[ALSA] cs4231-lib: replace common delay loop by function
[linux-2.6/verdex.git] / kernel / time / tick-broadcast.c
blobfc3fc79b3d593c7e4c5e170431a6204228f2e697
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/irq.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
34 #ifdef CONFIG_TICK_ONESHOT
35 static void tick_broadcast_clear_oneshot(int cpu);
36 #else
37 static inline void tick_broadcast_clear_oneshot(int cpu) { }
38 #endif
41 * Debugging: see timer_list.c
43 struct tick_device *tick_get_broadcast_device(void)
45 return &tick_broadcast_device;
48 cpumask_t *tick_get_broadcast_mask(void)
50 return &tick_broadcast_mask;
54 * Start the device in periodic mode
56 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
58 if (bc)
59 tick_setup_periodic(bc, 1);
63 * Check, if the device can be utilized as broadcast device:
65 int tick_check_broadcast_device(struct clock_event_device *dev)
67 if ((tick_broadcast_device.evtdev &&
68 tick_broadcast_device.evtdev->rating >= dev->rating) ||
69 (dev->features & CLOCK_EVT_FEAT_C3STOP))
70 return 0;
72 clockevents_exchange_device(NULL, dev);
73 tick_broadcast_device.evtdev = dev;
74 if (!cpus_empty(tick_broadcast_mask))
75 tick_broadcast_start_periodic(dev);
76 return 1;
80 * Check, if the device is the broadcast device
82 int tick_is_broadcast_device(struct clock_event_device *dev)
84 return (dev && tick_broadcast_device.evtdev == dev);
88 * Check, if the device is disfunctional and a place holder, which
89 * needs to be handled by the broadcast device.
91 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
93 unsigned long flags;
94 int ret = 0;
96 spin_lock_irqsave(&tick_broadcast_lock, flags);
99 * Devices might be registered with both periodic and oneshot
100 * mode disabled. This signals, that the device needs to be
101 * operated from the broadcast device and is a placeholder for
102 * the cpu local device.
104 if (!tick_device_is_functional(dev)) {
105 dev->event_handler = tick_handle_periodic;
106 cpu_set(cpu, tick_broadcast_mask);
107 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
108 ret = 1;
109 } else {
111 * When the new device is not affected by the stop
112 * feature and the cpu is marked in the broadcast mask
113 * then clear the broadcast bit.
115 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
116 int cpu = smp_processor_id();
118 cpu_clear(cpu, tick_broadcast_mask);
119 tick_broadcast_clear_oneshot(cpu);
122 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
123 return ret;
127 * Broadcast the event to the cpus, which are set in the mask
129 int tick_do_broadcast(cpumask_t mask)
131 int ret = 0, cpu = smp_processor_id();
132 struct tick_device *td;
135 * Check, if the current cpu is in the mask
137 if (cpu_isset(cpu, mask)) {
138 cpu_clear(cpu, mask);
139 td = &per_cpu(tick_cpu_device, cpu);
140 td->evtdev->event_handler(td->evtdev);
141 ret = 1;
144 if (!cpus_empty(mask)) {
146 * It might be necessary to actually check whether the devices
147 * have different broadcast functions. For now, just use the
148 * one of the first device. This works as long as we have this
149 * misfeature only on x86 (lapic)
151 cpu = first_cpu(mask);
152 td = &per_cpu(tick_cpu_device, cpu);
153 td->evtdev->broadcast(mask);
154 ret = 1;
156 return ret;
160 * Periodic broadcast:
161 * - invoke the broadcast handlers
163 static void tick_do_periodic_broadcast(void)
165 cpumask_t mask;
167 spin_lock(&tick_broadcast_lock);
169 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
170 tick_do_broadcast(mask);
172 spin_unlock(&tick_broadcast_lock);
176 * Event handler for periodic broadcast ticks
178 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
180 tick_do_periodic_broadcast();
183 * The device is in periodic mode. No reprogramming necessary:
185 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
186 return;
189 * Setup the next period for devices, which do not have
190 * periodic mode:
192 for (;;) {
193 ktime_t next = ktime_add(dev->next_event, tick_period);
195 if (!clockevents_program_event(dev, next, ktime_get()))
196 return;
197 tick_do_periodic_broadcast();
202 * Powerstate information: The system enters/leaves a state, where
203 * affected devices might stop
205 static void tick_do_broadcast_on_off(void *why)
207 struct clock_event_device *bc, *dev;
208 struct tick_device *td;
209 unsigned long flags, *reason = why;
210 int cpu;
212 spin_lock_irqsave(&tick_broadcast_lock, flags);
214 cpu = smp_processor_id();
215 td = &per_cpu(tick_cpu_device, cpu);
216 dev = td->evtdev;
217 bc = tick_broadcast_device.evtdev;
220 * Is the device not affected by the powerstate ?
222 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
223 goto out;
226 * Defect device ?
228 if (!tick_device_is_functional(dev)) {
230 * AMD C1E wreckage fixup:
232 * Device was registered functional in the first
233 * place. Now the secondary CPU detected the C1E
234 * misfeature and notifies us to fix it up
236 if (*reason != CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
237 goto out;
240 switch (*reason) {
241 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
242 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
243 if (!cpu_isset(cpu, tick_broadcast_mask)) {
244 cpu_set(cpu, tick_broadcast_mask);
245 if (td->mode == TICKDEV_MODE_PERIODIC)
246 clockevents_set_mode(dev,
247 CLOCK_EVT_MODE_SHUTDOWN);
249 break;
250 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
251 if (cpu_isset(cpu, tick_broadcast_mask)) {
252 cpu_clear(cpu, tick_broadcast_mask);
253 if (td->mode == TICKDEV_MODE_PERIODIC)
254 tick_setup_periodic(dev, 0);
256 break;
259 if (cpus_empty(tick_broadcast_mask))
260 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
261 else {
262 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
263 tick_broadcast_start_periodic(bc);
264 else
265 tick_broadcast_setup_oneshot(bc);
267 out:
268 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
272 * Powerstate information: The system enters/leaves a state, where
273 * affected devices might stop.
275 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
277 int cpu = get_cpu();
279 if (!cpu_isset(*oncpu, cpu_online_map)) {
280 printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
281 "offline CPU #%d\n", *oncpu);
282 } else {
284 if (cpu == *oncpu)
285 tick_do_broadcast_on_off(&reason);
286 else
287 smp_call_function_single(*oncpu,
288 tick_do_broadcast_on_off,
289 &reason, 1, 1);
291 put_cpu();
295 * Set the periodic handler depending on broadcast on/off
297 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
299 if (!broadcast)
300 dev->event_handler = tick_handle_periodic;
301 else
302 dev->event_handler = tick_handle_periodic_broadcast;
306 * Remove a CPU from broadcasting
308 void tick_shutdown_broadcast(unsigned int *cpup)
310 struct clock_event_device *bc;
311 unsigned long flags;
312 unsigned int cpu = *cpup;
314 spin_lock_irqsave(&tick_broadcast_lock, flags);
316 bc = tick_broadcast_device.evtdev;
317 cpu_clear(cpu, tick_broadcast_mask);
319 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
320 if (bc && cpus_empty(tick_broadcast_mask))
321 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
324 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
327 void tick_suspend_broadcast(void)
329 struct clock_event_device *bc;
330 unsigned long flags;
332 spin_lock_irqsave(&tick_broadcast_lock, flags);
334 bc = tick_broadcast_device.evtdev;
335 if (bc)
336 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
338 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
341 int tick_resume_broadcast(void)
343 struct clock_event_device *bc;
344 unsigned long flags;
345 int broadcast = 0;
347 spin_lock_irqsave(&tick_broadcast_lock, flags);
349 bc = tick_broadcast_device.evtdev;
351 if (bc) {
352 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
354 switch (tick_broadcast_device.mode) {
355 case TICKDEV_MODE_PERIODIC:
356 if(!cpus_empty(tick_broadcast_mask))
357 tick_broadcast_start_periodic(bc);
358 broadcast = cpu_isset(smp_processor_id(),
359 tick_broadcast_mask);
360 break;
361 case TICKDEV_MODE_ONESHOT:
362 broadcast = tick_resume_broadcast_oneshot(bc);
363 break;
366 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
368 return broadcast;
372 #ifdef CONFIG_TICK_ONESHOT
374 static cpumask_t tick_broadcast_oneshot_mask;
377 * Debugging: see timer_list.c
379 cpumask_t *tick_get_broadcast_oneshot_mask(void)
381 return &tick_broadcast_oneshot_mask;
384 static int tick_broadcast_set_event(ktime_t expires, int force)
386 struct clock_event_device *bc = tick_broadcast_device.evtdev;
387 ktime_t now = ktime_get();
388 int res;
390 for(;;) {
391 res = clockevents_program_event(bc, expires, now);
392 if (!res || !force)
393 return res;
394 now = ktime_get();
395 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
399 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
401 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
402 return 0;
406 * Reprogram the broadcast device:
408 * Called with tick_broadcast_lock held and interrupts disabled.
410 static int tick_broadcast_reprogram(void)
412 ktime_t expires = { .tv64 = KTIME_MAX };
413 struct tick_device *td;
414 int cpu;
417 * Find the event which expires next:
419 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
420 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
421 td = &per_cpu(tick_cpu_device, cpu);
422 if (td->evtdev->next_event.tv64 < expires.tv64)
423 expires = td->evtdev->next_event;
426 if (expires.tv64 == KTIME_MAX)
427 return 0;
429 return tick_broadcast_set_event(expires, 0);
433 * Handle oneshot mode broadcasting
435 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
437 struct tick_device *td;
438 cpumask_t mask;
439 ktime_t now;
440 int cpu;
442 spin_lock(&tick_broadcast_lock);
443 again:
444 dev->next_event.tv64 = KTIME_MAX;
445 mask = CPU_MASK_NONE;
446 now = ktime_get();
447 /* Find all expired events */
448 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
449 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
450 td = &per_cpu(tick_cpu_device, cpu);
451 if (td->evtdev->next_event.tv64 <= now.tv64)
452 cpu_set(cpu, mask);
456 * Wakeup the cpus which have an expired event. The broadcast
457 * device is reprogrammed in the return from idle code.
459 if (!tick_do_broadcast(mask)) {
461 * The global event did not expire any CPU local
462 * events. This happens in dyntick mode, as the
463 * maximum PIT delta is quite small.
465 if (tick_broadcast_reprogram())
466 goto again;
468 spin_unlock(&tick_broadcast_lock);
472 * Powerstate information: The system enters/leaves a state, where
473 * affected devices might stop
475 void tick_broadcast_oneshot_control(unsigned long reason)
477 struct clock_event_device *bc, *dev;
478 struct tick_device *td;
479 unsigned long flags;
480 int cpu;
482 spin_lock_irqsave(&tick_broadcast_lock, flags);
485 * Periodic mode does not care about the enter/exit of power
486 * states
488 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
489 goto out;
491 bc = tick_broadcast_device.evtdev;
492 cpu = smp_processor_id();
493 td = &per_cpu(tick_cpu_device, cpu);
494 dev = td->evtdev;
496 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
497 goto out;
499 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
500 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
501 cpu_set(cpu, tick_broadcast_oneshot_mask);
502 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
503 if (dev->next_event.tv64 < bc->next_event.tv64)
504 tick_broadcast_set_event(dev->next_event, 1);
506 } else {
507 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
508 cpu_clear(cpu, tick_broadcast_oneshot_mask);
509 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
510 if (dev->next_event.tv64 != KTIME_MAX)
511 tick_program_event(dev->next_event, 1);
515 out:
516 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
520 * Reset the one shot broadcast for a cpu
522 * Called with tick_broadcast_lock held
524 static void tick_broadcast_clear_oneshot(int cpu)
526 cpu_clear(cpu, tick_broadcast_oneshot_mask);
530 * tick_broadcast_setup_highres - setup the broadcast device for highres
532 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
534 bc->event_handler = tick_handle_oneshot_broadcast;
535 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
536 bc->next_event.tv64 = KTIME_MAX;
540 * Select oneshot operating mode for the broadcast device
542 void tick_broadcast_switch_to_oneshot(void)
544 struct clock_event_device *bc;
545 unsigned long flags;
547 spin_lock_irqsave(&tick_broadcast_lock, flags);
549 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
550 bc = tick_broadcast_device.evtdev;
551 if (bc)
552 tick_broadcast_setup_oneshot(bc);
553 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
558 * Remove a dead CPU from broadcasting
560 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
562 unsigned long flags;
563 unsigned int cpu = *cpup;
565 spin_lock_irqsave(&tick_broadcast_lock, flags);
568 * Clear the broadcast mask flag for the dead cpu, but do not
569 * stop the broadcast device!
571 cpu_clear(cpu, tick_broadcast_oneshot_mask);
573 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
576 #endif