[PATCH] W1: possible cleanups
[linux-2.6/verdex.git] / drivers / cpufreq / cpufreq_ondemand.c
blob3e6ffcaa5af4c2a10941c2ad6d30478aead32897
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 #include <linux/mutex.h>
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 static unsigned int def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR (1)
59 #define MAX_SAMPLING_DOWN_FACTOR (10)
60 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
62 static void do_dbs_timer(void *data);
64 struct cpu_dbs_info_s {
65 struct cpufreq_policy *cur_policy;
66 unsigned int prev_cpu_idle_up;
67 unsigned int prev_cpu_idle_down;
68 unsigned int enable;
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
74 static DEFINE_MUTEX (dbs_mutex);
75 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
77 static struct workqueue_struct *dbs_workq;
79 struct dbs_tuners {
80 unsigned int sampling_rate;
81 unsigned int sampling_down_factor;
82 unsigned int up_threshold;
83 unsigned int ignore_nice;
86 static struct dbs_tuners dbs_tuners_ins = {
87 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
88 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
89 .ignore_nice = 0,
92 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
94 return kstat_cpu(cpu).cpustat.idle +
95 kstat_cpu(cpu).cpustat.iowait +
96 ( dbs_tuners_ins.ignore_nice ?
97 kstat_cpu(cpu).cpustat.nice :
98 0);
101 /************************** sysfs interface ************************/
102 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
104 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
107 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
109 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
112 #define define_one_ro(_name) \
113 static struct freq_attr _name = \
114 __ATTR(_name, 0444, show_##_name, NULL)
116 define_one_ro(sampling_rate_max);
117 define_one_ro(sampling_rate_min);
119 /* cpufreq_ondemand Governor Tunables */
120 #define show_one(file_name, object) \
121 static ssize_t show_##file_name \
122 (struct cpufreq_policy *unused, char *buf) \
124 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
126 show_one(sampling_rate, sampling_rate);
127 show_one(sampling_down_factor, sampling_down_factor);
128 show_one(up_threshold, up_threshold);
129 show_one(ignore_nice_load, ignore_nice);
131 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
132 const char *buf, size_t count)
134 unsigned int input;
135 int ret;
136 ret = sscanf (buf, "%u", &input);
137 if (ret != 1 )
138 return -EINVAL;
140 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
141 return -EINVAL;
143 mutex_lock(&dbs_mutex);
144 dbs_tuners_ins.sampling_down_factor = input;
145 mutex_unlock(&dbs_mutex);
147 return count;
150 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
151 const char *buf, size_t count)
153 unsigned int input;
154 int ret;
155 ret = sscanf (buf, "%u", &input);
157 mutex_lock(&dbs_mutex);
158 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
159 mutex_unlock(&dbs_mutex);
160 return -EINVAL;
163 dbs_tuners_ins.sampling_rate = input;
164 mutex_unlock(&dbs_mutex);
166 return count;
169 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
170 const char *buf, size_t count)
172 unsigned int input;
173 int ret;
174 ret = sscanf (buf, "%u", &input);
176 mutex_lock(&dbs_mutex);
177 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
178 input < MIN_FREQUENCY_UP_THRESHOLD) {
179 mutex_unlock(&dbs_mutex);
180 return -EINVAL;
183 dbs_tuners_ins.up_threshold = input;
184 mutex_unlock(&dbs_mutex);
186 return count;
189 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
190 const char *buf, size_t count)
192 unsigned int input;
193 int ret;
195 unsigned int j;
197 ret = sscanf (buf, "%u", &input);
198 if ( ret != 1 )
199 return -EINVAL;
201 if ( input > 1 )
202 input = 1;
204 mutex_lock(&dbs_mutex);
205 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
206 mutex_unlock(&dbs_mutex);
207 return count;
209 dbs_tuners_ins.ignore_nice = input;
211 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
212 for_each_online_cpu(j) {
213 struct cpu_dbs_info_s *j_dbs_info;
214 j_dbs_info = &per_cpu(cpu_dbs_info, j);
215 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
216 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
218 mutex_unlock(&dbs_mutex);
220 return count;
223 #define define_one_rw(_name) \
224 static struct freq_attr _name = \
225 __ATTR(_name, 0644, show_##_name, store_##_name)
227 define_one_rw(sampling_rate);
228 define_one_rw(sampling_down_factor);
229 define_one_rw(up_threshold);
230 define_one_rw(ignore_nice_load);
232 static struct attribute * dbs_attributes[] = {
233 &sampling_rate_max.attr,
234 &sampling_rate_min.attr,
235 &sampling_rate.attr,
236 &sampling_down_factor.attr,
237 &up_threshold.attr,
238 &ignore_nice_load.attr,
239 NULL
242 static struct attribute_group dbs_attr_group = {
243 .attrs = dbs_attributes,
244 .name = "ondemand",
247 /************************** sysfs end ************************/
249 static void dbs_check_cpu(int cpu)
251 unsigned int idle_ticks, up_idle_ticks, total_ticks;
252 unsigned int freq_next;
253 unsigned int freq_down_sampling_rate;
254 static int down_skip[NR_CPUS];
255 struct cpu_dbs_info_s *this_dbs_info;
257 struct cpufreq_policy *policy;
258 unsigned int j;
260 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
261 if (!this_dbs_info->enable)
262 return;
264 policy = this_dbs_info->cur_policy;
266 * Every sampling_rate, we check, if current idle time is less
267 * than 20% (default), then we try to increase frequency
268 * Every sampling_rate*sampling_down_factor, we look for a the lowest
269 * frequency which can sustain the load while keeping idle time over
270 * 30%. If such a frequency exist, we try to decrease to this frequency.
272 * Any frequency increase takes it to the maximum frequency.
273 * Frequency reduction happens at minimum steps of
274 * 5% (default) of current frequency
277 /* Check for frequency increase */
278 idle_ticks = UINT_MAX;
279 for_each_cpu_mask(j, policy->cpus) {
280 unsigned int tmp_idle_ticks, total_idle_ticks;
281 struct cpu_dbs_info_s *j_dbs_info;
283 j_dbs_info = &per_cpu(cpu_dbs_info, j);
284 total_idle_ticks = get_cpu_idle_time(j);
285 tmp_idle_ticks = total_idle_ticks -
286 j_dbs_info->prev_cpu_idle_up;
287 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
289 if (tmp_idle_ticks < idle_ticks)
290 idle_ticks = tmp_idle_ticks;
293 /* Scale idle ticks by 100 and compare with up and down ticks */
294 idle_ticks *= 100;
295 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
296 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
298 if (idle_ticks < up_idle_ticks) {
299 down_skip[cpu] = 0;
300 for_each_cpu_mask(j, policy->cpus) {
301 struct cpu_dbs_info_s *j_dbs_info;
303 j_dbs_info = &per_cpu(cpu_dbs_info, j);
304 j_dbs_info->prev_cpu_idle_down =
305 j_dbs_info->prev_cpu_idle_up;
307 /* if we are already at full speed then break out early */
308 if (policy->cur == policy->max)
309 return;
311 __cpufreq_driver_target(policy, policy->max,
312 CPUFREQ_RELATION_H);
313 return;
316 /* Check for frequency decrease */
317 down_skip[cpu]++;
318 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
319 return;
321 idle_ticks = UINT_MAX;
322 for_each_cpu_mask(j, policy->cpus) {
323 unsigned int tmp_idle_ticks, total_idle_ticks;
324 struct cpu_dbs_info_s *j_dbs_info;
326 j_dbs_info = &per_cpu(cpu_dbs_info, j);
327 /* Check for frequency decrease */
328 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
329 tmp_idle_ticks = total_idle_ticks -
330 j_dbs_info->prev_cpu_idle_down;
331 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
333 if (tmp_idle_ticks < idle_ticks)
334 idle_ticks = tmp_idle_ticks;
337 down_skip[cpu] = 0;
338 /* if we cannot reduce the frequency anymore, break out early */
339 if (policy->cur == policy->min)
340 return;
342 /* Compute how many ticks there are between two measurements */
343 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
344 dbs_tuners_ins.sampling_down_factor;
345 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
348 * The optimal frequency is the frequency that is the lowest that
349 * can support the current CPU usage without triggering the up
350 * policy. To be safe, we focus 10 points under the threshold.
352 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
353 freq_next = (freq_next * policy->cur) /
354 (dbs_tuners_ins.up_threshold - 10);
356 if (freq_next < policy->min)
357 freq_next = policy->min;
359 if (freq_next <= ((policy->cur * 95) / 100))
360 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
363 static void do_dbs_timer(void *data)
365 int i;
366 mutex_lock(&dbs_mutex);
367 for_each_online_cpu(i)
368 dbs_check_cpu(i);
369 queue_delayed_work(dbs_workq, &dbs_work,
370 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
371 mutex_unlock(&dbs_mutex);
374 static inline void dbs_timer_init(void)
376 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
377 if (!dbs_workq)
378 dbs_workq = create_singlethread_workqueue("ondemand");
379 if (!dbs_workq) {
380 printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
381 return;
383 queue_delayed_work(dbs_workq, &dbs_work,
384 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
385 return;
388 static inline void dbs_timer_exit(void)
390 if (dbs_workq)
391 cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
394 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
395 unsigned int event)
397 unsigned int cpu = policy->cpu;
398 struct cpu_dbs_info_s *this_dbs_info;
399 unsigned int j;
401 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
403 switch (event) {
404 case CPUFREQ_GOV_START:
405 if ((!cpu_online(cpu)) ||
406 (!policy->cur))
407 return -EINVAL;
409 if (policy->cpuinfo.transition_latency >
410 (TRANSITION_LATENCY_LIMIT * 1000)) {
411 printk(KERN_WARNING "ondemand governor failed to load "
412 "due to too long transition latency\n");
413 return -EINVAL;
415 if (this_dbs_info->enable) /* Already enabled */
416 break;
418 mutex_lock(&dbs_mutex);
419 for_each_cpu_mask(j, policy->cpus) {
420 struct cpu_dbs_info_s *j_dbs_info;
421 j_dbs_info = &per_cpu(cpu_dbs_info, j);
422 j_dbs_info->cur_policy = policy;
424 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
425 j_dbs_info->prev_cpu_idle_down
426 = j_dbs_info->prev_cpu_idle_up;
428 this_dbs_info->enable = 1;
429 sysfs_create_group(&policy->kobj, &dbs_attr_group);
430 dbs_enable++;
432 * Start the timerschedule work, when this governor
433 * is used for first time
435 if (dbs_enable == 1) {
436 unsigned int latency;
437 /* policy latency is in nS. Convert it to uS first */
438 latency = policy->cpuinfo.transition_latency / 1000;
439 if (latency == 0)
440 latency = 1;
442 def_sampling_rate = latency *
443 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
445 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
446 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
448 dbs_tuners_ins.sampling_rate = def_sampling_rate;
449 dbs_timer_init();
452 mutex_unlock(&dbs_mutex);
453 break;
455 case CPUFREQ_GOV_STOP:
456 mutex_lock(&dbs_mutex);
457 this_dbs_info->enable = 0;
458 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
459 dbs_enable--;
461 * Stop the timerschedule work, when this governor
462 * is used for first time
464 if (dbs_enable == 0)
465 dbs_timer_exit();
467 mutex_unlock(&dbs_mutex);
469 break;
471 case CPUFREQ_GOV_LIMITS:
472 mutex_lock(&dbs_mutex);
473 if (policy->max < this_dbs_info->cur_policy->cur)
474 __cpufreq_driver_target(
475 this_dbs_info->cur_policy,
476 policy->max, CPUFREQ_RELATION_H);
477 else if (policy->min > this_dbs_info->cur_policy->cur)
478 __cpufreq_driver_target(
479 this_dbs_info->cur_policy,
480 policy->min, CPUFREQ_RELATION_L);
481 mutex_unlock(&dbs_mutex);
482 break;
484 return 0;
487 static struct cpufreq_governor cpufreq_gov_dbs = {
488 .name = "ondemand",
489 .governor = cpufreq_governor_dbs,
490 .owner = THIS_MODULE,
493 static int __init cpufreq_gov_dbs_init(void)
495 return cpufreq_register_governor(&cpufreq_gov_dbs);
498 static void __exit cpufreq_gov_dbs_exit(void)
500 /* Make sure that the scheduled work is indeed not running.
501 Assumes the timer has been cancelled first. */
502 if (dbs_workq) {
503 flush_workqueue(dbs_workq);
504 destroy_workqueue(dbs_workq);
507 cpufreq_unregister_governor(&cpufreq_gov_dbs);
511 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
512 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
513 "Low Latency Frequency Transition capable processors");
514 MODULE_LICENSE ("GPL");
516 module_init(cpufreq_gov_dbs_init);
517 module_exit(cpufreq_gov_dbs_exit);