2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3 * of PCI-SCSI IO processors.
5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
8 * This driver is derived from the Linux sym53c8xx driver.
9 * Copyright (C) 1998-2000 Gerard Roudier
11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
14 * The original ncr driver has been written for 386bsd and FreeBSD by
15 * Wolfgang Stanglmeier <wolf@cologne.de>
16 * Stefan Esser <se@mi.Uni-Koeln.de>
17 * Copyright (C) 1994 Wolfgang Stanglmeier
19 * Other major contributions:
21 * NVRAM detection and reading.
22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
24 *-----------------------------------------------------------------------------
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
41 #include <linux/slab.h>
42 #include <asm/param.h> /* for timeouts in units of HZ */
45 #include "sym_nvram.h"
48 #define SYM_DEBUG_GENERIC_SUPPORT
52 * Needed function prototypes.
54 static void sym_int_ma (struct sym_hcb
*np
);
55 static void sym_int_sir (struct sym_hcb
*np
);
56 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
);
57 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
);
58 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
);
59 static void sym_complete_error (struct sym_hcb
*np
, struct sym_ccb
*cp
);
60 static void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
);
61 static int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
);
64 * Print a buffer in hexadecimal format with a ".\n" at end.
66 static void sym_printl_hex(u_char
*p
, int n
)
73 static void sym_print_msg(struct sym_ccb
*cp
, char *label
, u_char
*msg
)
76 sym_print_addr(cp
->cmd
, "%s: ", label
);
78 sym_print_addr(cp
->cmd
, "");
84 static void sym_print_nego_msg(struct sym_hcb
*np
, int target
, char *label
, u_char
*msg
)
86 struct sym_tcb
*tp
= &np
->target
[target
];
87 dev_info(&tp
->starget
->dev
, "%s: ", label
);
94 * Print something that tells about extended errors.
96 void sym_print_xerr(struct scsi_cmnd
*cmd
, int x_status
)
98 if (x_status
& XE_PARITY_ERR
) {
99 sym_print_addr(cmd
, "unrecovered SCSI parity error.\n");
101 if (x_status
& XE_EXTRA_DATA
) {
102 sym_print_addr(cmd
, "extraneous data discarded.\n");
104 if (x_status
& XE_BAD_PHASE
) {
105 sym_print_addr(cmd
, "illegal scsi phase (4/5).\n");
107 if (x_status
& XE_SODL_UNRUN
) {
108 sym_print_addr(cmd
, "ODD transfer in DATA OUT phase.\n");
110 if (x_status
& XE_SWIDE_OVRUN
) {
111 sym_print_addr(cmd
, "ODD transfer in DATA IN phase.\n");
116 * Return a string for SCSI BUS mode.
118 static char *sym_scsi_bus_mode(int mode
)
121 case SMODE_HVD
: return "HVD";
122 case SMODE_SE
: return "SE";
123 case SMODE_LVD
: return "LVD";
129 * Soft reset the chip.
131 * Raising SRST when the chip is running may cause
132 * problems on dual function chips (see below).
133 * On the other hand, LVD devices need some delay
134 * to settle and report actual BUS mode in STEST4.
136 static void sym_chip_reset (struct sym_hcb
*np
)
138 OUTB(np
, nc_istat
, SRST
);
141 OUTB(np
, nc_istat
, 0);
143 udelay(2000); /* For BUS MODE to settle */
147 * Really soft reset the chip.:)
149 * Some 896 and 876 chip revisions may hang-up if we set
150 * the SRST (soft reset) bit at the wrong time when SCRIPTS
152 * So, we need to abort the current operation prior to
153 * soft resetting the chip.
155 static void sym_soft_reset (struct sym_hcb
*np
)
160 if (!(np
->features
& FE_ISTAT1
) || !(INB(np
, nc_istat1
) & SCRUN
))
163 OUTB(np
, nc_istat
, CABRT
);
164 for (i
= 100000 ; i
; --i
) {
165 istat
= INB(np
, nc_istat
);
169 else if (istat
& DIP
) {
170 if (INB(np
, nc_dstat
) & ABRT
)
175 OUTB(np
, nc_istat
, 0);
177 printf("%s: unable to abort current chip operation, "
178 "ISTAT=0x%02x.\n", sym_name(np
), istat
);
184 * Start reset process.
186 * The interrupt handler will reinitialize the chip.
188 static void sym_start_reset(struct sym_hcb
*np
)
190 sym_reset_scsi_bus(np
, 1);
193 int sym_reset_scsi_bus(struct sym_hcb
*np
, int enab_int
)
198 sym_soft_reset(np
); /* Soft reset the chip */
200 OUTW(np
, nc_sien
, RST
);
202 * Enable Tolerant, reset IRQD if present and
203 * properly set IRQ mode, prior to resetting the bus.
205 OUTB(np
, nc_stest3
, TE
);
206 OUTB(np
, nc_dcntl
, (np
->rv_dcntl
& IRQM
));
207 OUTB(np
, nc_scntl1
, CRST
);
211 if (!SYM_SETUP_SCSI_BUS_CHECK
)
214 * Check for no terminators or SCSI bus shorts to ground.
215 * Read SCSI data bus, data parity bits and control signals.
216 * We are expecting RESET to be TRUE and other signals to be
219 term
= INB(np
, nc_sstat0
);
220 term
= ((term
& 2) << 7) + ((term
& 1) << 17); /* rst sdp0 */
221 term
|= ((INB(np
, nc_sstat2
) & 0x01) << 26) | /* sdp1 */
222 ((INW(np
, nc_sbdl
) & 0xff) << 9) | /* d7-0 */
223 ((INW(np
, nc_sbdl
) & 0xff00) << 10) | /* d15-8 */
224 INB(np
, nc_sbcl
); /* req ack bsy sel atn msg cd io */
229 if (term
!= (2<<7)) {
230 printf("%s: suspicious SCSI data while resetting the BUS.\n",
232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 "0x%lx, expecting 0x%lx\n",
235 (np
->features
& FE_WIDE
) ? "dp1,d15-8," : "",
236 (u_long
)term
, (u_long
)(2<<7));
237 if (SYM_SETUP_SCSI_BUS_CHECK
== 1)
241 OUTB(np
, nc_scntl1
, 0);
246 * Select SCSI clock frequency
248 static void sym_selectclock(struct sym_hcb
*np
, u_char scntl3
)
251 * If multiplier not present or not selected, leave here.
253 if (np
->multiplier
<= 1) {
254 OUTB(np
, nc_scntl3
, scntl3
);
258 if (sym_verbose
>= 2)
259 printf ("%s: enabling clock multiplier\n", sym_name(np
));
261 OUTB(np
, nc_stest1
, DBLEN
); /* Enable clock multiplier */
263 * Wait for the LCKFRQ bit to be set if supported by the chip.
264 * Otherwise wait 50 micro-seconds (at least).
266 if (np
->features
& FE_LCKFRQ
) {
268 while (!(INB(np
, nc_stest4
) & LCKFRQ
) && --i
> 0)
271 printf("%s: the chip cannot lock the frequency\n",
277 OUTB(np
, nc_stest3
, HSC
); /* Halt the scsi clock */
278 OUTB(np
, nc_scntl3
, scntl3
);
279 OUTB(np
, nc_stest1
, (DBLEN
|DBLSEL
));/* Select clock multiplier */
280 OUTB(np
, nc_stest3
, 0x00); /* Restart scsi clock */
285 * Determine the chip's clock frequency.
287 * This is essential for the negotiation of the synchronous
290 * Note: we have to return the correct value.
291 * THERE IS NO SAFE DEFAULT VALUE.
293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294 * 53C860 and 53C875 rev. 1 support fast20 transfers but
295 * do not have a clock doubler and so are provided with a
296 * 80 MHz clock. All other fast20 boards incorporate a doubler
297 * and so should be delivered with a 40 MHz clock.
298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299 * clock and provide a clock quadrupler (160 Mhz).
303 * calculate SCSI clock frequency (in KHz)
305 static unsigned getfreq (struct sym_hcb
*np
, int gen
)
311 * Measure GEN timer delay in order
312 * to calculate SCSI clock frequency
314 * This code will never execute too
315 * many loop iterations (if DELAY is
316 * reasonably correct). It could get
317 * too low a delay (too high a freq.)
318 * if the CPU is slow executing the
319 * loop for some reason (an NMI, for
320 * example). For this reason we will
321 * if multiple measurements are to be
322 * performed trust the higher delay
323 * (lower frequency returned).
325 OUTW(np
, nc_sien
, 0); /* mask all scsi interrupts */
326 INW(np
, nc_sist
); /* clear pending scsi interrupt */
327 OUTB(np
, nc_dien
, 0); /* mask all dma interrupts */
328 INW(np
, nc_sist
); /* another one, just to be sure :) */
330 * The C1010-33 core does not report GEN in SIST,
331 * if this interrupt is masked in SIEN.
332 * I don't know yet if the C1010-66 behaves the same way.
334 if (np
->features
& FE_C10
) {
335 OUTW(np
, nc_sien
, GEN
);
336 OUTB(np
, nc_istat1
, SIRQD
);
338 OUTB(np
, nc_scntl3
, 4); /* set pre-scaler to divide by 3 */
339 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
340 OUTB(np
, nc_stime1
, gen
); /* set to nominal delay of 1<<gen * 125us */
341 while (!(INW(np
, nc_sist
) & GEN
) && ms
++ < 100000)
342 udelay(1000/4); /* count in 1/4 of ms */
343 OUTB(np
, nc_stime1
, 0); /* disable general purpose timer */
345 * Undo C1010-33 specific settings.
347 if (np
->features
& FE_C10
) {
348 OUTW(np
, nc_sien
, 0);
349 OUTB(np
, nc_istat1
, 0);
352 * set prescaler to divide by whatever 0 means
353 * 0 ought to choose divide by 2, but appears
354 * to set divide by 3.5 mode in my 53c810 ...
356 OUTB(np
, nc_scntl3
, 0);
359 * adjust for prescaler, and convert into KHz
361 f
= ms
? ((1 << gen
) * (4340*4)) / ms
: 0;
364 * The C1010-33 result is biased by a factor
365 * of 2/3 compared to earlier chips.
367 if (np
->features
& FE_C10
)
370 if (sym_verbose
>= 2)
371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 sym_name(np
), gen
, ms
/4, f
);
377 static unsigned sym_getfreq (struct sym_hcb
*np
)
382 getfreq (np
, gen
); /* throw away first result */
383 f1
= getfreq (np
, gen
);
384 f2
= getfreq (np
, gen
);
385 if (f1
> f2
) f1
= f2
; /* trust lower result */
390 * Get/probe chip SCSI clock frequency
392 static void sym_getclock (struct sym_hcb
*np
, int mult
)
394 unsigned char scntl3
= np
->sv_scntl3
;
395 unsigned char stest1
= np
->sv_stest1
;
401 * True with 875/895/896/895A with clock multiplier selected
403 if (mult
> 1 && (stest1
& (DBLEN
+DBLSEL
)) == DBLEN
+DBLSEL
) {
404 if (sym_verbose
>= 2)
405 printf ("%s: clock multiplier found\n", sym_name(np
));
406 np
->multiplier
= mult
;
410 * If multiplier not found or scntl3 not 7,5,3,
411 * reset chip and get frequency from general purpose timer.
412 * Otherwise trust scntl3 BIOS setting.
414 if (np
->multiplier
!= mult
|| (scntl3
& 7) < 3 || !(scntl3
& 1)) {
415 OUTB(np
, nc_stest1
, 0); /* make sure doubler is OFF */
416 f1
= sym_getfreq (np
);
419 printf ("%s: chip clock is %uKHz\n", sym_name(np
), f1
);
421 if (f1
< 45000) f1
= 40000;
422 else if (f1
< 55000) f1
= 50000;
425 if (f1
< 80000 && mult
> 1) {
426 if (sym_verbose
>= 2)
427 printf ("%s: clock multiplier assumed\n",
429 np
->multiplier
= mult
;
432 if ((scntl3
& 7) == 3) f1
= 40000;
433 else if ((scntl3
& 7) == 5) f1
= 80000;
436 f1
/= np
->multiplier
;
440 * Compute controller synchronous parameters.
442 f1
*= np
->multiplier
;
447 * Get/probe PCI clock frequency
449 static int sym_getpciclock (struct sym_hcb
*np
)
454 * For now, we only need to know about the actual
455 * PCI BUS clock frequency for C1010-66 chips.
458 if (np
->features
& FE_66MHZ
) {
462 OUTB(np
, nc_stest1
, SCLK
); /* Use the PCI clock as SCSI clock */
464 OUTB(np
, nc_stest1
, 0);
472 * SYMBIOS chip clock divisor table.
474 * Divisors are multiplied by 10,000,000 in order to make
475 * calculations more simple.
478 static const u32 div_10M
[] = {2*_5M
, 3*_5M
, 4*_5M
, 6*_5M
, 8*_5M
, 12*_5M
, 16*_5M
};
481 * Get clock factor and sync divisor for a given
482 * synchronous factor period.
485 sym_getsync(struct sym_hcb
*np
, u_char dt
, u_char sfac
, u_char
*divp
, u_char
*fakp
)
487 u32 clk
= np
->clock_khz
; /* SCSI clock frequency in kHz */
488 int div
= np
->clock_divn
; /* Number of divisors supported */
489 u32 fak
; /* Sync factor in sxfer */
490 u32 per
; /* Period in tenths of ns */
491 u32 kpc
; /* (per * clk) */
495 * Compute the synchronous period in tenths of nano-seconds
497 if (dt
&& sfac
<= 9) per
= 125;
498 else if (sfac
<= 10) per
= 250;
499 else if (sfac
== 11) per
= 303;
500 else if (sfac
== 12) per
= 500;
501 else per
= 40 * sfac
;
509 * For earliest C10 revision 0, we cannot use extra
510 * clocks for the setting of the SCSI clocking.
511 * Note that this limits the lowest sync data transfer
512 * to 5 Mega-transfers per second and may result in
513 * using higher clock divisors.
516 if ((np
->features
& (FE_C10
|FE_U3EN
)) == FE_C10
) {
518 * Look for the lowest clock divisor that allows an
519 * output speed not faster than the period.
523 if (kpc
> (div_10M
[div
] << 2)) {
528 fak
= 0; /* No extra clocks */
529 if (div
== np
->clock_divn
) { /* Are we too fast ? */
539 * Look for the greatest clock divisor that allows an
540 * input speed faster than the period.
543 if (kpc
>= (div_10M
[div
] << 2)) break;
546 * Calculate the lowest clock factor that allows an output
547 * speed not faster than the period, and the max output speed.
548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
552 fak
= (kpc
- 1) / (div_10M
[div
] << 1) + 1 - 2;
553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
555 fak
= (kpc
- 1) / div_10M
[div
] + 1 - 4;
556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
560 * Check against our hardware limits, or bugs :).
568 * Compute and return sync parameters.
577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578 * 128 transfers. All chips support at least 16 transfers
579 * bursts. The 825A, 875 and 895 chips support bursts of up
580 * to 128 transfers and the 895A and 896 support bursts of up
581 * to 64 transfers. All other chips support up to 16
584 * For PCI 32 bit data transfers each transfer is a DWORD.
585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
587 * We use log base 2 (burst length) as internal code, with
588 * value 0 meaning "burst disabled".
592 * Burst length from burst code.
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
597 * Burst code from io register bits.
599 #define burst_code(dmode, ctest4, ctest5) \
600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
603 * Set initial io register bits from burst code.
605 static __inline
void sym_init_burst(struct sym_hcb
*np
, u_char bc
)
607 np
->rv_ctest4
&= ~0x80;
608 np
->rv_dmode
&= ~(0x3 << 6);
609 np
->rv_ctest5
&= ~0x4;
612 np
->rv_ctest4
|= 0x80;
616 np
->rv_dmode
|= ((bc
& 0x3) << 6);
617 np
->rv_ctest5
|= (bc
& 0x4);
622 * Save initial settings of some IO registers.
623 * Assumed to have been set by BIOS.
624 * We cannot reset the chip prior to reading the
625 * IO registers, since informations will be lost.
626 * Since the SCRIPTS processor may be running, this
627 * is not safe on paper, but it seems to work quite
630 static void sym_save_initial_setting (struct sym_hcb
*np
)
632 np
->sv_scntl0
= INB(np
, nc_scntl0
) & 0x0a;
633 np
->sv_scntl3
= INB(np
, nc_scntl3
) & 0x07;
634 np
->sv_dmode
= INB(np
, nc_dmode
) & 0xce;
635 np
->sv_dcntl
= INB(np
, nc_dcntl
) & 0xa8;
636 np
->sv_ctest3
= INB(np
, nc_ctest3
) & 0x01;
637 np
->sv_ctest4
= INB(np
, nc_ctest4
) & 0x80;
638 np
->sv_gpcntl
= INB(np
, nc_gpcntl
);
639 np
->sv_stest1
= INB(np
, nc_stest1
);
640 np
->sv_stest2
= INB(np
, nc_stest2
) & 0x20;
641 np
->sv_stest4
= INB(np
, nc_stest4
);
642 if (np
->features
& FE_C10
) { /* Always large DMA fifo + ultra3 */
643 np
->sv_scntl4
= INB(np
, nc_scntl4
);
644 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x04;
647 np
->sv_ctest5
= INB(np
, nc_ctest5
) & 0x24;
652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode
653 * through the STEST4 IO register.
654 * - For previous generation chips (825/825A/875), the user has to tell us
655 * how to check against HVD, since a 100% safe algorithm is not possible.
657 static void sym_set_bus_mode(struct sym_hcb
*np
, struct sym_nvram
*nvram
)
662 np
->scsi_mode
= SMODE_SE
;
663 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
))
664 np
->scsi_mode
= (np
->sv_stest4
& SMODE
);
665 else if (np
->features
& FE_DIFF
) {
666 if (SYM_SETUP_SCSI_DIFF
== 1) {
668 if (np
->sv_stest2
& 0x20)
669 np
->scsi_mode
= SMODE_HVD
;
670 } else if (nvram
->type
== SYM_SYMBIOS_NVRAM
) {
671 if (!(INB(np
, nc_gpreg
) & 0x08))
672 np
->scsi_mode
= SMODE_HVD
;
674 } else if (SYM_SETUP_SCSI_DIFF
== 2)
675 np
->scsi_mode
= SMODE_HVD
;
677 if (np
->scsi_mode
== SMODE_HVD
)
678 np
->rv_stest2
|= 0x20;
682 * Prepare io register values used by sym_start_up()
683 * according to selected and supported features.
685 static int sym_prepare_setting(struct Scsi_Host
*shost
, struct sym_hcb
*np
, struct sym_nvram
*nvram
)
691 np
->maxwide
= (np
->features
& FE_WIDE
) ? 1 : 0;
694 * Guess the frequency of the chip's clock.
696 if (np
->features
& (FE_ULTRA3
| FE_ULTRA2
))
697 np
->clock_khz
= 160000;
698 else if (np
->features
& FE_ULTRA
)
699 np
->clock_khz
= 80000;
701 np
->clock_khz
= 40000;
704 * Get the clock multiplier factor.
706 if (np
->features
& FE_QUAD
)
708 else if (np
->features
& FE_DBLR
)
714 * Measure SCSI clock frequency for chips
715 * it may vary from assumed one.
717 if (np
->features
& FE_VARCLK
)
718 sym_getclock(np
, np
->multiplier
);
721 * Divisor to be used for async (timer pre-scaler).
723 i
= np
->clock_divn
- 1;
725 if (10ul * SYM_CONF_MIN_ASYNC
* np
->clock_khz
> div_10M
[i
]) {
733 * The C1010 uses hardwired divisors for async.
734 * So, we just throw away, the async. divisor.:-)
736 if (np
->features
& FE_C10
)
740 * Minimum synchronous period factor supported by the chip.
741 * Btw, 'period' is in tenths of nanoseconds.
743 period
= (4 * div_10M
[0] + np
->clock_khz
- 1) / np
->clock_khz
;
745 if (period
<= 250) np
->minsync
= 10;
746 else if (period
<= 303) np
->minsync
= 11;
747 else if (period
<= 500) np
->minsync
= 12;
748 else np
->minsync
= (period
+ 40 - 1) / 40;
751 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
753 if (np
->minsync
< 25 &&
754 !(np
->features
& (FE_ULTRA
|FE_ULTRA2
|FE_ULTRA3
)))
756 else if (np
->minsync
< 12 &&
757 !(np
->features
& (FE_ULTRA2
|FE_ULTRA3
)))
761 * Maximum synchronous period factor supported by the chip.
763 period
= (11 * div_10M
[np
->clock_divn
- 1]) / (4 * np
->clock_khz
);
764 np
->maxsync
= period
> 2540 ? 254 : period
/ 10;
767 * If chip is a C1010, guess the sync limits in DT mode.
769 if ((np
->features
& (FE_C10
|FE_ULTRA3
)) == (FE_C10
|FE_ULTRA3
)) {
770 if (np
->clock_khz
== 160000) {
773 np
->maxoffs_dt
= nvram
->type
? 62 : 31;
778 * 64 bit addressing (895A/896/1010) ?
780 if (np
->features
& FE_DAC
) {
781 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
782 np
->rv_ccntl1
|= (DDAC
);
783 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
785 np
->rv_ccntl1
|= (DDAC
);
787 np
->rv_ccntl1
|= (XTIMOD
| EXTIBMV
);
788 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
790 np
->rv_ccntl1
|= (DDAC
);
792 np
->rv_ccntl1
|= (0 | EXTIBMV
);
797 * Phase mismatch handled by SCRIPTS (895A/896/1010) ?
799 if (np
->features
& FE_NOPM
)
800 np
->rv_ccntl0
|= (ENPMJ
);
803 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
804 * In dual channel mode, contention occurs if internal cycles
805 * are used. Disable internal cycles.
807 if (np
->device_id
== PCI_DEVICE_ID_LSI_53C1010_33
&&
808 np
->revision_id
< 0x1)
809 np
->rv_ccntl0
|= DILS
;
812 * Select burst length (dwords)
814 burst_max
= SYM_SETUP_BURST_ORDER
;
815 if (burst_max
== 255)
816 burst_max
= burst_code(np
->sv_dmode
, np
->sv_ctest4
,
820 if (burst_max
> np
->maxburst
)
821 burst_max
= np
->maxburst
;
824 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
825 * This chip and the 860 Rev 1 may wrongly use PCI cache line
826 * based transactions on LOAD/STORE instructions. So we have
827 * to prevent these chips from using such PCI transactions in
828 * this driver. The generic ncr driver that does not use
829 * LOAD/STORE instructions does not need this work-around.
831 if ((np
->device_id
== PCI_DEVICE_ID_NCR_53C810
&&
832 np
->revision_id
>= 0x10 && np
->revision_id
<= 0x11) ||
833 (np
->device_id
== PCI_DEVICE_ID_NCR_53C860
&&
834 np
->revision_id
<= 0x1))
835 np
->features
&= ~(FE_WRIE
|FE_ERL
|FE_ERMP
);
838 * Select all supported special features.
839 * If we are using on-board RAM for scripts, prefetch (PFEN)
840 * does not help, but burst op fetch (BOF) does.
841 * Disabling PFEN makes sure BOF will be used.
843 if (np
->features
& FE_ERL
)
844 np
->rv_dmode
|= ERL
; /* Enable Read Line */
845 if (np
->features
& FE_BOF
)
846 np
->rv_dmode
|= BOF
; /* Burst Opcode Fetch */
847 if (np
->features
& FE_ERMP
)
848 np
->rv_dmode
|= ERMP
; /* Enable Read Multiple */
850 if ((np
->features
& FE_PFEN
) && !np
->ram_ba
)
852 if (np
->features
& FE_PFEN
)
854 np
->rv_dcntl
|= PFEN
; /* Prefetch Enable */
855 if (np
->features
& FE_CLSE
)
856 np
->rv_dcntl
|= CLSE
; /* Cache Line Size Enable */
857 if (np
->features
& FE_WRIE
)
858 np
->rv_ctest3
|= WRIE
; /* Write and Invalidate */
859 if (np
->features
& FE_DFS
)
860 np
->rv_ctest5
|= DFS
; /* Dma Fifo Size */
865 np
->rv_ctest4
|= MPEE
; /* Master parity checking */
866 np
->rv_scntl0
|= 0x0a; /* full arb., ena parity, par->ATN */
869 * Get parity checking, host ID and verbose mode from NVRAM
873 sym_nvram_setup_host(shost
, np
, nvram
);
876 * Get SCSI addr of host adapter (set by bios?).
878 if (np
->myaddr
== 255) {
879 np
->myaddr
= INB(np
, nc_scid
) & 0x07;
881 np
->myaddr
= SYM_SETUP_HOST_ID
;
885 * Prepare initial io register bits for burst length
887 sym_init_burst(np
, burst_max
);
889 sym_set_bus_mode(np
, nvram
);
892 * Set LED support from SCRIPTS.
893 * Ignore this feature for boards known to use a
894 * specific GPIO wiring and for the 895A, 896
895 * and 1010 that drive the LED directly.
897 if ((SYM_SETUP_SCSI_LED
||
898 (nvram
->type
== SYM_SYMBIOS_NVRAM
||
899 (nvram
->type
== SYM_TEKRAM_NVRAM
&&
900 np
->device_id
== PCI_DEVICE_ID_NCR_53C895
))) &&
901 !(np
->features
& FE_LEDC
) && !(np
->sv_gpcntl
& 0x01))
902 np
->features
|= FE_LED0
;
907 switch(SYM_SETUP_IRQ_MODE
& 3) {
909 np
->rv_dcntl
|= IRQM
;
912 np
->rv_dcntl
|= (np
->sv_dcntl
& IRQM
);
919 * Configure targets according to driver setup.
920 * If NVRAM present get targets setup from NVRAM.
922 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
923 struct sym_tcb
*tp
= &np
->target
[i
];
925 tp
->usrflags
|= (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
926 tp
->usrtags
= SYM_SETUP_MAX_TAG
;
927 tp
->usr_width
= np
->maxwide
;
930 sym_nvram_setup_target(tp
, i
, nvram
);
933 tp
->usrflags
&= ~SYM_TAGS_ENABLED
;
937 * Let user know about the settings.
939 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np
),
940 sym_nvram_type(nvram
), np
->myaddr
,
941 (np
->features
& FE_ULTRA3
) ? 80 :
942 (np
->features
& FE_ULTRA2
) ? 40 :
943 (np
->features
& FE_ULTRA
) ? 20 : 10,
944 sym_scsi_bus_mode(np
->scsi_mode
),
945 (np
->rv_scntl0
& 0xa) ? "parity checking" : "NO parity");
947 * Tell him more on demand.
950 printf("%s: %s IRQ line driver%s\n",
952 np
->rv_dcntl
& IRQM
? "totem pole" : "open drain",
953 np
->ram_ba
? ", using on-chip SRAM" : "");
954 printf("%s: using %s firmware.\n", sym_name(np
), np
->fw_name
);
955 if (np
->features
& FE_NOPM
)
956 printf("%s: handling phase mismatch from SCRIPTS.\n",
962 if (sym_verbose
>= 2) {
963 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 sym_name(np
), np
->sv_scntl3
, np
->sv_dmode
, np
->sv_dcntl
,
966 np
->sv_ctest3
, np
->sv_ctest4
, np
->sv_ctest5
);
968 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
969 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
970 sym_name(np
), np
->rv_scntl3
, np
->rv_dmode
, np
->rv_dcntl
,
971 np
->rv_ctest3
, np
->rv_ctest4
, np
->rv_ctest5
);
978 * Test the pci bus snoop logic :-(
980 * Has to be called with interrupts disabled.
982 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
983 static int sym_regtest(struct sym_hcb
*np
)
985 register volatile u32 data
;
987 * chip registers may NOT be cached.
988 * write 0xffffffff to a read only register area,
989 * and try to read it back.
992 OUTL(np
, nc_dstat
, data
);
993 data
= INL(np
, nc_dstat
);
995 if (data
== 0xffffffff) {
997 if ((data
& 0xe2f0fffd) != 0x02000080) {
999 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1006 static inline int sym_regtest(struct sym_hcb
*np
)
1012 static int sym_snooptest(struct sym_hcb
*np
)
1014 u32 sym_rd
, sym_wr
, sym_bk
, host_rd
, host_wr
, pc
, dstat
;
1017 err
= sym_regtest(np
);
1022 * Enable Master Parity Checking as we intend
1023 * to enable it for normal operations.
1025 OUTB(np
, nc_ctest4
, (np
->rv_ctest4
& MPEE
));
1029 pc
= SCRIPTZ_BA(np
, snooptest
);
1033 * Set memory and register.
1035 np
->scratch
= cpu_to_scr(host_wr
);
1036 OUTL(np
, nc_temp
, sym_wr
);
1038 * Start script (exchange values)
1040 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1043 * Wait 'til done (with timeout)
1045 for (i
=0; i
<SYM_SNOOP_TIMEOUT
; i
++)
1046 if (INB(np
, nc_istat
) & (INTF
|SIP
|DIP
))
1048 if (i
>=SYM_SNOOP_TIMEOUT
) {
1049 printf ("CACHE TEST FAILED: timeout.\n");
1053 * Check for fatal DMA errors.
1055 dstat
= INB(np
, nc_dstat
);
1056 #if 1 /* Band aiding for broken hardwares that fail PCI parity */
1057 if ((dstat
& MDPE
) && (np
->rv_ctest4
& MPEE
)) {
1058 printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1059 "DISABLING MASTER DATA PARITY CHECKING.\n",
1061 np
->rv_ctest4
&= ~MPEE
;
1065 if (dstat
& (MDPE
|BF
|IID
)) {
1066 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat
);
1070 * Save termination position.
1072 pc
= INL(np
, nc_dsp
);
1074 * Read memory and register.
1076 host_rd
= scr_to_cpu(np
->scratch
);
1077 sym_rd
= INL(np
, nc_scratcha
);
1078 sym_bk
= INL(np
, nc_temp
);
1080 * Check termination position.
1082 if (pc
!= SCRIPTZ_BA(np
, snoopend
)+8) {
1083 printf ("CACHE TEST FAILED: script execution failed.\n");
1084 printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1085 (u_long
) SCRIPTZ_BA(np
, snooptest
), (u_long
) pc
,
1086 (u_long
) SCRIPTZ_BA(np
, snoopend
) +8);
1092 if (host_wr
!= sym_rd
) {
1093 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1094 (int) host_wr
, (int) sym_rd
);
1097 if (host_rd
!= sym_wr
) {
1098 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1099 (int) sym_wr
, (int) host_rd
);
1102 if (sym_bk
!= sym_wr
) {
1103 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1104 (int) sym_wr
, (int) sym_bk
);
1112 * log message for real hard errors
1114 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1115 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1117 * exception register:
1122 * so: control lines as driven by chip.
1123 * si: control lines as seen by chip.
1124 * sd: scsi data lines as seen by chip.
1127 * sx: sxfer (see the manual)
1128 * s3: scntl3 (see the manual)
1129 * s4: scntl4 (see the manual)
1131 * current script command:
1132 * dsp: script address (relative to start of script).
1133 * dbc: first word of script command.
1135 * First 24 register of the chip:
1138 static void sym_log_hard_error(struct sym_hcb
*np
, u_short sist
, u_char dstat
)
1144 u_char
*script_base
;
1147 dsp
= INL(np
, nc_dsp
);
1149 if (dsp
> np
->scripta_ba
&&
1150 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
1151 script_ofs
= dsp
- np
->scripta_ba
;
1152 script_size
= np
->scripta_sz
;
1153 script_base
= (u_char
*) np
->scripta0
;
1154 script_name
= "scripta";
1156 else if (np
->scriptb_ba
< dsp
&&
1157 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
1158 script_ofs
= dsp
- np
->scriptb_ba
;
1159 script_size
= np
->scriptb_sz
;
1160 script_base
= (u_char
*) np
->scriptb0
;
1161 script_name
= "scriptb";
1166 script_name
= "mem";
1169 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1170 sym_name(np
), (unsigned)INB(np
, nc_sdid
)&0x0f, dstat
, sist
,
1171 (unsigned)INB(np
, nc_socl
), (unsigned)INB(np
, nc_sbcl
),
1172 (unsigned)INB(np
, nc_sbdl
), (unsigned)INB(np
, nc_sxfer
),
1173 (unsigned)INB(np
, nc_scntl3
),
1174 (np
->features
& FE_C10
) ? (unsigned)INB(np
, nc_scntl4
) : 0,
1175 script_name
, script_ofs
, (unsigned)INL(np
, nc_dbc
));
1177 if (((script_ofs
& 3) == 0) &&
1178 (unsigned)script_ofs
< script_size
) {
1179 printf ("%s: script cmd = %08x\n", sym_name(np
),
1180 scr_to_cpu((int) *(u32
*)(script_base
+ script_ofs
)));
1183 printf ("%s: regdump:", sym_name(np
));
1185 printf (" %02x", (unsigned)INB_OFF(np
, i
));
1191 if (dstat
& (MDPE
|BF
))
1192 sym_log_bus_error(np
);
1195 static struct sym_chip sym_dev_table
[] = {
1196 {PCI_DEVICE_ID_NCR_53C810
, 0x0f, "810", 4, 8, 4, 64,
1199 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1200 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1204 {PCI_DEVICE_ID_NCR_53C810
, 0xff, "810a", 4, 8, 4, 1,
1205 FE_CACHE_SET
|FE_LDSTR
|FE_PFEN
|FE_BOF
}
1208 {PCI_DEVICE_ID_NCR_53C815
, 0xff, "815", 4, 8, 4, 64,
1211 {PCI_DEVICE_ID_NCR_53C825
, 0x0f, "825", 6, 8, 4, 64,
1212 FE_WIDE
|FE_BOF
|FE_ERL
|FE_DIFF
}
1214 {PCI_DEVICE_ID_NCR_53C825
, 0xff, "825a", 6, 8, 4, 2,
1215 FE_WIDE
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|FE_RAM
|FE_DIFF
}
1217 {PCI_DEVICE_ID_NCR_53C860
, 0xff, "860", 4, 8, 5, 1,
1218 FE_ULTRA
|FE_CACHE_SET
|FE_BOF
|FE_LDSTR
|FE_PFEN
}
1220 {PCI_DEVICE_ID_NCR_53C875
, 0x01, "875", 6, 16, 5, 2,
1221 FE_WIDE
|FE_ULTRA
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1222 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1224 {PCI_DEVICE_ID_NCR_53C875
, 0xff, "875", 6, 16, 5, 2,
1225 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1226 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1228 {PCI_DEVICE_ID_NCR_53C875J
, 0xff, "875J", 6, 16, 5, 2,
1229 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1230 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1232 {PCI_DEVICE_ID_NCR_53C885
, 0xff, "885", 6, 16, 5, 2,
1233 FE_WIDE
|FE_ULTRA
|FE_DBLR
|FE_CACHE0_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1234 FE_RAM
|FE_DIFF
|FE_VARCLK
}
1236 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1237 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1238 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|
1242 {PCI_DEVICE_ID_NCR_53C895
, 0xff, "895", 6, 31, 7, 2,
1243 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1247 {PCI_DEVICE_ID_NCR_53C896
, 0xff, "896", 6, 31, 7, 4,
1248 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1249 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1251 {PCI_DEVICE_ID_LSI_53C895A
, 0xff, "895a", 6, 31, 7, 4,
1252 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1253 FE_RAM
|FE_RAM8K
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1255 {PCI_DEVICE_ID_LSI_53C875A
, 0xff, "875a", 6, 31, 7, 4,
1256 FE_WIDE
|FE_ULTRA
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1257 FE_RAM
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_LCKFRQ
}
1259 {PCI_DEVICE_ID_LSI_53C1010_33
, 0x00, "1010-33", 6, 31, 7, 8,
1260 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1261 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1264 {PCI_DEVICE_ID_LSI_53C1010_33
, 0xff, "1010-33", 6, 31, 7, 8,
1265 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1266 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_CRC
|
1269 {PCI_DEVICE_ID_LSI_53C1010_66
, 0xff, "1010-66", 6, 31, 7, 8,
1270 FE_WIDE
|FE_ULTRA3
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFBC
|FE_LDSTR
|FE_PFEN
|
1271 FE_RAM
|FE_RAM8K
|FE_64BIT
|FE_DAC
|FE_IO256
|FE_NOPM
|FE_LEDC
|FE_66MHZ
|FE_CRC
|
1274 {PCI_DEVICE_ID_LSI_53C1510
, 0xff, "1510d", 6, 31, 7, 4,
1275 FE_WIDE
|FE_ULTRA2
|FE_QUAD
|FE_CACHE_SET
|FE_BOF
|FE_DFS
|FE_LDSTR
|FE_PFEN
|
1276 FE_RAM
|FE_IO256
|FE_LEDC
}
1279 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1282 * Look up the chip table.
1284 * Return a pointer to the chip entry if found,
1288 sym_lookup_chip_table (u_short device_id
, u_char revision
)
1290 struct sym_chip
*chip
;
1293 for (i
= 0; i
< sym_num_devs
; i
++) {
1294 chip
= &sym_dev_table
[i
];
1295 if (device_id
!= chip
->device_id
)
1297 if (revision
> chip
->revision_id
)
1305 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1307 * Lookup the 64 bit DMA segments map.
1308 * This is only used if the direct mapping
1309 * has been unsuccessful.
1311 int sym_lookup_dmap(struct sym_hcb
*np
, u32 h
, int s
)
1318 /* Look up existing mappings */
1319 for (i
= SYM_DMAP_SIZE
-1; i
> 0; i
--) {
1320 if (h
== np
->dmap_bah
[i
])
1323 /* If direct mapping is free, get it */
1324 if (!np
->dmap_bah
[s
])
1326 /* Collision -> lookup free mappings */
1327 for (s
= SYM_DMAP_SIZE
-1; s
> 0; s
--) {
1328 if (!np
->dmap_bah
[s
])
1332 panic("sym: ran out of 64 bit DMA segment registers");
1335 np
->dmap_bah
[s
] = h
;
1341 * Update IO registers scratch C..R so they will be
1342 * in sync. with queued CCB expectations.
1344 static void sym_update_dmap_regs(struct sym_hcb
*np
)
1348 if (!np
->dmap_dirty
)
1350 o
= offsetof(struct sym_reg
, nc_scrx
[0]);
1351 for (i
= 0; i
< SYM_DMAP_SIZE
; i
++) {
1352 OUTL_OFF(np
, o
, np
->dmap_bah
[i
]);
1359 /* Enforce all the fiddly SPI rules and the chip limitations */
1360 static void sym_check_goals(struct sym_hcb
*np
, struct scsi_target
*starget
,
1361 struct sym_trans
*goal
)
1363 if (!spi_support_wide(starget
))
1366 if (!spi_support_sync(starget
)) {
1374 if (spi_support_dt(starget
)) {
1375 if (spi_support_dt_only(starget
))
1378 if (goal
->offset
== 0)
1384 /* Some targets fail to properly negotiate DT in SE mode */
1385 if ((np
->scsi_mode
!= SMODE_LVD
) || !(np
->features
& FE_U3EN
))
1389 /* all DT transfers must be wide */
1391 if (goal
->offset
> np
->maxoffs_dt
)
1392 goal
->offset
= np
->maxoffs_dt
;
1393 if (goal
->period
< np
->minsync_dt
)
1394 goal
->period
= np
->minsync_dt
;
1395 if (goal
->period
> np
->maxsync_dt
)
1396 goal
->period
= np
->maxsync_dt
;
1398 goal
->iu
= goal
->qas
= 0;
1399 if (goal
->offset
> np
->maxoffs
)
1400 goal
->offset
= np
->maxoffs
;
1401 if (goal
->period
< np
->minsync
)
1402 goal
->period
= np
->minsync
;
1403 if (goal
->period
> np
->maxsync
)
1404 goal
->period
= np
->maxsync
;
1409 * Prepare the next negotiation message if needed.
1411 * Fill in the part of message buffer that contains the
1412 * negotiation and the nego_status field of the CCB.
1413 * Returns the size of the message in bytes.
1415 static int sym_prepare_nego(struct sym_hcb
*np
, struct sym_ccb
*cp
, u_char
*msgptr
)
1417 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1418 struct scsi_target
*starget
= tp
->starget
;
1419 struct sym_trans
*goal
= &tp
->tgoal
;
1423 sym_check_goals(np
, starget
, goal
);
1426 * Many devices implement PPR in a buggy way, so only use it if we
1430 (goal
->iu
|| goal
->dt
|| goal
->qas
|| (goal
->period
< 0xa))) {
1432 } else if (spi_width(starget
) != goal
->width
) {
1434 } else if (spi_period(starget
) != goal
->period
||
1435 spi_offset(starget
) != goal
->offset
) {
1438 goal
->check_nego
= 0;
1444 msglen
+= spi_populate_sync_msg(msgptr
+ msglen
, goal
->period
,
1448 msglen
+= spi_populate_width_msg(msgptr
+ msglen
, goal
->width
);
1451 msglen
+= spi_populate_ppr_msg(msgptr
+ msglen
, goal
->period
,
1452 goal
->offset
, goal
->width
,
1453 (goal
->iu
? PPR_OPT_IU
: 0) |
1454 (goal
->dt
? PPR_OPT_DT
: 0) |
1455 (goal
->qas
? PPR_OPT_QAS
: 0));
1459 cp
->nego_status
= nego
;
1462 tp
->nego_cp
= cp
; /* Keep track a nego will be performed */
1463 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
1464 sym_print_nego_msg(np
, cp
->target
,
1465 nego
== NS_SYNC
? "sync msgout" :
1466 nego
== NS_WIDE
? "wide msgout" :
1467 "ppr msgout", msgptr
);
1475 * Insert a job into the start queue.
1477 void sym_put_start_queue(struct sym_hcb
*np
, struct sym_ccb
*cp
)
1481 #ifdef SYM_CONF_IARB_SUPPORT
1483 * If the previously queued CCB is not yet done,
1484 * set the IARB hint. The SCRIPTS will go with IARB
1485 * for this job when starting the previous one.
1486 * We leave devices a chance to win arbitration by
1487 * not using more than 'iarb_max' consecutive
1488 * immediate arbitrations.
1490 if (np
->last_cp
&& np
->iarb_count
< np
->iarb_max
) {
1491 np
->last_cp
->host_flags
|= HF_HINT_IARB
;
1499 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1501 * Make SCRIPTS aware of the 64 bit DMA
1502 * segment registers not being up-to-date.
1505 cp
->host_xflags
|= HX_DMAP_DIRTY
;
1509 * Insert first the idle task and then our job.
1510 * The MBs should ensure proper ordering.
1512 qidx
= np
->squeueput
+ 2;
1513 if (qidx
>= MAX_QUEUE
*2) qidx
= 0;
1515 np
->squeue
[qidx
] = cpu_to_scr(np
->idletask_ba
);
1516 MEMORY_WRITE_BARRIER();
1517 np
->squeue
[np
->squeueput
] = cpu_to_scr(cp
->ccb_ba
);
1519 np
->squeueput
= qidx
;
1521 if (DEBUG_FLAGS
& DEBUG_QUEUE
)
1522 printf ("%s: queuepos=%d.\n", sym_name (np
), np
->squeueput
);
1525 * Script processor may be waiting for reselect.
1528 MEMORY_WRITE_BARRIER();
1529 OUTB(np
, nc_istat
, SIGP
|np
->istat_sem
);
1532 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1534 * Start next ready-to-start CCBs.
1536 void sym_start_next_ccbs(struct sym_hcb
*np
, struct sym_lcb
*lp
, int maxn
)
1542 * Paranoia, as usual. :-)
1544 assert(!lp
->started_tags
|| !lp
->started_no_tag
);
1547 * Try to start as many commands as asked by caller.
1548 * Prevent from having both tagged and untagged
1549 * commands queued to the device at the same time.
1552 qp
= sym_remque_head(&lp
->waiting_ccbq
);
1555 cp
= sym_que_entry(qp
, struct sym_ccb
, link2_ccbq
);
1556 if (cp
->tag
!= NO_TAG
) {
1557 if (lp
->started_no_tag
||
1558 lp
->started_tags
>= lp
->started_max
) {
1559 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1562 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(cp
->ccb_ba
);
1564 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
1567 if (lp
->started_no_tag
|| lp
->started_tags
) {
1568 sym_insque_head(qp
, &lp
->waiting_ccbq
);
1571 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
1573 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
1574 ++lp
->started_no_tag
;
1577 sym_insque_tail(qp
, &lp
->started_ccbq
);
1578 sym_put_start_queue(np
, cp
);
1581 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1584 * The chip may have completed jobs. Look at the DONE QUEUE.
1586 * On paper, memory read barriers may be needed here to
1587 * prevent out of order LOADs by the CPU from having
1588 * prefetched stale data prior to DMA having occurred.
1590 static int sym_wakeup_done (struct sym_hcb
*np
)
1599 /* MEMORY_READ_BARRIER(); */
1601 dsa
= scr_to_cpu(np
->dqueue
[i
]);
1605 if ((i
= i
+2) >= MAX_QUEUE
*2)
1608 cp
= sym_ccb_from_dsa(np
, dsa
);
1610 MEMORY_READ_BARRIER();
1611 sym_complete_ok (np
, cp
);
1615 printf ("%s: bad DSA (%x) in done queue.\n",
1616 sym_name(np
), (u_int
) dsa
);
1624 * Complete all CCBs queued to the COMP queue.
1626 * These CCBs are assumed:
1627 * - Not to be referenced either by devices or
1628 * SCRIPTS-related queues and datas.
1629 * - To have to be completed with an error condition
1632 * The device queue freeze count is incremented
1633 * for each CCB that does not prevent this.
1634 * This function is called when all CCBs involved
1635 * in error handling/recovery have been reaped.
1637 static void sym_flush_comp_queue(struct sym_hcb
*np
, int cam_status
)
1642 while ((qp
= sym_remque_head(&np
->comp_ccbq
)) != 0) {
1643 struct scsi_cmnd
*cmd
;
1644 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
1645 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
1646 /* Leave quiet CCBs waiting for resources */
1647 if (cp
->host_status
== HS_WAIT
)
1651 sym_set_cam_status(cmd
, cam_status
);
1652 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1653 if (sym_get_cam_status(cmd
) == DID_SOFT_ERROR
) {
1654 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
1655 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
1657 sym_remque(&cp
->link2_ccbq
);
1658 sym_insque_tail(&cp
->link2_ccbq
,
1661 if (cp
->tag
!= NO_TAG
)
1664 --lp
->started_no_tag
;
1671 sym_free_ccb(np
, cp
);
1672 sym_xpt_done(np
, cmd
);
1677 * Complete all active CCBs with error.
1678 * Used on CHIP/SCSI RESET.
1680 static void sym_flush_busy_queue (struct sym_hcb
*np
, int cam_status
)
1683 * Move all active CCBs to the COMP queue
1684 * and flush this queue.
1686 sym_que_splice(&np
->busy_ccbq
, &np
->comp_ccbq
);
1687 sym_que_init(&np
->busy_ccbq
);
1688 sym_flush_comp_queue(np
, cam_status
);
1695 * 0: initialisation.
1696 * 1: SCSI BUS RESET delivered or received.
1697 * 2: SCSI BUS MODE changed.
1699 void sym_start_up (struct sym_hcb
*np
, int reason
)
1705 * Reset chip if asked, otherwise just clear fifos.
1710 OUTB(np
, nc_stest3
, TE
|CSF
);
1711 OUTONB(np
, nc_ctest3
, CLF
);
1717 phys
= np
->squeue_ba
;
1718 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1719 np
->squeue
[i
] = cpu_to_scr(np
->idletask_ba
);
1720 np
->squeue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1722 np
->squeue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1725 * Start at first entry.
1732 phys
= np
->dqueue_ba
;
1733 for (i
= 0; i
< MAX_QUEUE
*2; i
+= 2) {
1735 np
->dqueue
[i
+1] = cpu_to_scr(phys
+ (i
+2)*4);
1737 np
->dqueue
[MAX_QUEUE
*2-1] = cpu_to_scr(phys
);
1740 * Start at first entry.
1745 * Install patches in scripts.
1746 * This also let point to first position the start
1747 * and done queue pointers used from SCRIPTS.
1752 * Wakeup all pending jobs.
1754 sym_flush_busy_queue(np
, DID_RESET
);
1759 OUTB(np
, nc_istat
, 0x00); /* Remove Reset, abort */
1761 udelay(2000); /* The 895 needs time for the bus mode to settle */
1763 OUTB(np
, nc_scntl0
, np
->rv_scntl0
| 0xc0);
1764 /* full arb., ena parity, par->ATN */
1765 OUTB(np
, nc_scntl1
, 0x00); /* odd parity, and remove CRST!! */
1767 sym_selectclock(np
, np
->rv_scntl3
); /* Select SCSI clock */
1769 OUTB(np
, nc_scid
, RRE
|np
->myaddr
); /* Adapter SCSI address */
1770 OUTW(np
, nc_respid
, 1ul<<np
->myaddr
); /* Id to respond to */
1771 OUTB(np
, nc_istat
, SIGP
); /* Signal Process */
1772 OUTB(np
, nc_dmode
, np
->rv_dmode
); /* Burst length, dma mode */
1773 OUTB(np
, nc_ctest5
, np
->rv_ctest5
); /* Large fifo + large burst */
1775 OUTB(np
, nc_dcntl
, NOCOM
|np
->rv_dcntl
); /* Protect SFBR */
1776 OUTB(np
, nc_ctest3
, np
->rv_ctest3
); /* Write and invalidate */
1777 OUTB(np
, nc_ctest4
, np
->rv_ctest4
); /* Master parity checking */
1779 /* Extended Sreq/Sack filtering not supported on the C10 */
1780 if (np
->features
& FE_C10
)
1781 OUTB(np
, nc_stest2
, np
->rv_stest2
);
1783 OUTB(np
, nc_stest2
, EXT
|np
->rv_stest2
);
1785 OUTB(np
, nc_stest3
, TE
); /* TolerANT enable */
1786 OUTB(np
, nc_stime0
, 0x0c); /* HTH disabled STO 0.25 sec */
1789 * For now, disable AIP generation on C1010-66.
1791 if (np
->device_id
== PCI_DEVICE_ID_LSI_53C1010_66
)
1792 OUTB(np
, nc_aipcntl1
, DISAIP
);
1795 * C10101 rev. 0 errata.
1796 * Errant SGE's when in narrow. Write bits 4 & 5 of
1797 * STEST1 register to disable SGE. We probably should do
1798 * that from SCRIPTS for each selection/reselection, but
1799 * I just don't want. :)
1801 if (np
->device_id
== PCI_DEVICE_ID_LSI_53C1010_33
&&
1802 np
->revision_id
< 1)
1803 OUTB(np
, nc_stest1
, INB(np
, nc_stest1
) | 0x30);
1806 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1807 * Disable overlapped arbitration for some dual function devices,
1808 * regardless revision id (kind of post-chip-design feature. ;-))
1810 if (np
->device_id
== PCI_DEVICE_ID_NCR_53C875
)
1811 OUTB(np
, nc_ctest0
, (1<<5));
1812 else if (np
->device_id
== PCI_DEVICE_ID_NCR_53C896
)
1813 np
->rv_ccntl0
|= DPR
;
1816 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1817 * and/or hardware phase mismatch, since only such chips
1818 * seem to support those IO registers.
1820 if (np
->features
& (FE_DAC
|FE_NOPM
)) {
1821 OUTB(np
, nc_ccntl0
, np
->rv_ccntl0
);
1822 OUTB(np
, nc_ccntl1
, np
->rv_ccntl1
);
1825 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1827 * Set up scratch C and DRS IO registers to map the 32 bit
1828 * DMA address range our data structures are located in.
1831 np
->dmap_bah
[0] = 0; /* ??? */
1832 OUTL(np
, nc_scrx
[0], np
->dmap_bah
[0]);
1833 OUTL(np
, nc_drs
, np
->dmap_bah
[0]);
1838 * If phase mismatch handled by scripts (895A/896/1010),
1839 * set PM jump addresses.
1841 if (np
->features
& FE_NOPM
) {
1842 OUTL(np
, nc_pmjad1
, SCRIPTB_BA(np
, pm_handle
));
1843 OUTL(np
, nc_pmjad2
, SCRIPTB_BA(np
, pm_handle
));
1847 * Enable GPIO0 pin for writing if LED support from SCRIPTS.
1848 * Also set GPIO5 and clear GPIO6 if hardware LED control.
1850 if (np
->features
& FE_LED0
)
1851 OUTB(np
, nc_gpcntl
, INB(np
, nc_gpcntl
) & ~0x01);
1852 else if (np
->features
& FE_LEDC
)
1853 OUTB(np
, nc_gpcntl
, (INB(np
, nc_gpcntl
) & ~0x41) | 0x20);
1858 OUTW(np
, nc_sien
, STO
|HTH
|MA
|SGE
|UDC
|RST
|PAR
);
1859 OUTB(np
, nc_dien
, MDPE
|BF
|SSI
|SIR
|IID
);
1862 * For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1863 * Try to eat the spurious SBMC interrupt that may occur when
1864 * we reset the chip but not the SCSI BUS (at initialization).
1866 if (np
->features
& (FE_ULTRA2
|FE_ULTRA3
)) {
1867 OUTONW(np
, nc_sien
, SBMC
);
1873 np
->scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
1877 * Fill in target structure.
1878 * Reinitialize usrsync.
1879 * Reinitialize usrwide.
1880 * Prepare sync negotiation according to actual SCSI bus mode.
1882 for (i
=0;i
<SYM_CONF_MAX_TARGET
;i
++) {
1883 struct sym_tcb
*tp
= &np
->target
[i
];
1887 tp
->head
.wval
= np
->rv_scntl3
;
1892 * Download SCSI SCRIPTS to on-chip RAM if present,
1893 * and start script processor.
1894 * We do the download preferently from the CPU.
1895 * For platforms that may not support PCI memory mapping,
1896 * we use simple SCRIPTS that performs MEMORY MOVEs.
1898 phys
= SCRIPTA_BA(np
, init
);
1900 if (sym_verbose
>= 2)
1901 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np
));
1902 memcpy_toio(np
->s
.ramaddr
, np
->scripta0
, np
->scripta_sz
);
1903 if (np
->ram_ws
== 8192) {
1904 memcpy_toio(np
->s
.ramaddr
+ 4096, np
->scriptb0
, np
->scriptb_sz
);
1905 phys
= scr_to_cpu(np
->scr_ram_seg
);
1906 OUTL(np
, nc_mmws
, phys
);
1907 OUTL(np
, nc_mmrs
, phys
);
1908 OUTL(np
, nc_sfs
, phys
);
1909 phys
= SCRIPTB_BA(np
, start64
);
1915 OUTL(np
, nc_dsa
, np
->hcb_ba
);
1919 * Notify the XPT about the RESET condition.
1922 sym_xpt_async_bus_reset(np
);
1926 * Switch trans mode for current job and its target.
1928 static void sym_settrans(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
1929 u_char per
, u_char wide
, u_char div
, u_char fak
)
1932 u_char sval
, wval
, uval
;
1933 struct sym_tcb
*tp
= &np
->target
[target
];
1935 assert(target
== (INB(np
, nc_sdid
) & 0x0f));
1937 sval
= tp
->head
.sval
;
1938 wval
= tp
->head
.wval
;
1939 uval
= tp
->head
.uval
;
1942 printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1943 sval
, wval
, uval
, np
->rv_scntl3
);
1948 if (!(np
->features
& FE_C10
))
1949 sval
= (sval
& ~0x1f) | ofs
;
1951 sval
= (sval
& ~0x3f) | ofs
;
1954 * Set the sync divisor and extra clock factor.
1957 wval
= (wval
& ~0x70) | ((div
+1) << 4);
1958 if (!(np
->features
& FE_C10
))
1959 sval
= (sval
& ~0xe0) | (fak
<< 5);
1961 uval
= uval
& ~(XCLKH_ST
|XCLKH_DT
|XCLKS_ST
|XCLKS_DT
);
1962 if (fak
>= 1) uval
|= (XCLKH_ST
|XCLKH_DT
);
1963 if (fak
>= 2) uval
|= (XCLKS_ST
|XCLKS_DT
);
1968 * Set the bus width.
1975 * Set misc. ultra enable bits.
1977 if (np
->features
& FE_C10
) {
1978 uval
= uval
& ~(U3EN
|AIPCKEN
);
1980 assert(np
->features
& FE_U3EN
);
1984 wval
= wval
& ~ULTRA
;
1985 if (per
<= 12) wval
|= ULTRA
;
1989 * Stop there if sync parameters are unchanged.
1991 if (tp
->head
.sval
== sval
&&
1992 tp
->head
.wval
== wval
&&
1993 tp
->head
.uval
== uval
)
1995 tp
->head
.sval
= sval
;
1996 tp
->head
.wval
= wval
;
1997 tp
->head
.uval
= uval
;
2000 * Disable extended Sreq/Sack filtering if per < 50.
2001 * Not supported on the C1010.
2003 if (per
< 50 && !(np
->features
& FE_C10
))
2004 OUTOFFB(np
, nc_stest2
, EXT
);
2007 * set actual value and sync_status
2009 OUTB(np
, nc_sxfer
, tp
->head
.sval
);
2010 OUTB(np
, nc_scntl3
, tp
->head
.wval
);
2012 if (np
->features
& FE_C10
) {
2013 OUTB(np
, nc_scntl4
, tp
->head
.uval
);
2017 * patch ALL busy ccbs of this target.
2019 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
2021 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
2022 if (cp
->target
!= target
)
2024 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
2025 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
2026 if (np
->features
& FE_C10
) {
2027 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
2033 * We received a WDTR.
2034 * Let everything be aware of the changes.
2036 static void sym_setwide(struct sym_hcb
*np
, int target
, u_char wide
)
2038 struct sym_tcb
*tp
= &np
->target
[target
];
2039 struct scsi_target
*starget
= tp
->starget
;
2041 if (spi_width(starget
) == wide
)
2044 sym_settrans(np
, target
, 0, 0, 0, wide
, 0, 0);
2046 tp
->tgoal
.width
= wide
;
2047 spi_offset(starget
) = 0;
2048 spi_period(starget
) = 0;
2049 spi_width(starget
) = wide
;
2050 spi_iu(starget
) = 0;
2051 spi_dt(starget
) = 0;
2052 spi_qas(starget
) = 0;
2054 if (sym_verbose
>= 3)
2055 spi_display_xfer_agreement(starget
);
2059 * We received a SDTR.
2060 * Let everything be aware of the changes.
2063 sym_setsync(struct sym_hcb
*np
, int target
,
2064 u_char ofs
, u_char per
, u_char div
, u_char fak
)
2066 struct sym_tcb
*tp
= &np
->target
[target
];
2067 struct scsi_target
*starget
= tp
->starget
;
2068 u_char wide
= (tp
->head
.wval
& EWS
) ? BUS_16_BIT
: BUS_8_BIT
;
2070 sym_settrans(np
, target
, 0, ofs
, per
, wide
, div
, fak
);
2072 spi_period(starget
) = per
;
2073 spi_offset(starget
) = ofs
;
2074 spi_iu(starget
) = spi_dt(starget
) = spi_qas(starget
) = 0;
2076 if (!tp
->tgoal
.dt
&& !tp
->tgoal
.iu
&& !tp
->tgoal
.qas
) {
2077 tp
->tgoal
.period
= per
;
2078 tp
->tgoal
.offset
= ofs
;
2079 tp
->tgoal
.check_nego
= 0;
2082 spi_display_xfer_agreement(starget
);
2086 * We received a PPR.
2087 * Let everything be aware of the changes.
2090 sym_setpprot(struct sym_hcb
*np
, int target
, u_char opts
, u_char ofs
,
2091 u_char per
, u_char wide
, u_char div
, u_char fak
)
2093 struct sym_tcb
*tp
= &np
->target
[target
];
2094 struct scsi_target
*starget
= tp
->starget
;
2096 sym_settrans(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
2098 spi_width(starget
) = tp
->tgoal
.width
= wide
;
2099 spi_period(starget
) = tp
->tgoal
.period
= per
;
2100 spi_offset(starget
) = tp
->tgoal
.offset
= ofs
;
2101 spi_iu(starget
) = tp
->tgoal
.iu
= !!(opts
& PPR_OPT_IU
);
2102 spi_dt(starget
) = tp
->tgoal
.dt
= !!(opts
& PPR_OPT_DT
);
2103 spi_qas(starget
) = tp
->tgoal
.qas
= !!(opts
& PPR_OPT_QAS
);
2104 tp
->tgoal
.check_nego
= 0;
2106 spi_display_xfer_agreement(starget
);
2110 * generic recovery from scsi interrupt
2112 * The doc says that when the chip gets an SCSI interrupt,
2113 * it tries to stop in an orderly fashion, by completing
2114 * an instruction fetch that had started or by flushing
2115 * the DMA fifo for a write to memory that was executing.
2116 * Such a fashion is not enough to know if the instruction
2117 * that was just before the current DSP value has been
2120 * There are some small SCRIPTS sections that deal with
2121 * the start queue and the done queue that may break any
2122 * assomption from the C code if we are interrupted
2123 * inside, so we reset if this happens. Btw, since these
2124 * SCRIPTS sections are executed while the SCRIPTS hasn't
2125 * started SCSI operations, it is very unlikely to happen.
2127 * All the driver data structures are supposed to be
2128 * allocated from the same 4 GB memory window, so there
2129 * is a 1 to 1 relationship between DSA and driver data
2130 * structures. Since we are careful :) to invalidate the
2131 * DSA when we complete a command or when the SCRIPTS
2132 * pushes a DSA into a queue, we can trust it when it
2135 static void sym_recover_scsi_int (struct sym_hcb
*np
, u_char hsts
)
2137 u32 dsp
= INL(np
, nc_dsp
);
2138 u32 dsa
= INL(np
, nc_dsa
);
2139 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2142 * If we haven't been interrupted inside the SCRIPTS
2143 * critical pathes, we can safely restart the SCRIPTS
2144 * and trust the DSA value if it matches a CCB.
2146 if ((!(dsp
> SCRIPTA_BA(np
, getjob_begin
) &&
2147 dsp
< SCRIPTA_BA(np
, getjob_end
) + 1)) &&
2148 (!(dsp
> SCRIPTA_BA(np
, ungetjob
) &&
2149 dsp
< SCRIPTA_BA(np
, reselect
) + 1)) &&
2150 (!(dsp
> SCRIPTB_BA(np
, sel_for_abort
) &&
2151 dsp
< SCRIPTB_BA(np
, sel_for_abort_1
) + 1)) &&
2152 (!(dsp
> SCRIPTA_BA(np
, done
) &&
2153 dsp
< SCRIPTA_BA(np
, done_end
) + 1))) {
2154 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2155 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2157 * If we have a CCB, let the SCRIPTS call us back for
2158 * the handling of the error with SCRATCHA filled with
2159 * STARTPOS. This way, we will be able to freeze the
2160 * device queue and requeue awaiting IOs.
2163 cp
->host_status
= hsts
;
2164 OUTL_DSP(np
, SCRIPTA_BA(np
, complete_error
));
2167 * Otherwise just restart the SCRIPTS.
2170 OUTL(np
, nc_dsa
, 0xffffff);
2171 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
2180 sym_start_reset(np
);
2184 * chip exception handler for selection timeout
2186 static void sym_int_sto (struct sym_hcb
*np
)
2188 u32 dsp
= INL(np
, nc_dsp
);
2190 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("T");
2192 if (dsp
== SCRIPTA_BA(np
, wf_sel_done
) + 8)
2193 sym_recover_scsi_int(np
, HS_SEL_TIMEOUT
);
2195 sym_start_reset(np
);
2199 * chip exception handler for unexpected disconnect
2201 static void sym_int_udc (struct sym_hcb
*np
)
2203 printf ("%s: unexpected disconnect\n", sym_name(np
));
2204 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2208 * chip exception handler for SCSI bus mode change
2210 * spi2-r12 11.2.3 says a transceiver mode change must
2211 * generate a reset event and a device that detects a reset
2212 * event shall initiate a hard reset. It says also that a
2213 * device that detects a mode change shall set data transfer
2214 * mode to eight bit asynchronous, etc...
2215 * So, just reinitializing all except chip should be enough.
2217 static void sym_int_sbmc (struct sym_hcb
*np
)
2219 u_char scsi_mode
= INB(np
, nc_stest4
) & SMODE
;
2224 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np
),
2225 sym_scsi_bus_mode(np
->scsi_mode
), sym_scsi_bus_mode(scsi_mode
));
2228 * Should suspend command processing for a few seconds and
2229 * reinitialize all except the chip.
2231 sym_start_up (np
, 2);
2235 * chip exception handler for SCSI parity error.
2237 * When the chip detects a SCSI parity error and is
2238 * currently executing a (CH)MOV instruction, it does
2239 * not interrupt immediately, but tries to finish the
2240 * transfer of the current scatter entry before
2241 * interrupting. The following situations may occur:
2243 * - The complete scatter entry has been transferred
2244 * without the device having changed phase.
2245 * The chip will then interrupt with the DSP pointing
2246 * to the instruction that follows the MOV.
2248 * - A phase mismatch occurs before the MOV finished
2249 * and phase errors are to be handled by the C code.
2250 * The chip will then interrupt with both PAR and MA
2253 * - A phase mismatch occurs before the MOV finished and
2254 * phase errors are to be handled by SCRIPTS.
2255 * The chip will load the DSP with the phase mismatch
2256 * JUMP address and interrupt the host processor.
2258 static void sym_int_par (struct sym_hcb
*np
, u_short sist
)
2260 u_char hsts
= INB(np
, HS_PRT
);
2261 u32 dsp
= INL(np
, nc_dsp
);
2262 u32 dbc
= INL(np
, nc_dbc
);
2263 u32 dsa
= INL(np
, nc_dsa
);
2264 u_char sbcl
= INB(np
, nc_sbcl
);
2265 u_char cmd
= dbc
>> 24;
2266 int phase
= cmd
& 7;
2267 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
2269 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2270 sym_name(np
), hsts
, dbc
, sbcl
);
2273 * Check that the chip is connected to the SCSI BUS.
2275 if (!(INB(np
, nc_scntl1
) & ISCON
)) {
2276 sym_recover_scsi_int(np
, HS_UNEXPECTED
);
2281 * If the nexus is not clearly identified, reset the bus.
2282 * We will try to do better later.
2288 * Check instruction was a MOV, direction was INPUT and
2291 if ((cmd
& 0xc0) || !(phase
& 1) || !(sbcl
& 0x8))
2295 * Keep track of the parity error.
2297 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
2298 cp
->xerr_status
|= XE_PARITY_ERR
;
2301 * Prepare the message to send to the device.
2303 np
->msgout
[0] = (phase
== 7) ? M_PARITY
: M_ID_ERROR
;
2306 * If the old phase was DATA IN phase, we have to deal with
2307 * the 3 situations described above.
2308 * For other input phases (MSG IN and STATUS), the device
2309 * must resend the whole thing that failed parity checking
2310 * or signal error. So, jumping to dispatcher should be OK.
2312 if (phase
== 1 || phase
== 5) {
2313 /* Phase mismatch handled by SCRIPTS */
2314 if (dsp
== SCRIPTB_BA(np
, pm_handle
))
2316 /* Phase mismatch handled by the C code */
2319 /* No phase mismatch occurred */
2321 sym_set_script_dp (np
, cp
, dsp
);
2322 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2325 else if (phase
== 7) /* We definitely cannot handle parity errors */
2326 #if 1 /* in message-in phase due to the relection */
2327 goto reset_all
; /* path and various message anticipations. */
2329 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
2332 OUTL_DSP(np
, SCRIPTA_BA(np
, dispatch
));
2336 sym_start_reset(np
);
2341 * chip exception handler for phase errors.
2343 * We have to construct a new transfer descriptor,
2344 * to transfer the rest of the current block.
2346 static void sym_int_ma (struct sym_hcb
*np
)
2359 u_char hflags
, hflags0
;
2363 dsp
= INL(np
, nc_dsp
);
2364 dbc
= INL(np
, nc_dbc
);
2365 dsa
= INL(np
, nc_dsa
);
2368 rest
= dbc
& 0xffffff;
2372 * locate matching cp if any.
2374 cp
= sym_ccb_from_dsa(np
, dsa
);
2377 * Donnot take into account dma fifo and various buffers in
2378 * INPUT phase since the chip flushes everything before
2379 * raising the MA interrupt for interrupted INPUT phases.
2380 * For DATA IN phase, we will check for the SWIDE later.
2382 if ((cmd
& 7) != 1 && (cmd
& 7) != 5) {
2385 if (np
->features
& FE_DFBC
)
2386 delta
= INW(np
, nc_dfbc
);
2391 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2393 dfifo
= INL(np
, nc_dfifo
);
2396 * Calculate remaining bytes in DMA fifo.
2397 * (CTEST5 = dfifo >> 16)
2399 if (dfifo
& (DFS
<< 16))
2400 delta
= ((((dfifo
>> 8) & 0x300) |
2401 (dfifo
& 0xff)) - rest
) & 0x3ff;
2403 delta
= ((dfifo
& 0xff) - rest
) & 0x7f;
2407 * The data in the dma fifo has not been transfered to
2408 * the target -> add the amount to the rest
2409 * and clear the data.
2410 * Check the sstat2 register in case of wide transfer.
2413 ss0
= INB(np
, nc_sstat0
);
2414 if (ss0
& OLF
) rest
++;
2415 if (!(np
->features
& FE_C10
))
2416 if (ss0
& ORF
) rest
++;
2417 if (cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
)) {
2418 ss2
= INB(np
, nc_sstat2
);
2419 if (ss2
& OLF1
) rest
++;
2420 if (!(np
->features
& FE_C10
))
2421 if (ss2
& ORF1
) rest
++;
2427 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* dma fifo */
2428 OUTB(np
, nc_stest3
, TE
|CSF
); /* scsi fifo */
2432 * log the information
2434 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_PHASE
))
2435 printf ("P%x%x RL=%d D=%d ", cmd
&7, INB(np
, nc_sbcl
)&7,
2436 (unsigned) rest
, (unsigned) delta
);
2439 * try to find the interrupted script command,
2440 * and the address at which to continue.
2444 if (dsp
> np
->scripta_ba
&&
2445 dsp
<= np
->scripta_ba
+ np
->scripta_sz
) {
2446 vdsp
= (u32
*)((char*)np
->scripta0
+ (dsp
-np
->scripta_ba
-8));
2449 else if (dsp
> np
->scriptb_ba
&&
2450 dsp
<= np
->scriptb_ba
+ np
->scriptb_sz
) {
2451 vdsp
= (u32
*)((char*)np
->scriptb0
+ (dsp
-np
->scriptb_ba
-8));
2456 * log the information
2458 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2459 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2460 cp
, (unsigned)dsp
, (unsigned)nxtdsp
, vdsp
, cmd
);
2464 printf ("%s: interrupted SCRIPT address not found.\n",
2470 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2476 * get old startaddress and old length.
2478 oadr
= scr_to_cpu(vdsp
[1]);
2480 if (cmd
& 0x10) { /* Table indirect */
2481 tblp
= (u32
*) ((char*) &cp
->phys
+ oadr
);
2482 olen
= scr_to_cpu(tblp
[0]);
2483 oadr
= scr_to_cpu(tblp
[1]);
2486 olen
= scr_to_cpu(vdsp
[0]) & 0xffffff;
2489 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2490 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2491 (unsigned) (scr_to_cpu(vdsp
[0]) >> 24),
2498 * check cmd against assumed interrupted script command.
2499 * If dt data phase, the MOVE instruction hasn't bit 4 of
2502 if (((cmd
& 2) ? cmd
: (cmd
& ~4)) != (scr_to_cpu(vdsp
[0]) >> 24)) {
2503 sym_print_addr(cp
->cmd
,
2504 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2505 cmd
, scr_to_cpu(vdsp
[0]) >> 24);
2511 * if old phase not dataphase, leave here.
2514 sym_print_addr(cp
->cmd
,
2515 "phase change %x-%x %d@%08x resid=%d.\n",
2516 cmd
&7, INB(np
, nc_sbcl
)&7, (unsigned)olen
,
2517 (unsigned)oadr
, (unsigned)rest
);
2518 goto unexpected_phase
;
2522 * Choose the correct PM save area.
2524 * Look at the PM_SAVE SCRIPT if you want to understand
2525 * this stuff. The equivalent code is implemented in
2526 * SCRIPTS for the 895A, 896 and 1010 that are able to
2527 * handle PM from the SCRIPTS processor.
2529 hflags0
= INB(np
, HF_PRT
);
2532 if (hflags
& (HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
)) {
2533 if (hflags
& HF_IN_PM0
)
2534 nxtdsp
= scr_to_cpu(cp
->phys
.pm0
.ret
);
2535 else if (hflags
& HF_IN_PM1
)
2536 nxtdsp
= scr_to_cpu(cp
->phys
.pm1
.ret
);
2538 if (hflags
& HF_DP_SAVED
)
2539 hflags
^= HF_ACT_PM
;
2542 if (!(hflags
& HF_ACT_PM
)) {
2544 newcmd
= SCRIPTA_BA(np
, pm0_data
);
2548 newcmd
= SCRIPTA_BA(np
, pm1_data
);
2551 hflags
&= ~(HF_IN_PM0
| HF_IN_PM1
| HF_DP_SAVED
);
2552 if (hflags
!= hflags0
)
2553 OUTB(np
, HF_PRT
, hflags
);
2556 * fillin the phase mismatch context
2558 pm
->sg
.addr
= cpu_to_scr(oadr
+ olen
- rest
);
2559 pm
->sg
.size
= cpu_to_scr(rest
);
2560 pm
->ret
= cpu_to_scr(nxtdsp
);
2563 * If we have a SWIDE,
2564 * - prepare the address to write the SWIDE from SCRIPTS,
2565 * - compute the SCRIPTS address to restart from,
2566 * - move current data pointer context by one byte.
2568 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2569 if ((cmd
& 7) == 1 && cp
&& (cp
->phys
.select
.sel_scntl3
& EWS
) &&
2570 (INB(np
, nc_scntl2
) & WSR
)) {
2574 * Set up the table indirect for the MOVE
2575 * of the residual byte and adjust the data
2578 tmp
= scr_to_cpu(pm
->sg
.addr
);
2579 cp
->phys
.wresid
.addr
= cpu_to_scr(tmp
);
2580 pm
->sg
.addr
= cpu_to_scr(tmp
+ 1);
2581 tmp
= scr_to_cpu(pm
->sg
.size
);
2582 cp
->phys
.wresid
.size
= cpu_to_scr((tmp
&0xff000000) | 1);
2583 pm
->sg
.size
= cpu_to_scr(tmp
- 1);
2586 * If only the residual byte is to be moved,
2587 * no PM context is needed.
2589 if ((tmp
&0xffffff) == 1)
2593 * Prepare the address of SCRIPTS that will
2594 * move the residual byte to memory.
2596 nxtdsp
= SCRIPTB_BA(np
, wsr_ma_helper
);
2599 if (DEBUG_FLAGS
& DEBUG_PHASE
) {
2600 sym_print_addr(cp
->cmd
, "PM %x %x %x / %x %x %x.\n",
2601 hflags0
, hflags
, newcmd
,
2602 (unsigned)scr_to_cpu(pm
->sg
.addr
),
2603 (unsigned)scr_to_cpu(pm
->sg
.size
),
2604 (unsigned)scr_to_cpu(pm
->ret
));
2608 * Restart the SCRIPTS processor.
2610 sym_set_script_dp (np
, cp
, newcmd
);
2611 OUTL_DSP(np
, nxtdsp
);
2615 * Unexpected phase changes that occurs when the current phase
2616 * is not a DATA IN or DATA OUT phase are due to error conditions.
2617 * Such event may only happen when the SCRIPTS is using a
2618 * multibyte SCSI MOVE.
2620 * Phase change Some possible cause
2622 * COMMAND --> MSG IN SCSI parity error detected by target.
2623 * COMMAND --> STATUS Bad command or refused by target.
2624 * MSG OUT --> MSG IN Message rejected by target.
2625 * MSG OUT --> COMMAND Bogus target that discards extended
2626 * negotiation messages.
2628 * The code below does not care of the new phase and so
2629 * trusts the target. Why to annoy it ?
2630 * If the interrupted phase is COMMAND phase, we restart at
2632 * If a target does not get all the messages after selection,
2633 * the code assumes blindly that the target discards extended
2634 * messages and clears the negotiation status.
2635 * If the target does not want all our response to negotiation,
2636 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2637 * bloat for such a should_not_happen situation).
2638 * In all other situation, we reset the BUS.
2639 * Are these assumptions reasonnable ? (Wait and see ...)
2646 case 2: /* COMMAND phase */
2647 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2650 case 3: /* STATUS phase */
2651 nxtdsp
= SCRIPTA_BA(np
, dispatch
);
2654 case 6: /* MSG OUT phase */
2656 * If the device may want to use untagged when we want
2657 * tagged, we prepare an IDENTIFY without disc. granted,
2658 * since we will not be able to handle reselect.
2659 * Otherwise, we just don't care.
2661 if (dsp
== SCRIPTA_BA(np
, send_ident
)) {
2662 if (cp
->tag
!= NO_TAG
&& olen
- rest
<= 3) {
2663 cp
->host_status
= HS_BUSY
;
2664 np
->msgout
[0] = IDENTIFY(0, cp
->lun
);
2665 nxtdsp
= SCRIPTB_BA(np
, ident_break_atn
);
2668 nxtdsp
= SCRIPTB_BA(np
, ident_break
);
2670 else if (dsp
== SCRIPTB_BA(np
, send_wdtr
) ||
2671 dsp
== SCRIPTB_BA(np
, send_sdtr
) ||
2672 dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2673 nxtdsp
= SCRIPTB_BA(np
, nego_bad_phase
);
2674 if (dsp
== SCRIPTB_BA(np
, send_ppr
)) {
2675 struct scsi_device
*dev
= cp
->cmd
->device
;
2681 case 7: /* MSG IN phase */
2682 nxtdsp
= SCRIPTA_BA(np
, clrack
);
2688 OUTL_DSP(np
, nxtdsp
);
2693 sym_start_reset(np
);
2697 * chip interrupt handler
2699 * In normal situations, interrupt conditions occur one at
2700 * a time. But when something bad happens on the SCSI BUS,
2701 * the chip may raise several interrupt flags before
2702 * stopping and interrupting the CPU. The additionnal
2703 * interrupt flags are stacked in some extra registers
2704 * after the SIP and/or DIP flag has been raised in the
2705 * ISTAT. After the CPU has read the interrupt condition
2706 * flag from SIST or DSTAT, the chip unstacks the other
2707 * interrupt flags and sets the corresponding bits in
2708 * SIST or DSTAT. Since the chip starts stacking once the
2709 * SIP or DIP flag is set, there is a small window of time
2710 * where the stacking does not occur.
2712 * Typically, multiple interrupt conditions may happen in
2713 * the following situations:
2715 * - SCSI parity error + Phase mismatch (PAR|MA)
2716 * When an parity error is detected in input phase
2717 * and the device switches to msg-in phase inside a
2719 * - SCSI parity error + Unexpected disconnect (PAR|UDC)
2720 * When a stupid device does not want to handle the
2721 * recovery of an SCSI parity error.
2722 * - Some combinations of STO, PAR, UDC, ...
2723 * When using non compliant SCSI stuff, when user is
2724 * doing non compliant hot tampering on the BUS, when
2725 * something really bad happens to a device, etc ...
2727 * The heuristic suggested by SYMBIOS to handle
2728 * multiple interrupts is to try unstacking all
2729 * interrupts conditions and to handle them on some
2730 * priority based on error severity.
2731 * This will work when the unstacking has been
2732 * successful, but we cannot be 100 % sure of that,
2733 * since the CPU may have been faster to unstack than
2734 * the chip is able to stack. Hmmm ... But it seems that
2735 * such a situation is very unlikely to happen.
2737 * If this happen, for example STO caught by the CPU
2738 * then UDC happenning before the CPU have restarted
2739 * the SCRIPTS, the driver may wrongly complete the
2740 * same command on UDC, since the SCRIPTS didn't restart
2741 * and the DSA still points to the same command.
2742 * We avoid this situation by setting the DSA to an
2743 * invalid value when the CCB is completed and before
2744 * restarting the SCRIPTS.
2746 * Another issue is that we need some section of our
2747 * recovery procedures to be somehow uninterruptible but
2748 * the SCRIPTS processor does not provides such a
2749 * feature. For this reason, we handle recovery preferently
2750 * from the C code and check against some SCRIPTS critical
2751 * sections from the C code.
2753 * Hopefully, the interrupt handling of the driver is now
2754 * able to resist to weird BUS error conditions, but donnot
2755 * ask me for any guarantee that it will never fail. :-)
2756 * Use at your own decision and risk.
2759 void sym_interrupt (struct sym_hcb
*np
)
2761 u_char istat
, istatc
;
2766 * interrupt on the fly ?
2767 * (SCRIPTS may still be running)
2769 * A `dummy read' is needed to ensure that the
2770 * clear of the INTF flag reaches the device
2771 * and that posted writes are flushed to memory
2772 * before the scanning of the DONE queue.
2773 * Note that SCRIPTS also (dummy) read to memory
2774 * prior to deliver the INTF interrupt condition.
2776 istat
= INB(np
, nc_istat
);
2778 OUTB(np
, nc_istat
, (istat
& SIGP
) | INTF
| np
->istat_sem
);
2779 istat
= INB(np
, nc_istat
); /* DUMMY READ */
2780 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("F ");
2781 sym_wakeup_done(np
);
2784 if (!(istat
& (SIP
|DIP
)))
2787 #if 0 /* We should never get this one */
2789 OUTB(np
, nc_istat
, CABRT
);
2793 * PAR and MA interrupts may occur at the same time,
2794 * and we need to know of both in order to handle
2795 * this situation properly. We try to unstack SCSI
2796 * interrupts for that reason. BTW, I dislike a LOT
2797 * such a loop inside the interrupt routine.
2798 * Even if DMA interrupt stacking is very unlikely to
2799 * happen, we also try unstacking these ones, since
2800 * this has no performance impact.
2807 sist
|= INW(np
, nc_sist
);
2809 dstat
|= INB(np
, nc_dstat
);
2810 istatc
= INB(np
, nc_istat
);
2812 } while (istatc
& (SIP
|DIP
));
2814 if (DEBUG_FLAGS
& DEBUG_TINY
)
2815 printf ("<%d|%x:%x|%x:%x>",
2816 (int)INB(np
, nc_scr0
),
2818 (unsigned)INL(np
, nc_dsp
),
2819 (unsigned)INL(np
, nc_dbc
));
2821 * On paper, a memory read barrier may be needed here to
2822 * prevent out of order LOADs by the CPU from having
2823 * prefetched stale data prior to DMA having occurred.
2824 * And since we are paranoid ... :)
2826 MEMORY_READ_BARRIER();
2829 * First, interrupts we want to service cleanly.
2831 * Phase mismatch (MA) is the most frequent interrupt
2832 * for chip earlier than the 896 and so we have to service
2833 * it as quickly as possible.
2834 * A SCSI parity error (PAR) may be combined with a phase
2835 * mismatch condition (MA).
2836 * Programmed interrupts (SIR) are used to call the C code
2838 * The single step interrupt (SSI) is not used in this
2841 if (!(sist
& (STO
|GEN
|HTH
|SGE
|UDC
|SBMC
|RST
)) &&
2842 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2843 if (sist
& PAR
) sym_int_par (np
, sist
);
2844 else if (sist
& MA
) sym_int_ma (np
);
2845 else if (dstat
& SIR
) sym_int_sir (np
);
2846 else if (dstat
& SSI
) OUTONB_STD();
2847 else goto unknown_int
;
2852 * Now, interrupts that donnot happen in normal
2853 * situations and that we may need to recover from.
2855 * On SCSI RESET (RST), we reset everything.
2856 * On SCSI BUS MODE CHANGE (SBMC), we complete all
2857 * active CCBs with RESET status, prepare all devices
2858 * for negotiating again and restart the SCRIPTS.
2859 * On STO and UDC, we complete the CCB with the corres-
2860 * ponding status and restart the SCRIPTS.
2863 printf("%s: SCSI BUS reset detected.\n", sym_name(np
));
2864 sym_start_up (np
, 1);
2868 OUTB(np
, nc_ctest3
, np
->rv_ctest3
| CLF
); /* clear dma fifo */
2869 OUTB(np
, nc_stest3
, TE
|CSF
); /* clear scsi fifo */
2871 if (!(sist
& (GEN
|HTH
|SGE
)) &&
2872 !(dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2873 if (sist
& SBMC
) sym_int_sbmc (np
);
2874 else if (sist
& STO
) sym_int_sto (np
);
2875 else if (sist
& UDC
) sym_int_udc (np
);
2876 else goto unknown_int
;
2881 * Now, interrupts we are not able to recover cleanly.
2883 * Log message for hard errors.
2887 sym_log_hard_error(np
, sist
, dstat
);
2889 if ((sist
& (GEN
|HTH
|SGE
)) ||
2890 (dstat
& (MDPE
|BF
|ABRT
|IID
))) {
2891 sym_start_reset(np
);
2897 * We just miss the cause of the interrupt. :(
2898 * Print a message. The timeout will do the real work.
2900 printf( "%s: unknown interrupt(s) ignored, "
2901 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2902 sym_name(np
), istat
, dstat
, sist
);
2906 * Dequeue from the START queue all CCBs that match
2907 * a given target/lun/task condition (-1 means all),
2908 * and move them from the BUSY queue to the COMP queue
2909 * with DID_SOFT_ERROR status condition.
2910 * This function is used during error handling/recovery.
2911 * It is called with SCRIPTS not running.
2914 sym_dequeue_from_squeue(struct sym_hcb
*np
, int i
, int target
, int lun
, int task
)
2920 * Make sure the starting index is within range.
2922 assert((i
>= 0) && (i
< 2*MAX_QUEUE
));
2925 * Walk until end of START queue and dequeue every job
2926 * that matches the target/lun/task condition.
2929 while (i
!= np
->squeueput
) {
2930 cp
= sym_ccb_from_dsa(np
, scr_to_cpu(np
->squeue
[i
]));
2932 #ifdef SYM_CONF_IARB_SUPPORT
2933 /* Forget hints for IARB, they may be no longer relevant */
2934 cp
->host_flags
&= ~HF_HINT_IARB
;
2936 if ((target
== -1 || cp
->target
== target
) &&
2937 (lun
== -1 || cp
->lun
== lun
) &&
2938 (task
== -1 || cp
->tag
== task
)) {
2939 sym_set_cam_status(cp
->cmd
, DID_SOFT_ERROR
);
2940 sym_remque(&cp
->link_ccbq
);
2941 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
2945 np
->squeue
[j
] = np
->squeue
[i
];
2946 if ((j
+= 2) >= MAX_QUEUE
*2) j
= 0;
2948 if ((i
+= 2) >= MAX_QUEUE
*2) i
= 0;
2950 if (i
!= j
) /* Copy back the idle task if needed */
2951 np
->squeue
[j
] = np
->squeue
[i
];
2952 np
->squeueput
= j
; /* Update our current start queue pointer */
2958 * chip handler for bad SCSI status condition
2960 * In case of bad SCSI status, we unqueue all the tasks
2961 * currently queued to the controller but not yet started
2962 * and then restart the SCRIPTS processor immediately.
2964 * QUEUE FULL and BUSY conditions are handled the same way.
2965 * Basically all the not yet started tasks are requeued in
2966 * device queue and the queue is frozen until a completion.
2968 * For CHECK CONDITION and COMMAND TERMINATED status, we use
2969 * the CCB of the failed command to prepare a REQUEST SENSE
2970 * SCSI command and queue it to the controller queue.
2972 * SCRATCHA is assumed to have been loaded with STARTPOS
2973 * before the SCRIPTS called the C code.
2975 static void sym_sir_bad_scsi_status(struct sym_hcb
*np
, int num
, struct sym_ccb
*cp
)
2978 u_char s_status
= cp
->ssss_status
;
2979 u_char h_flags
= cp
->host_flags
;
2984 * Compute the index of the next job to start from SCRIPTS.
2986 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
2989 * The last CCB queued used for IARB hint may be
2990 * no longer relevant. Forget it.
2992 #ifdef SYM_CONF_IARB_SUPPORT
2998 * Now deal with the SCSI status.
3003 if (sym_verbose
>= 2) {
3004 sym_print_addr(cp
->cmd
, "%s\n",
3005 s_status
== S_BUSY
? "BUSY" : "QUEUE FULL\n");
3007 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
3008 sym_complete_error (np
, cp
);
3013 * If we get an SCSI error when requesting sense, give up.
3015 if (h_flags
& HF_SENSE
) {
3016 sym_complete_error (np
, cp
);
3021 * Dequeue all queued CCBs for that device not yet started,
3022 * and restart the SCRIPTS processor immediately.
3024 sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3025 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
3028 * Save some info of the actual IO.
3029 * Compute the data residual.
3031 cp
->sv_scsi_status
= cp
->ssss_status
;
3032 cp
->sv_xerr_status
= cp
->xerr_status
;
3033 cp
->sv_resid
= sym_compute_residual(np
, cp
);
3036 * Prepare all needed data structures for
3037 * requesting sense data.
3040 cp
->scsi_smsg2
[0] = IDENTIFY(0, cp
->lun
);
3044 * If we are currently using anything different from
3045 * async. 8 bit data transfers with that target,
3046 * start a negotiation, since the device may want
3047 * to report us a UNIT ATTENTION condition due to
3048 * a cause we currently ignore, and we donnot want
3049 * to be stuck with WIDE and/or SYNC data transfer.
3051 * cp->nego_status is filled by sym_prepare_nego().
3053 cp
->nego_status
= 0;
3054 msglen
+= sym_prepare_nego(np
, cp
, &cp
->scsi_smsg2
[msglen
]);
3056 * Message table indirect structure.
3058 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg2
);
3059 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
3064 cp
->phys
.cmd
.addr
= CCB_BA(cp
, sensecmd
);
3065 cp
->phys
.cmd
.size
= cpu_to_scr(6);
3068 * patch requested size into sense command
3070 cp
->sensecmd
[0] = REQUEST_SENSE
;
3071 cp
->sensecmd
[1] = 0;
3072 if (cp
->cmd
->device
->scsi_level
<= SCSI_2
&& cp
->lun
<= 7)
3073 cp
->sensecmd
[1] = cp
->lun
<< 5;
3074 cp
->sensecmd
[4] = SYM_SNS_BBUF_LEN
;
3075 cp
->data_len
= SYM_SNS_BBUF_LEN
;
3080 memset(cp
->sns_bbuf
, 0, SYM_SNS_BBUF_LEN
);
3081 cp
->phys
.sense
.addr
= CCB_BA(cp
, sns_bbuf
);
3082 cp
->phys
.sense
.size
= cpu_to_scr(SYM_SNS_BBUF_LEN
);
3085 * requeue the command.
3087 startp
= SCRIPTB_BA(np
, sdata_in
);
3089 cp
->phys
.head
.savep
= cpu_to_scr(startp
);
3090 cp
->phys
.head
.lastp
= cpu_to_scr(startp
);
3091 cp
->startp
= cpu_to_scr(startp
);
3092 cp
->goalp
= cpu_to_scr(startp
+ 16);
3094 cp
->host_xflags
= 0;
3095 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
3096 cp
->ssss_status
= S_ILLEGAL
;
3097 cp
->host_flags
= (HF_SENSE
|HF_DATA_IN
);
3098 cp
->xerr_status
= 0;
3099 cp
->extra_bytes
= 0;
3101 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
3104 * Requeue the command.
3106 sym_put_start_queue(np
, cp
);
3109 * Give back to upper layer everything we have dequeued.
3111 sym_flush_comp_queue(np
, 0);
3117 * After a device has accepted some management message
3118 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3119 * a device signals a UNIT ATTENTION condition, some
3120 * tasks are thrown away by the device. We are required
3121 * to reflect that on our tasks list since the device
3122 * will never complete these tasks.
3124 * This function move from the BUSY queue to the COMP
3125 * queue all disconnected CCBs for a given target that
3126 * match the following criteria:
3127 * - lun=-1 means any logical UNIT otherwise a given one.
3128 * - task=-1 means any task, otherwise a given one.
3130 int sym_clear_tasks(struct sym_hcb
*np
, int cam_status
, int target
, int lun
, int task
)
3132 SYM_QUEHEAD qtmp
, *qp
;
3137 * Move the entire BUSY queue to our temporary queue.
3139 sym_que_init(&qtmp
);
3140 sym_que_splice(&np
->busy_ccbq
, &qtmp
);
3141 sym_que_init(&np
->busy_ccbq
);
3144 * Put all CCBs that matches our criteria into
3145 * the COMP queue and put back other ones into
3148 while ((qp
= sym_remque_head(&qtmp
)) != 0) {
3149 struct scsi_cmnd
*cmd
;
3150 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3152 if (cp
->host_status
!= HS_DISCONNECT
||
3153 cp
->target
!= target
||
3154 (lun
!= -1 && cp
->lun
!= lun
) ||
3156 (cp
->tag
!= NO_TAG
&& cp
->scsi_smsg
[2] != task
))) {
3157 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
3160 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3162 /* Preserve the software timeout condition */
3163 if (sym_get_cam_status(cmd
) != DID_TIME_OUT
)
3164 sym_set_cam_status(cmd
, cam_status
);
3167 printf("XXXX TASK @%p CLEARED\n", cp
);
3174 * chip handler for TASKS recovery
3176 * We cannot safely abort a command, while the SCRIPTS
3177 * processor is running, since we just would be in race
3180 * As long as we have tasks to abort, we keep the SEM
3181 * bit set in the ISTAT. When this bit is set, the
3182 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3183 * each time it enters the scheduler.
3185 * If we have to reset a target, clear tasks of a unit,
3186 * or to perform the abort of a disconnected job, we
3187 * restart the SCRIPTS for selecting the target. Once
3188 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3189 * If it loses arbitration, the SCRIPTS will interrupt again
3190 * the next time it will enter its scheduler, and so on ...
3192 * On SIR_TARGET_SELECTED, we scan for the more
3193 * appropriate thing to do:
3195 * - If nothing, we just sent a M_ABORT message to the
3196 * target to get rid of the useless SCSI bus ownership.
3197 * According to the specs, no tasks shall be affected.
3198 * - If the target is to be reset, we send it a M_RESET
3200 * - If a logical UNIT is to be cleared , we send the
3201 * IDENTIFY(lun) + M_ABORT.
3202 * - If an untagged task is to be aborted, we send the
3203 * IDENTIFY(lun) + M_ABORT.
3204 * - If a tagged task is to be aborted, we send the
3205 * IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3207 * Once our 'kiss of death' :) message has been accepted
3208 * by the target, the SCRIPTS interrupts again
3209 * (SIR_ABORT_SENT). On this interrupt, we complete
3210 * all the CCBs that should have been aborted by the
3211 * target according to our message.
3213 static void sym_sir_task_recovery(struct sym_hcb
*np
, int num
)
3217 struct sym_tcb
*tp
= NULL
; /* gcc isn't quite smart enough yet */
3218 struct scsi_target
*starget
;
3219 int target
=-1, lun
=-1, task
;
3224 * The SCRIPTS processor stopped before starting
3225 * the next command in order to allow us to perform
3226 * some task recovery.
3228 case SIR_SCRIPT_STOPPED
:
3230 * Do we have any target to reset or unit to clear ?
3232 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
3233 tp
= &np
->target
[i
];
3235 (tp
->lun0p
&& tp
->lun0p
->to_clear
)) {
3241 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3242 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3252 * If not, walk the busy queue for any
3253 * disconnected CCB to be aborted.
3256 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3257 cp
= sym_que_entry(qp
,struct sym_ccb
,link_ccbq
);
3258 if (cp
->host_status
!= HS_DISCONNECT
)
3261 target
= cp
->target
;
3268 * If some target is to be selected,
3269 * prepare and start the selection.
3272 tp
= &np
->target
[target
];
3273 np
->abrt_sel
.sel_id
= target
;
3274 np
->abrt_sel
.sel_scntl3
= tp
->head
.wval
;
3275 np
->abrt_sel
.sel_sxfer
= tp
->head
.sval
;
3276 OUTL(np
, nc_dsa
, np
->hcb_ba
);
3277 OUTL_DSP(np
, SCRIPTB_BA(np
, sel_for_abort
));
3282 * Now look for a CCB to abort that haven't started yet.
3283 * Btw, the SCRIPTS processor is still stopped, so
3284 * we are not in race.
3288 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3289 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3290 if (cp
->host_status
!= HS_BUSY
&&
3291 cp
->host_status
!= HS_NEGOTIATE
)
3295 #ifdef SYM_CONF_IARB_SUPPORT
3297 * If we are using IMMEDIATE ARBITRATION, we donnot
3298 * want to cancel the last queued CCB, since the
3299 * SCRIPTS may have anticipated the selection.
3301 if (cp
== np
->last_cp
) {
3306 i
= 1; /* Means we have found some */
3311 * We are done, so we donnot need
3312 * to synchronize with the SCRIPTS anylonger.
3313 * Remove the SEM flag from the ISTAT.
3316 OUTB(np
, nc_istat
, SIGP
);
3320 * Compute index of next position in the start
3321 * queue the SCRIPTS intends to start and dequeue
3322 * all CCBs for that device that haven't been started.
3324 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3325 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, cp
->lun
, -1);
3328 * Make sure at least our IO to abort has been dequeued.
3330 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3331 assert(i
&& sym_get_cam_status(cp
->cmd
) == DID_SOFT_ERROR
);
3333 sym_remque(&cp
->link_ccbq
);
3334 sym_insque_tail(&cp
->link_ccbq
, &np
->comp_ccbq
);
3337 * Keep track in cam status of the reason of the abort.
3339 if (cp
->to_abort
== 2)
3340 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3342 sym_set_cam_status(cp
->cmd
, DID_ABORT
);
3345 * Complete with error everything that we have dequeued.
3347 sym_flush_comp_queue(np
, 0);
3350 * The SCRIPTS processor has selected a target
3351 * we may have some manual recovery to perform for.
3353 case SIR_TARGET_SELECTED
:
3354 target
= INB(np
, nc_sdid
) & 0xf;
3355 tp
= &np
->target
[target
];
3357 np
->abrt_tbl
.addr
= cpu_to_scr(vtobus(np
->abrt_msg
));
3360 * If the target is to be reset, prepare a
3361 * M_RESET message and clear the to_reset flag
3362 * since we donnot expect this operation to fail.
3365 np
->abrt_msg
[0] = M_RESET
;
3366 np
->abrt_tbl
.size
= 1;
3372 * Otherwise, look for some logical unit to be cleared.
3374 if (tp
->lun0p
&& tp
->lun0p
->to_clear
)
3376 else if (tp
->lunmp
) {
3377 for (k
= 1 ; k
< SYM_CONF_MAX_LUN
; k
++) {
3378 if (tp
->lunmp
[k
] && tp
->lunmp
[k
]->to_clear
) {
3386 * If a logical unit is to be cleared, prepare
3387 * an IDENTIFY(lun) + ABORT MESSAGE.
3390 struct sym_lcb
*lp
= sym_lp(tp
, lun
);
3391 lp
->to_clear
= 0; /* We don't expect to fail here */
3392 np
->abrt_msg
[0] = IDENTIFY(0, lun
);
3393 np
->abrt_msg
[1] = M_ABORT
;
3394 np
->abrt_tbl
.size
= 2;
3399 * Otherwise, look for some disconnected job to
3400 * abort for this target.
3404 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
3405 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
3406 if (cp
->host_status
!= HS_DISCONNECT
)
3408 if (cp
->target
!= target
)
3412 i
= 1; /* Means we have some */
3417 * If we have none, probably since the device has
3418 * completed the command before we won abitration,
3419 * send a M_ABORT message without IDENTIFY.
3420 * According to the specs, the device must just
3421 * disconnect the BUS and not abort any task.
3424 np
->abrt_msg
[0] = M_ABORT
;
3425 np
->abrt_tbl
.size
= 1;
3430 * We have some task to abort.
3431 * Set the IDENTIFY(lun)
3433 np
->abrt_msg
[0] = IDENTIFY(0, cp
->lun
);
3436 * If we want to abort an untagged command, we
3437 * will send a IDENTIFY + M_ABORT.
3438 * Otherwise (tagged command), we will send
3439 * a IDENTITFY + task attributes + ABORT TAG.
3441 if (cp
->tag
== NO_TAG
) {
3442 np
->abrt_msg
[1] = M_ABORT
;
3443 np
->abrt_tbl
.size
= 2;
3445 np
->abrt_msg
[1] = cp
->scsi_smsg
[1];
3446 np
->abrt_msg
[2] = cp
->scsi_smsg
[2];
3447 np
->abrt_msg
[3] = M_ABORT_TAG
;
3448 np
->abrt_tbl
.size
= 4;
3451 * Keep track of software timeout condition, since the
3452 * peripheral driver may not count retries on abort
3453 * conditions not due to timeout.
3455 if (cp
->to_abort
== 2)
3456 sym_set_cam_status(cp
->cmd
, DID_TIME_OUT
);
3457 cp
->to_abort
= 0; /* We donnot expect to fail here */
3461 * The target has accepted our message and switched
3462 * to BUS FREE phase as we expected.
3464 case SIR_ABORT_SENT
:
3465 target
= INB(np
, nc_sdid
) & 0xf;
3466 tp
= &np
->target
[target
];
3467 starget
= tp
->starget
;
3470 ** If we didn't abort anything, leave here.
3472 if (np
->abrt_msg
[0] == M_ABORT
)
3476 * If we sent a M_RESET, then a hardware reset has
3477 * been performed by the target.
3478 * - Reset everything to async 8 bit
3479 * - Tell ourself to negotiate next time :-)
3480 * - Prepare to clear all disconnected CCBs for
3481 * this target from our task list (lun=task=-1)
3485 if (np
->abrt_msg
[0] == M_RESET
) {
3487 tp
->head
.wval
= np
->rv_scntl3
;
3489 spi_period(starget
) = 0;
3490 spi_offset(starget
) = 0;
3491 spi_width(starget
) = 0;
3492 spi_iu(starget
) = 0;
3493 spi_dt(starget
) = 0;
3494 spi_qas(starget
) = 0;
3495 tp
->tgoal
.check_nego
= 1;
3499 * Otherwise, check for the LUN and TASK(s)
3500 * concerned by the cancelation.
3501 * If it is not ABORT_TAG then it is CLEAR_QUEUE
3502 * or an ABORT message :-)
3505 lun
= np
->abrt_msg
[0] & 0x3f;
3506 if (np
->abrt_msg
[1] == M_ABORT_TAG
)
3507 task
= np
->abrt_msg
[2];
3511 * Complete all the CCBs the device should have
3512 * aborted due to our 'kiss of death' message.
3514 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
3515 sym_dequeue_from_squeue(np
, i
, target
, lun
, -1);
3516 sym_clear_tasks(np
, DID_ABORT
, target
, lun
, task
);
3517 sym_flush_comp_queue(np
, 0);
3520 * If we sent a BDR, make upper layer aware of that.
3522 if (np
->abrt_msg
[0] == M_RESET
)
3523 sym_xpt_async_sent_bdr(np
, target
);
3528 * Print to the log the message we intend to send.
3530 if (num
== SIR_TARGET_SELECTED
) {
3531 dev_info(&tp
->starget
->dev
, "control msgout:");
3532 sym_printl_hex(np
->abrt_msg
, np
->abrt_tbl
.size
);
3533 np
->abrt_tbl
.size
= cpu_to_scr(np
->abrt_tbl
.size
);
3537 * Let the SCRIPTS processor continue.
3543 * Gerard's alchemy:) that deals with with the data
3544 * pointer for both MDP and the residual calculation.
3546 * I didn't want to bloat the code by more than 200
3547 * lines for the handling of both MDP and the residual.
3548 * This has been achieved by using a data pointer
3549 * representation consisting in an index in the data
3550 * array (dp_sg) and a negative offset (dp_ofs) that
3551 * have the following meaning:
3553 * - dp_sg = SYM_CONF_MAX_SG
3554 * we are at the end of the data script.
3555 * - dp_sg < SYM_CONF_MAX_SG
3556 * dp_sg points to the next entry of the scatter array
3557 * we want to transfer.
3559 * dp_ofs represents the residual of bytes of the
3560 * previous entry scatter entry we will send first.
3562 * no residual to send first.
3564 * The function sym_evaluate_dp() accepts an arbitray
3565 * offset (basically from the MDP message) and returns
3566 * the corresponding values of dp_sg and dp_ofs.
3569 static int sym_evaluate_dp(struct sym_hcb
*np
, struct sym_ccb
*cp
, u32 scr
, int *ofs
)
3572 int dp_ofs
, dp_sg
, dp_sgmin
;
3577 * Compute the resulted data pointer in term of a script
3578 * address within some DATA script and a signed byte offset.
3582 if (dp_scr
== SCRIPTA_BA(np
, pm0_data
))
3584 else if (dp_scr
== SCRIPTA_BA(np
, pm1_data
))
3590 dp_scr
= scr_to_cpu(pm
->ret
);
3591 dp_ofs
-= scr_to_cpu(pm
->sg
.size
) & 0x00ffffff;
3595 * If we are auto-sensing, then we are done.
3597 if (cp
->host_flags
& HF_SENSE
) {
3603 * Deduce the index of the sg entry.
3604 * Keep track of the index of the first valid entry.
3605 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3608 tmp
= scr_to_cpu(cp
->goalp
);
3609 dp_sg
= SYM_CONF_MAX_SG
;
3611 dp_sg
-= (tmp
- 8 - (int)dp_scr
) / (2*4);
3612 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3615 * Move to the sg entry the data pointer belongs to.
3617 * If we are inside the data area, we expect result to be:
3620 * dp_ofs = 0 and dp_sg is the index of the sg entry
3621 * the data pointer belongs to (or the end of the data)
3623 * dp_ofs < 0 and dp_sg is the index of the sg entry
3624 * the data pointer belongs to + 1.
3628 while (dp_sg
> dp_sgmin
) {
3630 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3631 n
= dp_ofs
+ (tmp
& 0xffffff);
3639 else if (dp_ofs
> 0) {
3640 while (dp_sg
< SYM_CONF_MAX_SG
) {
3641 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3642 dp_ofs
-= (tmp
& 0xffffff);
3650 * Make sure the data pointer is inside the data area.
3651 * If not, return some error.
3653 if (dp_sg
< dp_sgmin
|| (dp_sg
== dp_sgmin
&& dp_ofs
< 0))
3655 else if (dp_sg
> SYM_CONF_MAX_SG
||
3656 (dp_sg
== SYM_CONF_MAX_SG
&& dp_ofs
> 0))
3660 * Save the extreme pointer if needed.
3662 if (dp_sg
> cp
->ext_sg
||
3663 (dp_sg
== cp
->ext_sg
&& dp_ofs
> cp
->ext_ofs
)) {
3665 cp
->ext_ofs
= dp_ofs
;
3679 * chip handler for MODIFY DATA POINTER MESSAGE
3681 * We also call this function on IGNORE WIDE RESIDUE
3682 * messages that do not match a SWIDE full condition.
3683 * Btw, we assume in that situation that such a message
3684 * is equivalent to a MODIFY DATA POINTER (offset=-1).
3687 static void sym_modify_dp(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
, int ofs
)
3690 u32 dp_scr
= sym_get_script_dp (np
, cp
);
3698 * Not supported for auto-sense.
3700 if (cp
->host_flags
& HF_SENSE
)
3704 * Apply our alchemy:) (see comments in sym_evaluate_dp()),
3705 * to the resulted data pointer.
3707 dp_sg
= sym_evaluate_dp(np
, cp
, dp_scr
, &dp_ofs
);
3712 * And our alchemy:) allows to easily calculate the data
3713 * script address we want to return for the next data phase.
3715 dp_ret
= cpu_to_scr(cp
->goalp
);
3716 dp_ret
= dp_ret
- 8 - (SYM_CONF_MAX_SG
- dp_sg
) * (2*4);
3719 * If offset / scatter entry is zero we donnot need
3720 * a context for the new current data pointer.
3728 * Get a context for the new current data pointer.
3730 hflags
= INB(np
, HF_PRT
);
3732 if (hflags
& HF_DP_SAVED
)
3733 hflags
^= HF_ACT_PM
;
3735 if (!(hflags
& HF_ACT_PM
)) {
3737 dp_scr
= SCRIPTA_BA(np
, pm0_data
);
3741 dp_scr
= SCRIPTA_BA(np
, pm1_data
);
3744 hflags
&= ~(HF_DP_SAVED
);
3746 OUTB(np
, HF_PRT
, hflags
);
3749 * Set up the new current data pointer.
3750 * ofs < 0 there, and for the next data phase, we
3751 * want to transfer part of the data of the sg entry
3752 * corresponding to index dp_sg-1 prior to returning
3753 * to the main data script.
3755 pm
->ret
= cpu_to_scr(dp_ret
);
3756 tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].addr
);
3757 tmp
+= scr_to_cpu(cp
->phys
.data
[dp_sg
-1].size
) + dp_ofs
;
3758 pm
->sg
.addr
= cpu_to_scr(tmp
);
3759 pm
->sg
.size
= cpu_to_scr(-dp_ofs
);
3762 sym_set_script_dp (np
, cp
, dp_scr
);
3763 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
3767 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
3772 * chip calculation of the data residual.
3774 * As I used to say, the requirement of data residual
3775 * in SCSI is broken, useless and cannot be achieved
3776 * without huge complexity.
3777 * But most OSes and even the official CAM require it.
3778 * When stupidity happens to be so widely spread inside
3779 * a community, it gets hard to convince.
3781 * Anyway, I don't care, since I am not going to use
3782 * any software that considers this data residual as
3783 * a relevant information. :)
3786 int sym_compute_residual(struct sym_hcb
*np
, struct sym_ccb
*cp
)
3788 int dp_sg
, dp_sgmin
, resid
= 0;
3792 * Check for some data lost or just thrown away.
3793 * We are not required to be quite accurate in this
3794 * situation. Btw, if we are odd for output and the
3795 * device claims some more data, it may well happen
3796 * than our residual be zero. :-)
3798 if (cp
->xerr_status
& (XE_EXTRA_DATA
|XE_SODL_UNRUN
|XE_SWIDE_OVRUN
)) {
3799 if (cp
->xerr_status
& XE_EXTRA_DATA
)
3800 resid
-= cp
->extra_bytes
;
3801 if (cp
->xerr_status
& XE_SODL_UNRUN
)
3803 if (cp
->xerr_status
& XE_SWIDE_OVRUN
)
3808 * If all data has been transferred,
3809 * there is no residual.
3811 if (cp
->phys
.head
.lastp
== cp
->goalp
)
3815 * If no data transfer occurs, or if the data
3816 * pointer is weird, return full residual.
3818 if (cp
->startp
== cp
->phys
.head
.lastp
||
3819 sym_evaluate_dp(np
, cp
, scr_to_cpu(cp
->phys
.head
.lastp
),
3821 return cp
->data_len
;
3825 * If we were auto-sensing, then we are done.
3827 if (cp
->host_flags
& HF_SENSE
) {
3832 * We are now full comfortable in the computation
3833 * of the data residual (2's complement).
3835 dp_sgmin
= SYM_CONF_MAX_SG
- cp
->segments
;
3836 resid
= -cp
->ext_ofs
;
3837 for (dp_sg
= cp
->ext_sg
; dp_sg
< SYM_CONF_MAX_SG
; ++dp_sg
) {
3838 u_int tmp
= scr_to_cpu(cp
->phys
.data
[dp_sg
].size
);
3839 resid
+= (tmp
& 0xffffff);
3842 resid
-= cp
->odd_byte_adjustment
;
3845 * Hopefully, the result is not too wrong.
3851 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3853 * When we try to negotiate, we append the negotiation message
3854 * to the identify and (maybe) simple tag message.
3855 * The host status field is set to HS_NEGOTIATE to mark this
3858 * If the target doesn't answer this message immediately
3859 * (as required by the standard), the SIR_NEGO_FAILED interrupt
3860 * will be raised eventually.
3861 * The handler removes the HS_NEGOTIATE status, and sets the
3862 * negotiated value to the default (async / nowide).
3864 * If we receive a matching answer immediately, we check it
3865 * for validity, and set the values.
3867 * If we receive a Reject message immediately, we assume the
3868 * negotiation has failed, and fall back to standard values.
3870 * If we receive a negotiation message while not in HS_NEGOTIATE
3871 * state, it's a target initiated negotiation. We prepare a
3872 * (hopefully) valid answer, set our parameters, and send back
3873 * this answer to the target.
3875 * If the target doesn't fetch the answer (no message out phase),
3876 * we assume the negotiation has failed, and fall back to default
3877 * settings (SIR_NEGO_PROTO interrupt).
3879 * When we set the values, we adjust them in all ccbs belonging
3880 * to this target, in the controller's register, and in the "phys"
3881 * field of the controller's struct sym_hcb.
3885 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3888 sym_sync_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
3890 int target
= cp
->target
;
3891 u_char chg
, ofs
, per
, fak
, div
;
3893 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3894 sym_print_nego_msg(np
, target
, "sync msgin", np
->msgin
);
3898 * Get requested values.
3905 * Check values against our limits.
3908 if (ofs
> np
->maxoffs
)
3909 {chg
= 1; ofs
= np
->maxoffs
;}
3913 if (per
< np
->minsync
)
3914 {chg
= 1; per
= np
->minsync
;}
3918 * Get new chip synchronous parameters value.
3921 if (ofs
&& sym_getsync(np
, 0, per
, &div
, &fak
) < 0)
3924 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3925 sym_print_addr(cp
->cmd
,
3926 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3927 ofs
, per
, div
, fak
, chg
);
3931 * If it was an answer we want to change,
3932 * then it isn't acceptable. Reject it.
3940 sym_setsync (np
, target
, ofs
, per
, div
, fak
);
3943 * It was an answer. We are done.
3949 * It was a request. Prepare an answer message.
3951 spi_populate_sync_msg(np
->msgout
, per
, ofs
);
3953 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
3954 sym_print_nego_msg(np
, target
, "sync msgout", np
->msgout
);
3957 np
->msgin
[0] = M_NOOP
;
3962 sym_setsync (np
, target
, 0, 0, 0, 0);
3966 static void sym_sync_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
3972 * Request or answer ?
3974 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
3975 OUTB(np
, HS_PRT
, HS_BUSY
);
3976 if (cp
->nego_status
&& cp
->nego_status
!= NS_SYNC
)
3982 * Check and apply new values.
3984 result
= sym_sync_nego_check(np
, req
, cp
);
3985 if (result
) /* Not acceptable, reject it */
3987 if (req
) { /* Was a request, send response. */
3988 cp
->nego_status
= NS_SYNC
;
3989 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
3991 else /* Was a response, we are done. */
3992 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
3996 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4000 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4003 sym_ppr_nego_check(struct sym_hcb
*np
, int req
, int target
)
4005 struct sym_tcb
*tp
= &np
->target
[target
];
4006 unsigned char fak
, div
;
4009 unsigned char per
= np
->msgin
[3];
4010 unsigned char ofs
= np
->msgin
[5];
4011 unsigned char wide
= np
->msgin
[6];
4012 unsigned char opts
= np
->msgin
[7] & PPR_OPT_MASK
;
4014 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4015 sym_print_nego_msg(np
, target
, "ppr msgin", np
->msgin
);
4019 * Check values against our limits.
4021 if (wide
> np
->maxwide
) {
4025 if (!wide
|| !(np
->features
& FE_U3EN
))
4028 if (opts
!= (np
->msgin
[7] & PPR_OPT_MASK
))
4031 dt
= opts
& PPR_OPT_DT
;
4034 unsigned char maxoffs
= dt
? np
->maxoffs_dt
: np
->maxoffs
;
4035 if (ofs
> maxoffs
) {
4042 unsigned char minsync
= dt
? np
->minsync_dt
: np
->minsync
;
4043 if (per
< minsync
) {
4050 * Get new chip synchronous parameters value.
4053 if (ofs
&& sym_getsync(np
, dt
, per
, &div
, &fak
) < 0)
4057 * If it was an answer we want to change,
4058 * then it isn't acceptable. Reject it.
4066 sym_setpprot(np
, target
, opts
, ofs
, per
, wide
, div
, fak
);
4069 * It was an answer. We are done.
4075 * It was a request. Prepare an answer message.
4077 spi_populate_ppr_msg(np
->msgout
, per
, ofs
, wide
, opts
);
4079 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4080 sym_print_nego_msg(np
, target
, "ppr msgout", np
->msgout
);
4083 np
->msgin
[0] = M_NOOP
;
4088 sym_setpprot (np
, target
, 0, 0, 0, 0, 0, 0);
4090 * If it is a device response that should result in
4091 * ST, we may want to try a legacy negotiation later.
4093 if (!req
&& !opts
) {
4094 tp
->tgoal
.period
= per
;
4095 tp
->tgoal
.offset
= ofs
;
4096 tp
->tgoal
.width
= wide
;
4097 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4098 tp
->tgoal
.check_nego
= 1;
4103 static void sym_ppr_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4109 * Request or answer ?
4111 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4112 OUTB(np
, HS_PRT
, HS_BUSY
);
4113 if (cp
->nego_status
&& cp
->nego_status
!= NS_PPR
)
4119 * Check and apply new values.
4121 result
= sym_ppr_nego_check(np
, req
, cp
->target
);
4122 if (result
) /* Not acceptable, reject it */
4124 if (req
) { /* Was a request, send response. */
4125 cp
->nego_status
= NS_PPR
;
4126 OUTL_DSP(np
, SCRIPTB_BA(np
, ppr_resp
));
4128 else /* Was a response, we are done. */
4129 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4133 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4137 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4140 sym_wide_nego_check(struct sym_hcb
*np
, int req
, struct sym_ccb
*cp
)
4142 int target
= cp
->target
;
4145 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4146 sym_print_nego_msg(np
, target
, "wide msgin", np
->msgin
);
4150 * Get requested values.
4153 wide
= np
->msgin
[3];
4156 * Check values against our limits.
4158 if (wide
> np
->maxwide
) {
4163 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4164 sym_print_addr(cp
->cmd
, "wdtr: wide=%d chg=%d.\n",
4169 * If it was an answer we want to change,
4170 * then it isn't acceptable. Reject it.
4178 sym_setwide (np
, target
, wide
);
4181 * It was an answer. We are done.
4187 * It was a request. Prepare an answer message.
4189 spi_populate_width_msg(np
->msgout
, wide
);
4191 np
->msgin
[0] = M_NOOP
;
4193 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4194 sym_print_nego_msg(np
, target
, "wide msgout", np
->msgout
);
4203 static void sym_wide_nego(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4209 * Request or answer ?
4211 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
) {
4212 OUTB(np
, HS_PRT
, HS_BUSY
);
4213 if (cp
->nego_status
&& cp
->nego_status
!= NS_WIDE
)
4219 * Check and apply new values.
4221 result
= sym_wide_nego_check(np
, req
, cp
);
4222 if (result
) /* Not acceptable, reject it */
4224 if (req
) { /* Was a request, send response. */
4225 cp
->nego_status
= NS_WIDE
;
4226 OUTL_DSP(np
, SCRIPTB_BA(np
, wdtr_resp
));
4227 } else { /* Was a response. */
4229 * Negotiate for SYNC immediately after WIDE response.
4230 * This allows to negotiate for both WIDE and SYNC on
4231 * a single SCSI command (Suggested by Justin Gibbs).
4233 if (tp
->tgoal
.offset
) {
4234 spi_populate_sync_msg(np
->msgout
, tp
->tgoal
.period
,
4237 if (DEBUG_FLAGS
& DEBUG_NEGO
) {
4238 sym_print_nego_msg(np
, cp
->target
,
4239 "sync msgout", np
->msgout
);
4242 cp
->nego_status
= NS_SYNC
;
4243 OUTB(np
, HS_PRT
, HS_NEGOTIATE
);
4244 OUTL_DSP(np
, SCRIPTB_BA(np
, sdtr_resp
));
4247 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4253 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4257 * Reset DT, SYNC or WIDE to default settings.
4259 * Called when a negotiation does not succeed either
4260 * on rejection or on protocol error.
4262 * A target that understands a PPR message should never
4263 * reject it, and messing with it is very unlikely.
4264 * So, if a PPR makes problems, we may just want to
4265 * try a legacy negotiation later.
4267 static void sym_nego_default(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4269 switch (cp
->nego_status
) {
4272 sym_setpprot (np
, cp
->target
, 0, 0, 0, 0, 0, 0);
4274 if (tp
->tgoal
.period
< np
->minsync
)
4275 tp
->tgoal
.period
= np
->minsync
;
4276 if (tp
->tgoal
.offset
> np
->maxoffs
)
4277 tp
->tgoal
.offset
= np
->maxoffs
;
4278 tp
->tgoal
.iu
= tp
->tgoal
.dt
= tp
->tgoal
.qas
= 0;
4279 tp
->tgoal
.check_nego
= 1;
4283 sym_setsync (np
, cp
->target
, 0, 0, 0, 0);
4286 sym_setwide (np
, cp
->target
, 0);
4289 np
->msgin
[0] = M_NOOP
;
4290 np
->msgout
[0] = M_NOOP
;
4291 cp
->nego_status
= 0;
4295 * chip handler for MESSAGE REJECT received in response to
4296 * PPR, WIDE or SYNCHRONOUS negotiation.
4298 static void sym_nego_rejected(struct sym_hcb
*np
, struct sym_tcb
*tp
, struct sym_ccb
*cp
)
4300 sym_nego_default(np
, tp
, cp
);
4301 OUTB(np
, HS_PRT
, HS_BUSY
);
4305 * chip exception handler for programmed interrupts.
4307 static void sym_int_sir (struct sym_hcb
*np
)
4309 u_char num
= INB(np
, nc_dsps
);
4310 u32 dsa
= INL(np
, nc_dsa
);
4311 struct sym_ccb
*cp
= sym_ccb_from_dsa(np
, dsa
);
4312 u_char target
= INB(np
, nc_sdid
) & 0x0f;
4313 struct sym_tcb
*tp
= &np
->target
[target
];
4316 if (DEBUG_FLAGS
& DEBUG_TINY
) printf ("I#%d", num
);
4319 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
4321 * SCRIPTS tell us that we may have to update
4322 * 64 bit DMA segment registers.
4324 case SIR_DMAP_DIRTY
:
4325 sym_update_dmap_regs(np
);
4329 * Command has been completed with error condition
4330 * or has been auto-sensed.
4332 case SIR_COMPLETE_ERROR
:
4333 sym_complete_error(np
, cp
);
4336 * The C code is currently trying to recover from something.
4337 * Typically, user want to abort some command.
4339 case SIR_SCRIPT_STOPPED
:
4340 case SIR_TARGET_SELECTED
:
4341 case SIR_ABORT_SENT
:
4342 sym_sir_task_recovery(np
, num
);
4345 * The device didn't go to MSG OUT phase after having
4346 * been selected with ATN. We donnot want to handle
4349 case SIR_SEL_ATN_NO_MSG_OUT
:
4350 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4351 sym_name (np
), target
);
4354 * The device didn't switch to MSG IN phase after
4355 * having reseleted the initiator.
4357 case SIR_RESEL_NO_MSG_IN
:
4358 printf ("%s:%d: No MSG IN phase after reselection.\n",
4359 sym_name (np
), target
);
4362 * After reselection, the device sent a message that wasn't
4365 case SIR_RESEL_NO_IDENTIFY
:
4366 printf ("%s:%d: No IDENTIFY after reselection.\n",
4367 sym_name (np
), target
);
4370 * The device reselected a LUN we donnot know about.
4372 case SIR_RESEL_BAD_LUN
:
4373 np
->msgout
[0] = M_RESET
;
4376 * The device reselected for an untagged nexus and we
4379 case SIR_RESEL_BAD_I_T_L
:
4380 np
->msgout
[0] = M_ABORT
;
4383 * The device reselected for a tagged nexus that we donnot
4386 case SIR_RESEL_BAD_I_T_L_Q
:
4387 np
->msgout
[0] = M_ABORT_TAG
;
4390 * The SCRIPTS let us know that the device has grabbed
4391 * our message and will abort the job.
4393 case SIR_RESEL_ABORTED
:
4394 np
->lastmsg
= np
->msgout
[0];
4395 np
->msgout
[0] = M_NOOP
;
4396 printf ("%s:%d: message %x sent on bad reselection.\n",
4397 sym_name (np
), target
, np
->lastmsg
);
4400 * The SCRIPTS let us know that a message has been
4401 * successfully sent to the device.
4403 case SIR_MSG_OUT_DONE
:
4404 np
->lastmsg
= np
->msgout
[0];
4405 np
->msgout
[0] = M_NOOP
;
4406 /* Should we really care of that */
4407 if (np
->lastmsg
== M_PARITY
|| np
->lastmsg
== M_ID_ERROR
) {
4409 cp
->xerr_status
&= ~XE_PARITY_ERR
;
4410 if (!cp
->xerr_status
)
4411 OUTOFFB(np
, HF_PRT
, HF_EXT_ERR
);
4416 * The device didn't send a GOOD SCSI status.
4417 * We may have some work to do prior to allow
4418 * the SCRIPTS processor to continue.
4420 case SIR_BAD_SCSI_STATUS
:
4423 sym_sir_bad_scsi_status(np
, num
, cp
);
4426 * We are asked by the SCRIPTS to prepare a
4429 case SIR_REJECT_TO_SEND
:
4430 sym_print_msg(cp
, "M_REJECT to send for ", np
->msgin
);
4431 np
->msgout
[0] = M_REJECT
;
4434 * We have been ODD at the end of a DATA IN
4435 * transfer and the device didn't send a
4436 * IGNORE WIDE RESIDUE message.
4437 * It is a data overrun condition.
4439 case SIR_SWIDE_OVERRUN
:
4441 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4442 cp
->xerr_status
|= XE_SWIDE_OVRUN
;
4446 * We have been ODD at the end of a DATA OUT
4448 * It is a data underrun condition.
4450 case SIR_SODL_UNDERRUN
:
4452 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4453 cp
->xerr_status
|= XE_SODL_UNRUN
;
4457 * The device wants us to tranfer more data than
4458 * expected or in the wrong direction.
4459 * The number of extra bytes is in scratcha.
4460 * It is a data overrun condition.
4462 case SIR_DATA_OVERRUN
:
4464 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4465 cp
->xerr_status
|= XE_EXTRA_DATA
;
4466 cp
->extra_bytes
+= INL(np
, nc_scratcha
);
4470 * The device switched to an illegal phase (4/5).
4474 OUTONB(np
, HF_PRT
, HF_EXT_ERR
);
4475 cp
->xerr_status
|= XE_BAD_PHASE
;
4479 * We received a message.
4481 case SIR_MSG_RECEIVED
:
4484 switch (np
->msgin
[0]) {
4486 * We received an extended message.
4487 * We handle MODIFY DATA POINTER, SDTR, WDTR
4488 * and reject all other extended messages.
4491 switch (np
->msgin
[2]) {
4493 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4494 sym_print_msg(cp
, NULL
, np
->msgin
);
4495 tmp
= (np
->msgin
[3]<<24) + (np
->msgin
[4]<<16) +
4496 (np
->msgin
[5]<<8) + (np
->msgin
[6]);
4497 sym_modify_dp(np
, tp
, cp
, tmp
);
4500 sym_sync_nego(np
, tp
, cp
);
4503 sym_ppr_nego(np
, tp
, cp
);
4506 sym_wide_nego(np
, tp
, cp
);
4513 * We received a 1/2 byte message not handled from SCRIPTS.
4514 * We are only expecting MESSAGE REJECT and IGNORE WIDE
4515 * RESIDUE messages that haven't been anticipated by
4516 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4517 * WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4520 if (DEBUG_FLAGS
& DEBUG_POINTER
)
4521 sym_print_msg(cp
, NULL
, np
->msgin
);
4522 if (cp
->host_flags
& HF_SENSE
)
4523 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4525 sym_modify_dp(np
, tp
, cp
, -1);
4528 if (INB(np
, HS_PRT
) == HS_NEGOTIATE
)
4529 sym_nego_rejected(np
, tp
, cp
);
4531 sym_print_addr(cp
->cmd
,
4532 "M_REJECT received (%x:%x).\n",
4533 scr_to_cpu(np
->lastmsg
), np
->msgout
[0]);
4542 * We received an unknown message.
4543 * Ignore all MSG IN phases and reject it.
4546 sym_print_msg(cp
, "WEIRD message received", np
->msgin
);
4547 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_weird
));
4550 * Negotiation failed.
4551 * Target does not send us the reply.
4552 * Remove the HS_NEGOTIATE status.
4554 case SIR_NEGO_FAILED
:
4555 OUTB(np
, HS_PRT
, HS_BUSY
);
4557 * Negotiation failed.
4558 * Target does not want answer message.
4560 case SIR_NEGO_PROTO
:
4561 sym_nego_default(np
, tp
, cp
);
4569 OUTL_DSP(np
, SCRIPTB_BA(np
, msg_bad
));
4572 OUTL_DSP(np
, SCRIPTA_BA(np
, clrack
));
4579 * Acquire a control block
4581 struct sym_ccb
*sym_get_ccb (struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, u_char tag_order
)
4583 u_char tn
= cmd
->device
->id
;
4584 u_char ln
= cmd
->device
->lun
;
4585 struct sym_tcb
*tp
= &np
->target
[tn
];
4586 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
4587 u_short tag
= NO_TAG
;
4589 struct sym_ccb
*cp
= NULL
;
4592 * Look for a free CCB
4594 if (sym_que_empty(&np
->free_ccbq
))
4596 qp
= sym_remque_head(&np
->free_ccbq
);
4599 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
4603 * If we have been asked for a tagged command.
4607 * Debugging purpose.
4609 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4610 if (lp
->busy_itl
!= 0)
4614 * Allocate resources for tags if not yet.
4617 sym_alloc_lcb_tags(np
, tn
, ln
);
4622 * Get a tag for this SCSI IO and set up
4623 * the CCB bus address for reselection,
4624 * and count it for this LUN.
4625 * Toggle reselect path to tagged.
4627 if (lp
->busy_itlq
< SYM_CONF_MAX_TASK
) {
4628 tag
= lp
->cb_tags
[lp
->ia_tag
];
4629 if (++lp
->ia_tag
== SYM_CONF_MAX_TASK
)
4632 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4633 lp
->itlq_tbl
[tag
] = cpu_to_scr(cp
->ccb_ba
);
4635 cpu_to_scr(SCRIPTA_BA(np
, resel_tag
));
4637 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4638 cp
->tags_si
= lp
->tags_si
;
4639 ++lp
->tags_sum
[cp
->tags_si
];
4647 * This command will not be tagged.
4648 * If we already have either a tagged or untagged
4649 * one, refuse to overlap this untagged one.
4653 * Debugging purpose.
4655 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4656 if (lp
->busy_itl
!= 0 || lp
->busy_itlq
!= 0)
4660 * Count this nexus for this LUN.
4661 * Set up the CCB bus address for reselection.
4662 * Toggle reselect path to untagged.
4665 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4666 if (lp
->busy_itl
== 1) {
4667 lp
->head
.itl_task_sa
= cpu_to_scr(cp
->ccb_ba
);
4669 cpu_to_scr(SCRIPTA_BA(np
, resel_no_tag
));
4677 * Put the CCB into the busy queue.
4679 sym_insque_tail(&cp
->link_ccbq
, &np
->busy_ccbq
);
4680 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4682 sym_remque(&cp
->link2_ccbq
);
4683 sym_insque_tail(&cp
->link2_ccbq
, &lp
->waiting_ccbq
);
4688 cp
->odd_byte_adjustment
= 0;
4690 cp
->order
= tag_order
;
4694 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4695 sym_print_addr(cmd
, "ccb @%p using tag %d.\n", cp
, tag
);
4701 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4706 * Release one control block
4708 void sym_free_ccb (struct sym_hcb
*np
, struct sym_ccb
*cp
)
4710 struct sym_tcb
*tp
= &np
->target
[cp
->target
];
4711 struct sym_lcb
*lp
= sym_lp(tp
, cp
->lun
);
4713 if (DEBUG_FLAGS
& DEBUG_TAGS
) {
4714 sym_print_addr(cp
->cmd
, "ccb @%p freeing tag %d.\n",
4723 * If tagged, release the tag, set the relect path
4725 if (cp
->tag
!= NO_TAG
) {
4726 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4727 --lp
->tags_sum
[cp
->tags_si
];
4730 * Free the tag value.
4732 lp
->cb_tags
[lp
->if_tag
] = cp
->tag
;
4733 if (++lp
->if_tag
== SYM_CONF_MAX_TASK
)
4736 * Make the reselect path invalid,
4737 * and uncount this CCB.
4739 lp
->itlq_tbl
[cp
->tag
] = cpu_to_scr(np
->bad_itlq_ba
);
4741 } else { /* Untagged */
4743 * Make the reselect path invalid,
4744 * and uncount this CCB.
4746 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
4750 * If no JOB active, make the LUN reselect path invalid.
4752 if (lp
->busy_itlq
== 0 && lp
->busy_itl
== 0)
4754 cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
4758 * We donnot queue more than 1 ccb per target
4759 * with negotiation at any time. If this ccb was
4760 * used for negotiation, clear this info in the tcb.
4762 if (cp
== tp
->nego_cp
)
4765 #ifdef SYM_CONF_IARB_SUPPORT
4767 * If we just complete the last queued CCB,
4768 * clear this info that is no longer relevant.
4770 if (cp
== np
->last_cp
)
4775 * Make this CCB available.
4778 cp
->host_status
= HS_IDLE
;
4779 sym_remque(&cp
->link_ccbq
);
4780 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4782 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4784 sym_remque(&cp
->link2_ccbq
);
4785 sym_insque_tail(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4787 if (cp
->tag
!= NO_TAG
)
4790 --lp
->started_no_tag
;
4798 * Allocate a CCB from memory and initialize its fixed part.
4800 static struct sym_ccb
*sym_alloc_ccb(struct sym_hcb
*np
)
4802 struct sym_ccb
*cp
= NULL
;
4806 * Prevent from allocating more CCBs than we can
4807 * queue to the controller.
4809 if (np
->actccbs
>= SYM_CONF_MAX_START
)
4813 * Allocate memory for this CCB.
4815 cp
= sym_calloc_dma(sizeof(struct sym_ccb
), "CCB");
4825 * Compute the bus address of this ccb.
4827 cp
->ccb_ba
= vtobus(cp
);
4830 * Insert this ccb into the hashed list.
4832 hcode
= CCB_HASH_CODE(cp
->ccb_ba
);
4833 cp
->link_ccbh
= np
->ccbh
[hcode
];
4834 np
->ccbh
[hcode
] = cp
;
4837 * Initialyze the start and restart actions.
4839 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
4840 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
4843 * Initilialyze some other fields.
4845 cp
->phys
.smsg_ext
.addr
= cpu_to_scr(HCB_BA(np
, msgin
[2]));
4848 * Chain into free ccb queue.
4850 sym_insque_head(&cp
->link_ccbq
, &np
->free_ccbq
);
4853 * Chain into optionnal lists.
4855 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4856 sym_insque_head(&cp
->link2_ccbq
, &np
->dummy_ccbq
);
4861 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
4866 * Look up a CCB from a DSA value.
4868 static struct sym_ccb
*sym_ccb_from_dsa(struct sym_hcb
*np
, u32 dsa
)
4873 hcode
= CCB_HASH_CODE(dsa
);
4874 cp
= np
->ccbh
[hcode
];
4876 if (cp
->ccb_ba
== dsa
)
4885 * Target control block initialisation.
4886 * Nothing important to do at the moment.
4888 static void sym_init_tcb (struct sym_hcb
*np
, u_char tn
)
4890 #if 0 /* Hmmm... this checking looks paranoid. */
4892 * Check some alignments required by the chip.
4894 assert (((offsetof(struct sym_reg
, nc_sxfer
) ^
4895 offsetof(struct sym_tcb
, head
.sval
)) &3) == 0);
4896 assert (((offsetof(struct sym_reg
, nc_scntl3
) ^
4897 offsetof(struct sym_tcb
, head
.wval
)) &3) == 0);
4902 * Lun control block allocation and initialization.
4904 struct sym_lcb
*sym_alloc_lcb (struct sym_hcb
*np
, u_char tn
, u_char ln
)
4906 struct sym_tcb
*tp
= &np
->target
[tn
];
4907 struct sym_lcb
*lp
= NULL
;
4910 * Initialize the target control block if not yet.
4912 sym_init_tcb (np
, tn
);
4915 * Allocate the LCB bus address array.
4916 * Compute the bus address of this table.
4918 if (ln
&& !tp
->luntbl
) {
4921 tp
->luntbl
= sym_calloc_dma(256, "LUNTBL");
4924 for (i
= 0 ; i
< 64 ; i
++)
4925 tp
->luntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
4926 tp
->head
.luntbl_sa
= cpu_to_scr(vtobus(tp
->luntbl
));
4930 * Allocate the table of pointers for LUN(s) > 0, if needed.
4932 if (ln
&& !tp
->lunmp
) {
4933 tp
->lunmp
= kcalloc(SYM_CONF_MAX_LUN
, sizeof(struct sym_lcb
*),
4941 * Make it available to the chip.
4943 lp
= sym_calloc_dma(sizeof(struct sym_lcb
), "LCB");
4948 tp
->luntbl
[ln
] = cpu_to_scr(vtobus(lp
));
4952 tp
->head
.lun0_sa
= cpu_to_scr(vtobus(lp
));
4956 * Let the itl task point to error handling.
4958 lp
->head
.itl_task_sa
= cpu_to_scr(np
->bad_itl_ba
);
4961 * Set the reselect pattern to our default. :)
4963 lp
->head
.resel_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
4966 * Set user capabilities.
4968 lp
->user_flags
= tp
->usrflags
& (SYM_DISC_ENABLED
| SYM_TAGS_ENABLED
);
4970 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4972 * Initialize device queueing.
4974 sym_que_init(&lp
->waiting_ccbq
);
4975 sym_que_init(&lp
->started_ccbq
);
4976 lp
->started_max
= SYM_CONF_MAX_TASK
;
4977 lp
->started_limit
= SYM_CONF_MAX_TASK
;
4985 * Allocate LCB resources for tagged command queuing.
4987 static void sym_alloc_lcb_tags (struct sym_hcb
*np
, u_char tn
, u_char ln
)
4989 struct sym_tcb
*tp
= &np
->target
[tn
];
4990 struct sym_lcb
*lp
= sym_lp(tp
, ln
);
4994 * Allocate the task table and and the tag allocation
4995 * circular buffer. We want both or none.
4997 lp
->itlq_tbl
= sym_calloc_dma(SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5000 lp
->cb_tags
= kcalloc(SYM_CONF_MAX_TASK
, 1, GFP_ATOMIC
);
5002 sym_mfree_dma(lp
->itlq_tbl
, SYM_CONF_MAX_TASK
*4, "ITLQ_TBL");
5003 lp
->itlq_tbl
= NULL
;
5008 * Initialize the task table with invalid entries.
5010 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5011 lp
->itlq_tbl
[i
] = cpu_to_scr(np
->notask_ba
);
5014 * Fill up the tag buffer with tag numbers.
5016 for (i
= 0 ; i
< SYM_CONF_MAX_TASK
; i
++)
5020 * Make the task table available to SCRIPTS,
5021 * And accept tagged commands now.
5023 lp
->head
.itlq_tbl_sa
= cpu_to_scr(vtobus(lp
->itlq_tbl
));
5031 * Queue a SCSI IO to the controller.
5033 int sym_queue_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, struct sym_ccb
*cp
)
5035 struct scsi_device
*sdev
= cmd
->device
;
5043 * Keep track of the IO in our CCB.
5048 * Retrieve the target descriptor.
5050 tp
= &np
->target
[cp
->target
];
5053 * Retrieve the lun descriptor.
5055 lp
= sym_lp(tp
, sdev
->lun
);
5057 can_disconnect
= (cp
->tag
!= NO_TAG
) ||
5058 (lp
&& (lp
->curr_flags
& SYM_DISC_ENABLED
));
5060 msgptr
= cp
->scsi_smsg
;
5062 msgptr
[msglen
++] = IDENTIFY(can_disconnect
, sdev
->lun
);
5065 * Build the tag message if present.
5067 if (cp
->tag
!= NO_TAG
) {
5068 u_char order
= cp
->order
;
5076 order
= M_SIMPLE_TAG
;
5078 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5080 * Avoid too much reordering of SCSI commands.
5081 * The algorithm tries to prevent completion of any
5082 * tagged command from being delayed against more
5083 * than 3 times the max number of queued commands.
5085 if (lp
&& lp
->tags_since
> 3*SYM_CONF_MAX_TAG
) {
5086 lp
->tags_si
= !(lp
->tags_si
);
5087 if (lp
->tags_sum
[lp
->tags_si
]) {
5088 order
= M_ORDERED_TAG
;
5089 if ((DEBUG_FLAGS
& DEBUG_TAGS
)||sym_verbose
>1) {
5091 "ordered tag forced.\n");
5097 msgptr
[msglen
++] = order
;
5100 * For less than 128 tags, actual tags are numbered
5101 * 1,3,5,..2*MAXTAGS+1,since we may have to deal
5102 * with devices that have problems with #TAG 0 or too
5103 * great #TAG numbers. For more tags (up to 256),
5104 * we use directly our tag number.
5106 #if SYM_CONF_MAX_TASK > (512/4)
5107 msgptr
[msglen
++] = cp
->tag
;
5109 msgptr
[msglen
++] = (cp
->tag
<< 1) + 1;
5114 * Build a negotiation message if needed.
5115 * (nego_status is filled by sym_prepare_nego())
5117 cp
->nego_status
= 0;
5118 if (tp
->tgoal
.check_nego
&& !tp
->nego_cp
&& lp
) {
5119 msglen
+= sym_prepare_nego(np
, cp
, msgptr
+ msglen
);
5125 cp
->phys
.head
.go
.start
= cpu_to_scr(SCRIPTA_BA(np
, select
));
5126 cp
->phys
.head
.go
.restart
= cpu_to_scr(SCRIPTA_BA(np
, resel_dsa
));
5131 cp
->phys
.select
.sel_id
= cp
->target
;
5132 cp
->phys
.select
.sel_scntl3
= tp
->head
.wval
;
5133 cp
->phys
.select
.sel_sxfer
= tp
->head
.sval
;
5134 cp
->phys
.select
.sel_scntl4
= tp
->head
.uval
;
5139 cp
->phys
.smsg
.addr
= CCB_BA(cp
, scsi_smsg
);
5140 cp
->phys
.smsg
.size
= cpu_to_scr(msglen
);
5145 cp
->host_xflags
= 0;
5146 cp
->host_status
= cp
->nego_status
? HS_NEGOTIATE
: HS_BUSY
;
5147 cp
->ssss_status
= S_ILLEGAL
;
5148 cp
->xerr_status
= 0;
5150 cp
->extra_bytes
= 0;
5153 * extreme data pointer.
5154 * shall be positive, so -1 is lower than lowest.:)
5160 * Build the CDB and DATA descriptor block
5163 return sym_setup_data_and_start(np
, cmd
, cp
);
5167 * Reset a SCSI target (all LUNs of this target).
5169 int sym_reset_scsi_target(struct sym_hcb
*np
, int target
)
5173 if (target
== np
->myaddr
|| (u_int
)target
>= SYM_CONF_MAX_TARGET
)
5176 tp
= &np
->target
[target
];
5179 np
->istat_sem
= SEM
;
5180 OUTB(np
, nc_istat
, SIGP
|SEM
);
5188 static int sym_abort_ccb(struct sym_hcb
*np
, struct sym_ccb
*cp
, int timed_out
)
5191 * Check that the IO is active.
5193 if (!cp
|| !cp
->host_status
|| cp
->host_status
== HS_WAIT
)
5197 * If a previous abort didn't succeed in time,
5198 * perform a BUS reset.
5201 sym_reset_scsi_bus(np
, 1);
5206 * Mark the CCB for abort and allow time for.
5208 cp
->to_abort
= timed_out
? 2 : 1;
5211 * Tell the SCRIPTS processor to stop and synchronize with us.
5213 np
->istat_sem
= SEM
;
5214 OUTB(np
, nc_istat
, SIGP
|SEM
);
5218 int sym_abort_scsiio(struct sym_hcb
*np
, struct scsi_cmnd
*cmd
, int timed_out
)
5224 * Look up our CCB control block.
5227 FOR_EACH_QUEUED_ELEMENT(&np
->busy_ccbq
, qp
) {
5228 struct sym_ccb
*cp2
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5229 if (cp2
->cmd
== cmd
) {
5235 return sym_abort_ccb(np
, cp
, timed_out
);
5239 * Complete execution of a SCSI command with extended
5240 * error, SCSI status error, or having been auto-sensed.
5242 * The SCRIPTS processor is not running there, so we
5243 * can safely access IO registers and remove JOBs from
5245 * SCRATCHA is assumed to have been loaded with STARTPOS
5246 * before the SCRIPTS called the C code.
5248 void sym_complete_error(struct sym_hcb
*np
, struct sym_ccb
*cp
)
5250 struct scsi_device
*sdev
;
5251 struct scsi_cmnd
*cmd
;
5258 * Paranoid check. :)
5260 if (!cp
|| !cp
->cmd
)
5265 if (DEBUG_FLAGS
& (DEBUG_TINY
|DEBUG_RESULT
)) {
5266 dev_info(&sdev
->sdev_gendev
, "CCB=%p STAT=%x/%x/%x\n", cp
,
5267 cp
->host_status
, cp
->ssss_status
, cp
->host_flags
);
5271 * Get target and lun pointers.
5273 tp
= &np
->target
[cp
->target
];
5274 lp
= sym_lp(tp
, sdev
->lun
);
5277 * Check for extended errors.
5279 if (cp
->xerr_status
) {
5281 sym_print_xerr(cmd
, cp
->xerr_status
);
5282 if (cp
->host_status
== HS_COMPLETE
)
5283 cp
->host_status
= HS_COMP_ERR
;
5287 * Calculate the residual.
5289 resid
= sym_compute_residual(np
, cp
);
5291 if (!SYM_SETUP_RESIDUAL_SUPPORT
) {/* If user does not want residuals */
5292 resid
= 0; /* throw them away. :) */
5297 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5301 * Dequeue all queued CCBs for that device
5302 * not yet started by SCRIPTS.
5304 i
= (INL(np
, nc_scratcha
) - np
->squeue_ba
) / 4;
5305 i
= sym_dequeue_from_squeue(np
, i
, cp
->target
, sdev
->lun
, -1);
5308 * Restart the SCRIPTS processor.
5310 OUTL_DSP(np
, SCRIPTA_BA(np
, start
));
5312 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5313 if (cp
->host_status
== HS_COMPLETE
&&
5314 cp
->ssss_status
== S_QUEUE_FULL
) {
5315 if (!lp
|| lp
->started_tags
- i
< 2)
5318 * Decrease queue depth as needed.
5320 lp
->started_max
= lp
->started_tags
- i
- 1;
5323 if (sym_verbose
>= 2) {
5324 sym_print_addr(cmd
, " queue depth is now %d\n",
5331 cp
->host_status
= HS_BUSY
;
5332 cp
->ssss_status
= S_ILLEGAL
;
5335 * Let's requeue it to device.
5337 sym_set_cam_status(cmd
, DID_SOFT_ERROR
);
5343 * Build result in CAM ccb.
5345 sym_set_cam_result_error(np
, cp
, resid
);
5347 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5351 * Add this one to the COMP queue.
5353 sym_remque(&cp
->link_ccbq
);
5354 sym_insque_head(&cp
->link_ccbq
, &np
->comp_ccbq
);
5357 * Complete all those commands with either error
5358 * or requeue condition.
5360 sym_flush_comp_queue(np
, 0);
5362 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5364 * Donnot start more than 1 command after an error.
5366 sym_start_next_ccbs(np
, lp
, 1);
5371 * Complete execution of a successful SCSI command.
5373 * Only successful commands go to the DONE queue,
5374 * since we need to have the SCRIPTS processor
5375 * stopped on any error condition.
5376 * The SCRIPTS processor is running while we are
5377 * completing successful commands.
5379 void sym_complete_ok (struct sym_hcb
*np
, struct sym_ccb
*cp
)
5383 struct scsi_cmnd
*cmd
;
5387 * Paranoid check. :)
5389 if (!cp
|| !cp
->cmd
)
5391 assert (cp
->host_status
== HS_COMPLETE
);
5399 * Get target and lun pointers.
5401 tp
= &np
->target
[cp
->target
];
5402 lp
= sym_lp(tp
, cp
->lun
);
5405 * If all data have been transferred, given than no
5406 * extended error did occur, there is no residual.
5409 if (cp
->phys
.head
.lastp
!= cp
->goalp
)
5410 resid
= sym_compute_residual(np
, cp
);
5413 * Wrong transfer residuals may be worse than just always
5414 * returning zero. User can disable this feature in
5415 * sym53c8xx.h. Residual support is enabled by default.
5417 if (!SYM_SETUP_RESIDUAL_SUPPORT
)
5421 printf("XXXX RESID= %d - 0x%x\n", resid
, resid
);
5425 * Build result in CAM ccb.
5427 sym_set_cam_result_ok(cp
, cmd
, resid
);
5429 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5431 * If max number of started ccbs had been reduced,
5432 * increase it if 200 good status received.
5434 if (lp
&& lp
->started_max
< lp
->started_limit
) {
5436 if (lp
->num_sgood
>= 200) {
5439 if (sym_verbose
>= 2) {
5440 sym_print_addr(cmd
, " queue depth is now %d\n",
5450 sym_free_ccb (np
, cp
);
5452 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5454 * Requeue a couple of awaiting scsi commands.
5456 if (!sym_que_empty(&lp
->waiting_ccbq
))
5457 sym_start_next_ccbs(np
, lp
, 2);
5460 * Complete the command.
5462 sym_xpt_done(np
, cmd
);
5466 * Soft-attach the controller.
5468 int sym_hcb_attach(struct Scsi_Host
*shost
, struct sym_fw
*fw
, struct sym_nvram
*nvram
)
5470 struct sym_hcb
*np
= sym_get_hcb(shost
);
5474 * Get some info about the firmware.
5476 np
->scripta_sz
= fw
->a_size
;
5477 np
->scriptb_sz
= fw
->b_size
;
5478 np
->scriptz_sz
= fw
->z_size
;
5479 np
->fw_setup
= fw
->setup
;
5480 np
->fw_patch
= fw
->patch
;
5481 np
->fw_name
= fw
->name
;
5484 * Save setting of some IO registers, so we will
5485 * be able to probe specific implementations.
5487 sym_save_initial_setting (np
);
5490 * Reset the chip now, since it has been reported
5491 * that SCSI clock calibration may not work properly
5492 * if the chip is currently active.
5497 * Prepare controller and devices settings, according
5498 * to chip features, user set-up and driver set-up.
5500 sym_prepare_setting(shost
, np
, nvram
);
5503 * Check the PCI clock frequency.
5504 * Must be performed after prepare_setting since it destroys
5505 * STEST1 that is used to probe for the clock doubler.
5507 i
= sym_getpciclock(np
);
5508 if (i
> 37000 && !(np
->features
& FE_66MHZ
))
5509 printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5513 * Allocate the start queue.
5515 np
->squeue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"SQUEUE");
5518 np
->squeue_ba
= vtobus(np
->squeue
);
5521 * Allocate the done queue.
5523 np
->dqueue
= sym_calloc_dma(sizeof(u32
)*(MAX_QUEUE
*2),"DQUEUE");
5526 np
->dqueue_ba
= vtobus(np
->dqueue
);
5529 * Allocate the target bus address array.
5531 np
->targtbl
= sym_calloc_dma(256, "TARGTBL");
5534 np
->targtbl_ba
= vtobus(np
->targtbl
);
5537 * Allocate SCRIPTS areas.
5539 np
->scripta0
= sym_calloc_dma(np
->scripta_sz
, "SCRIPTA0");
5540 np
->scriptb0
= sym_calloc_dma(np
->scriptb_sz
, "SCRIPTB0");
5541 np
->scriptz0
= sym_calloc_dma(np
->scriptz_sz
, "SCRIPTZ0");
5542 if (!np
->scripta0
|| !np
->scriptb0
|| !np
->scriptz0
)
5546 * Allocate the array of lists of CCBs hashed by DSA.
5548 np
->ccbh
= kcalloc(sizeof(struct sym_ccb
**), CCB_HASH_SIZE
, GFP_KERNEL
);
5553 * Initialyze the CCB free and busy queues.
5555 sym_que_init(&np
->free_ccbq
);
5556 sym_que_init(&np
->busy_ccbq
);
5557 sym_que_init(&np
->comp_ccbq
);
5560 * Initialization for optional handling
5561 * of device queueing.
5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 sym_que_init(&np
->dummy_ccbq
);
5567 * Allocate some CCB. We need at least ONE.
5569 if (!sym_alloc_ccb(np
))
5573 * Calculate BUS addresses where we are going
5574 * to load the SCRIPTS.
5576 np
->scripta_ba
= vtobus(np
->scripta0
);
5577 np
->scriptb_ba
= vtobus(np
->scriptb0
);
5578 np
->scriptz_ba
= vtobus(np
->scriptz0
);
5581 np
->scripta_ba
= np
->ram_ba
;
5582 if (np
->features
& FE_RAM8K
) {
5584 np
->scriptb_ba
= np
->scripta_ba
+ 4096;
5585 #if 0 /* May get useful for 64 BIT PCI addressing */
5586 np
->scr_ram_seg
= cpu_to_scr(np
->scripta_ba
>> 32);
5594 * Copy scripts to controller instance.
5596 memcpy(np
->scripta0
, fw
->a_base
, np
->scripta_sz
);
5597 memcpy(np
->scriptb0
, fw
->b_base
, np
->scriptb_sz
);
5598 memcpy(np
->scriptz0
, fw
->z_base
, np
->scriptz_sz
);
5601 * Setup variable parts in scripts and compute
5602 * scripts bus addresses used from the C code.
5604 np
->fw_setup(np
, fw
);
5607 * Bind SCRIPTS with physical addresses usable by the
5608 * SCRIPTS processor (as seen from the BUS = BUS addresses).
5610 sym_fw_bind_script(np
, (u32
*) np
->scripta0
, np
->scripta_sz
);
5611 sym_fw_bind_script(np
, (u32
*) np
->scriptb0
, np
->scriptb_sz
);
5612 sym_fw_bind_script(np
, (u32
*) np
->scriptz0
, np
->scriptz_sz
);
5614 #ifdef SYM_CONF_IARB_SUPPORT
5616 * If user wants IARB to be set when we win arbitration
5617 * and have other jobs, compute the max number of consecutive
5618 * settings of IARB hints before we leave devices a chance to
5619 * arbitrate for reselection.
5621 #ifdef SYM_SETUP_IARB_MAX
5622 np
->iarb_max
= SYM_SETUP_IARB_MAX
;
5629 * Prepare the idle and invalid task actions.
5631 np
->idletask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5632 np
->idletask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5633 np
->idletask_ba
= vtobus(&np
->idletask
);
5635 np
->notask
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5636 np
->notask
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5637 np
->notask_ba
= vtobus(&np
->notask
);
5639 np
->bad_itl
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5640 np
->bad_itl
.restart
= cpu_to_scr(SCRIPTB_BA(np
, bad_i_t_l
));
5641 np
->bad_itl_ba
= vtobus(&np
->bad_itl
);
5643 np
->bad_itlq
.start
= cpu_to_scr(SCRIPTA_BA(np
, idle
));
5644 np
->bad_itlq
.restart
= cpu_to_scr(SCRIPTB_BA(np
,bad_i_t_l_q
));
5645 np
->bad_itlq_ba
= vtobus(&np
->bad_itlq
);
5648 * Allocate and prepare the lun JUMP table that is used
5649 * for a target prior the probing of devices (bad lun table).
5650 * A private table will be allocated for the target on the
5651 * first INQUIRY response received.
5653 np
->badluntbl
= sym_calloc_dma(256, "BADLUNTBL");
5657 np
->badlun_sa
= cpu_to_scr(SCRIPTB_BA(np
, resel_bad_lun
));
5658 for (i
= 0 ; i
< 64 ; i
++) /* 64 luns/target, no less */
5659 np
->badluntbl
[i
] = cpu_to_scr(vtobus(&np
->badlun_sa
));
5662 * Prepare the bus address array that contains the bus
5663 * address of each target control block.
5664 * For now, assume all logical units are wrong. :)
5666 for (i
= 0 ; i
< SYM_CONF_MAX_TARGET
; i
++) {
5667 np
->targtbl
[i
] = cpu_to_scr(vtobus(&np
->target
[i
]));
5668 np
->target
[i
].head
.luntbl_sa
=
5669 cpu_to_scr(vtobus(np
->badluntbl
));
5670 np
->target
[i
].head
.lun0_sa
=
5671 cpu_to_scr(vtobus(&np
->badlun_sa
));
5675 * Now check the cache handling of the pci chipset.
5677 if (sym_snooptest (np
)) {
5678 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np
));
5683 * Sigh! we are done.
5692 * Free everything that has been allocated for this device.
5694 void sym_hcb_free(struct sym_hcb
*np
)
5702 sym_mfree_dma(np
->scriptz0
, np
->scriptz_sz
, "SCRIPTZ0");
5704 sym_mfree_dma(np
->scriptb0
, np
->scriptb_sz
, "SCRIPTB0");
5706 sym_mfree_dma(np
->scripta0
, np
->scripta_sz
, "SCRIPTA0");
5708 sym_mfree_dma(np
->squeue
, sizeof(u32
)*(MAX_QUEUE
*2), "SQUEUE");
5710 sym_mfree_dma(np
->dqueue
, sizeof(u32
)*(MAX_QUEUE
*2), "DQUEUE");
5713 while ((qp
= sym_remque_head(&np
->free_ccbq
)) != 0) {
5714 cp
= sym_que_entry(qp
, struct sym_ccb
, link_ccbq
);
5715 sym_mfree_dma(cp
, sizeof(*cp
), "CCB");
5721 sym_mfree_dma(np
->badluntbl
, 256,"BADLUNTBL");
5723 for (target
= 0; target
< SYM_CONF_MAX_TARGET
; target
++) {
5724 tp
= &np
->target
[target
];
5725 #if SYM_CONF_MAX_LUN > 1
5730 sym_mfree_dma(np
->targtbl
, 256, "TARGTBL");