journal, change the status and then delete
3271 * that block, we risk forgetting to revoke the old log record
3272 * from the journal and so a subsequent replay can corrupt data.
3273 * So, first we make sure that the journal is empty and that
3274 * nobody is changing anything.
3277 journal = EXT4_JOURNAL(inode);
3278 if (is_journal_aborted(journal))
3279 return -EROFS;
3281 jbd2_journal_lock_updates(journal);
3282 jbd2_journal_flush(journal);
3285 * OK, there are no updates running now, and all cached data is
3286 * synced to disk. We are now in a completely consistent state
3287 * which doesn't have anything in the journal, and we know that
3288 * no filesystem updates are running, so it is safe to modify
3289 * the inode's in-core data-journaling state flag now.
3292 if (val)
3293 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3294 else
3295 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3296 ext4_set_aops(inode);
3298 jbd2_journal_unlock_updates(journal);
3300 /* Finally we can mark the inode as dirty. */
3302 handle = ext4_journal_start(inode, 1);
3303 if (IS_ERR(handle))
3304 return PTR_ERR(handle);
3306 err = ext4_mark_inode_dirty(handle, inode);
3307 handle->h_sync = 1;
3308 ext4_journal_stop(handle);
3309 ext4_std_error(inode->i_sb, err);
3311 return err;