2 * linux/arch/arm/mach-integrator/core.c
4 * Copyright (C) 2000-2003 Deep Blue Solutions Ltd
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2, as
8 * published by the Free Software Foundation.
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/device.h>
14 #include <linux/spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
19 #include <asm/hardware.h>
22 #include <asm/hardware/amba.h>
23 #include <asm/arch/cm.h>
24 #include <asm/system.h>
26 #include <asm/mach/time.h>
30 static struct amba_device rtc_device
= {
35 .start
= INTEGRATOR_RTC_BASE
,
36 .end
= INTEGRATOR_RTC_BASE
+ SZ_4K
- 1,
37 .flags
= IORESOURCE_MEM
,
39 .irq
= { IRQ_RTCINT
, NO_IRQ
},
40 .periphid
= 0x00041030,
43 static struct amba_device uart0_device
= {
48 .start
= INTEGRATOR_UART0_BASE
,
49 .end
= INTEGRATOR_UART0_BASE
+ SZ_4K
- 1,
50 .flags
= IORESOURCE_MEM
,
52 .irq
= { IRQ_UARTINT0
, NO_IRQ
},
53 .periphid
= 0x0041010,
56 static struct amba_device uart1_device
= {
61 .start
= INTEGRATOR_UART1_BASE
,
62 .end
= INTEGRATOR_UART1_BASE
+ SZ_4K
- 1,
63 .flags
= IORESOURCE_MEM
,
65 .irq
= { IRQ_UARTINT1
, NO_IRQ
},
66 .periphid
= 0x0041010,
69 static struct amba_device kmi0_device
= {
75 .end
= KMI0_BASE
+ SZ_4K
- 1,
76 .flags
= IORESOURCE_MEM
,
78 .irq
= { IRQ_KMIINT0
, NO_IRQ
},
79 .periphid
= 0x00041050,
82 static struct amba_device kmi1_device
= {
88 .end
= KMI1_BASE
+ SZ_4K
- 1,
89 .flags
= IORESOURCE_MEM
,
91 .irq
= { IRQ_KMIINT1
, NO_IRQ
},
92 .periphid
= 0x00041050,
95 static struct amba_device
*amba_devs
[] __initdata
= {
103 static int __init
integrator_init(void)
107 for (i
= 0; i
< ARRAY_SIZE(amba_devs
); i
++) {
108 struct amba_device
*d
= amba_devs
[i
];
109 amba_device_register(d
, &iomem_resource
);
115 arch_initcall(integrator_init
);
117 #define CM_CTRL IO_ADDRESS(INTEGRATOR_HDR_BASE) + INTEGRATOR_HDR_CTRL_OFFSET
119 static DEFINE_SPINLOCK(cm_lock
);
122 * cm_control - update the CM_CTRL register.
123 * @mask: bits to change
126 void cm_control(u32 mask
, u32 set
)
131 spin_lock_irqsave(&cm_lock
, flags
);
132 val
= readl(CM_CTRL
) & ~mask
;
133 writel(val
| set
, CM_CTRL
);
134 spin_unlock_irqrestore(&cm_lock
, flags
);
137 EXPORT_SYMBOL(cm_control
);
140 * Where is the timer (VA)?
142 #define TIMER0_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000000)
143 #define TIMER1_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000100)
144 #define TIMER2_VA_BASE (IO_ADDRESS(INTEGRATOR_CT_BASE)+0x00000200)
145 #define VA_IC_BASE IO_ADDRESS(INTEGRATOR_IC_BASE)
148 * How long is the timer interval?
150 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
151 #if TIMER_INTERVAL >= 0x100000
152 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
153 #elif TIMER_INTERVAL >= 0x10000
154 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
156 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
160 * What does it look like?
162 typedef struct TimerStruct
{
163 unsigned long TimerLoad
;
164 unsigned long TimerValue
;
165 unsigned long TimerControl
;
166 unsigned long TimerClear
;
169 static unsigned long timer_reload
;
172 * Returns number of ms since last clock interrupt. Note that interrupts
173 * will have been disabled by do_gettimeoffset()
175 unsigned long integrator_gettimeoffset(void)
177 volatile TimerStruct_t
*timer1
= (TimerStruct_t
*)TIMER1_VA_BASE
;
178 unsigned long ticks1
, ticks2
, status
;
181 * Get the current number of ticks. Note that there is a race
182 * condition between us reading the timer and checking for
183 * an interrupt. We get around this by ensuring that the
184 * counter has not reloaded between our two reads.
186 ticks2
= timer1
->TimerValue
& 0xffff;
189 status
= __raw_readl(VA_IC_BASE
+ IRQ_RAW_STATUS
);
190 ticks2
= timer1
->TimerValue
& 0xffff;
191 } while (ticks2
> ticks1
);
194 * Number of ticks since last interrupt.
196 ticks1
= timer_reload
- ticks2
;
199 * Interrupt pending? If so, we've reloaded once already.
201 if (status
& (1 << IRQ_TIMERINT1
))
202 ticks1
+= timer_reload
;
205 * Convert the ticks to usecs
207 return TICKS2USECS(ticks1
);
211 * IRQ handler for the timer
214 integrator_timer_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
216 volatile TimerStruct_t
*timer1
= (volatile TimerStruct_t
*)TIMER1_VA_BASE
;
218 write_seqlock(&xtime_lock
);
221 * clear the interrupt
223 timer1
->TimerClear
= 1;
226 * the clock tick routines are only processed on the
229 if (hard_smp_processor_id() == 0) {
238 * this is the ARM equivalent of the APIC timer interrupt
240 update_process_times(user_mode(regs
));
241 #endif /* CONFIG_SMP */
243 write_sequnlock(&xtime_lock
);
248 static struct irqaction integrator_timer_irq
= {
249 .name
= "Integrator Timer Tick",
250 .flags
= SA_INTERRUPT
,
251 .handler
= integrator_timer_interrupt
255 * Set up timer interrupt, and return the current time in seconds.
257 void __init
integrator_time_init(unsigned long reload
, unsigned int ctrl
)
259 volatile TimerStruct_t
*timer0
= (volatile TimerStruct_t
*)TIMER0_VA_BASE
;
260 volatile TimerStruct_t
*timer1
= (volatile TimerStruct_t
*)TIMER1_VA_BASE
;
261 volatile TimerStruct_t
*timer2
= (volatile TimerStruct_t
*)TIMER2_VA_BASE
;
262 unsigned int timer_ctrl
= 0x80 | 0x40; /* periodic */
264 timer_reload
= reload
;
267 if (timer_reload
> 0x100000) {
269 timer_ctrl
|= 0x08; /* /256 */
270 } else if (timer_reload
> 0x010000) {
272 timer_ctrl
|= 0x04; /* /16 */
276 * Initialise to a known state (all timers off)
278 timer0
->TimerControl
= 0;
279 timer1
->TimerControl
= 0;
280 timer2
->TimerControl
= 0;
282 timer1
->TimerLoad
= timer_reload
;
283 timer1
->TimerValue
= timer_reload
;
284 timer1
->TimerControl
= timer_ctrl
;
287 * Make irqs happen for the system timer
289 setup_irq(IRQ_TIMERINT1
, &integrator_timer_irq
);