[NET]: Add netlink connector.
[linux-2.6/verdex.git] / drivers / macintosh / therm_pm72.c
blob703e3197331471dada2210e3c2ff9ddd471e2278
1 /*
2 * Device driver for the thermostats & fan controller of the
3 * Apple G5 "PowerMac7,2" desktop machines.
5 * (c) Copyright IBM Corp. 2003-2004
7 * Maintained by: Benjamin Herrenschmidt
8 * <benh@kernel.crashing.org>
9 *
11 * The algorithm used is the PID control algorithm, used the same
12 * way the published Darwin code does, using the same values that
13 * are present in the Darwin 7.0 snapshot property lists.
15 * As far as the CPUs control loops are concerned, I use the
16 * calibration & PID constants provided by the EEPROM,
17 * I do _not_ embed any value from the property lists, as the ones
18 * provided by Darwin 7.0 seem to always have an older version that
19 * what I've seen on the actual computers.
20 * It would be interesting to verify that though. Darwin has a
21 * version code of 1.0.0d11 for all control loops it seems, while
22 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
24 * Darwin doesn't provide source to all parts, some missing
25 * bits like the AppleFCU driver or the actual scale of some
26 * of the values returned by sensors had to be "guessed" some
27 * way... or based on what Open Firmware does.
29 * I didn't yet figure out how to get the slots power consumption
30 * out of the FCU, so that part has not been implemented yet and
31 * the slots fan is set to a fixed 50% PWM, hoping this value is
32 * safe enough ...
34 * Note: I have observed strange oscillations of the CPU control
35 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
36 * oscillates slowly (over several minutes) between the minimum
37 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
38 * this, it could be some incorrect constant or an error in the
39 * way I ported the algorithm, or it could be just normal. I
40 * don't have full understanding on the way Apple tweaked the PID
41 * algorithm for the CPU control, it is definitely not a standard
42 * implementation...
44 * TODO: - Check MPU structure version/signature
45 * - Add things like /sbin/overtemp for non-critical
46 * overtemp conditions so userland can take some policy
47 * decisions, like slewing down CPUs
48 * - Deal with fan and i2c failures in a better way
49 * - Maybe do a generic PID based on params used for
50 * U3 and Drives ? Definitely need to factor code a bit
51 * bettter... also make sensor detection more robust using
52 * the device-tree to probe for them
53 * - Figure out how to get the slots consumption and set the
54 * slots fan accordingly
56 * History:
58 * Nov. 13, 2003 : 0.5
59 * - First release
61 * Nov. 14, 2003 : 0.6
62 * - Read fan speed from FCU, low level fan routines now deal
63 * with errors & check fan status, though higher level don't
64 * do much.
65 * - Move a bunch of definitions to .h file
67 * Nov. 18, 2003 : 0.7
68 * - Fix build on ppc64 kernel
69 * - Move back statics definitions to .c file
70 * - Avoid calling schedule_timeout with a negative number
72 * Dec. 18, 2003 : 0.8
73 * - Fix typo when reading back fan speed on 2 CPU machines
75 * Mar. 11, 2004 : 0.9
76 * - Rework code accessing the ADC chips, make it more robust and
77 * closer to the chip spec. Also make sure it is configured properly,
78 * I've seen yet unexplained cases where on startup, I would have stale
79 * values in the configuration register
80 * - Switch back to use of target fan speed for PID, thus lowering
81 * pressure on i2c
83 * Oct. 20, 2004 : 1.1
84 * - Add device-tree lookup for fan IDs, should detect liquid cooling
85 * pumps when present
86 * - Enable driver for PowerMac7,3 machines
87 * - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
88 * - Add new CPU cooling algorithm for machines with liquid cooling
89 * - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
90 * - Fix a signed/unsigned compare issue in some PID loops
92 * Mar. 10, 2005 : 1.2
93 * - Add basic support for Xserve G5
94 * - Retreive pumps min/max from EEPROM image in device-tree (broken)
95 * - Use min/max macros here or there
96 * - Latest darwin updated U3H min fan speed to 20% PWM
100 #include <linux/config.h>
101 #include <linux/types.h>
102 #include <linux/module.h>
103 #include <linux/errno.h>
104 #include <linux/kernel.h>
105 #include <linux/delay.h>
106 #include <linux/sched.h>
107 #include <linux/i2c.h>
108 #include <linux/slab.h>
109 #include <linux/init.h>
110 #include <linux/spinlock.h>
111 #include <linux/smp_lock.h>
112 #include <linux/wait.h>
113 #include <linux/reboot.h>
114 #include <linux/kmod.h>
115 #include <linux/i2c.h>
116 #include <linux/i2c-dev.h>
117 #include <asm/prom.h>
118 #include <asm/machdep.h>
119 #include <asm/io.h>
120 #include <asm/system.h>
121 #include <asm/sections.h>
122 #include <asm/of_device.h>
123 #include <asm/macio.h>
125 #include "therm_pm72.h"
127 #define VERSION "1.2b2"
129 #undef DEBUG
131 #ifdef DEBUG
132 #define DBG(args...) printk(args)
133 #else
134 #define DBG(args...) do { } while(0)
135 #endif
139 * Driver statics
142 static struct of_device * of_dev;
143 static struct i2c_adapter * u3_0;
144 static struct i2c_adapter * u3_1;
145 static struct i2c_adapter * k2;
146 static struct i2c_client * fcu;
147 static struct cpu_pid_state cpu_state[2];
148 static struct basckside_pid_params backside_params;
149 static struct backside_pid_state backside_state;
150 static struct drives_pid_state drives_state;
151 static struct dimm_pid_state dimms_state;
152 static int state;
153 static int cpu_count;
154 static int cpu_pid_type;
155 static pid_t ctrl_task;
156 static struct completion ctrl_complete;
157 static int critical_state;
158 static int rackmac;
159 static s32 dimm_output_clamp;
161 static DECLARE_MUTEX(driver_lock);
164 * We have 3 types of CPU PID control. One is "split" old style control
165 * for intake & exhaust fans, the other is "combined" control for both
166 * CPUs that also deals with the pumps when present. To be "compatible"
167 * with OS X at this point, we only use "COMBINED" on the machines that
168 * are identified as having the pumps (though that identification is at
169 * least dodgy). Ultimately, we could probably switch completely to this
170 * algorithm provided we hack it to deal with the UP case
172 #define CPU_PID_TYPE_SPLIT 0
173 #define CPU_PID_TYPE_COMBINED 1
174 #define CPU_PID_TYPE_RACKMAC 2
177 * This table describes all fans in the FCU. The "id" and "type" values
178 * are defaults valid for all earlier machines. Newer machines will
179 * eventually override the table content based on the device-tree
181 struct fcu_fan_table
183 char* loc; /* location code */
184 int type; /* 0 = rpm, 1 = pwm, 2 = pump */
185 int id; /* id or -1 */
188 #define FCU_FAN_RPM 0
189 #define FCU_FAN_PWM 1
191 #define FCU_FAN_ABSENT_ID -1
193 #define FCU_FAN_COUNT ARRAY_SIZE(fcu_fans)
195 struct fcu_fan_table fcu_fans[] = {
196 [BACKSIDE_FAN_PWM_INDEX] = {
197 .loc = "BACKSIDE,SYS CTRLR FAN",
198 .type = FCU_FAN_PWM,
199 .id = BACKSIDE_FAN_PWM_DEFAULT_ID,
201 [DRIVES_FAN_RPM_INDEX] = {
202 .loc = "DRIVE BAY",
203 .type = FCU_FAN_RPM,
204 .id = DRIVES_FAN_RPM_DEFAULT_ID,
206 [SLOTS_FAN_PWM_INDEX] = {
207 .loc = "SLOT,PCI FAN",
208 .type = FCU_FAN_PWM,
209 .id = SLOTS_FAN_PWM_DEFAULT_ID,
211 [CPUA_INTAKE_FAN_RPM_INDEX] = {
212 .loc = "CPU A INTAKE",
213 .type = FCU_FAN_RPM,
214 .id = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
216 [CPUA_EXHAUST_FAN_RPM_INDEX] = {
217 .loc = "CPU A EXHAUST",
218 .type = FCU_FAN_RPM,
219 .id = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
221 [CPUB_INTAKE_FAN_RPM_INDEX] = {
222 .loc = "CPU B INTAKE",
223 .type = FCU_FAN_RPM,
224 .id = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
226 [CPUB_EXHAUST_FAN_RPM_INDEX] = {
227 .loc = "CPU B EXHAUST",
228 .type = FCU_FAN_RPM,
229 .id = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
231 /* pumps aren't present by default, have to be looked up in the
232 * device-tree
234 [CPUA_PUMP_RPM_INDEX] = {
235 .loc = "CPU A PUMP",
236 .type = FCU_FAN_RPM,
237 .id = FCU_FAN_ABSENT_ID,
239 [CPUB_PUMP_RPM_INDEX] = {
240 .loc = "CPU B PUMP",
241 .type = FCU_FAN_RPM,
242 .id = FCU_FAN_ABSENT_ID,
244 /* Xserve fans */
245 [CPU_A1_FAN_RPM_INDEX] = {
246 .loc = "CPU A 1",
247 .type = FCU_FAN_RPM,
248 .id = FCU_FAN_ABSENT_ID,
250 [CPU_A2_FAN_RPM_INDEX] = {
251 .loc = "CPU A 2",
252 .type = FCU_FAN_RPM,
253 .id = FCU_FAN_ABSENT_ID,
255 [CPU_A3_FAN_RPM_INDEX] = {
256 .loc = "CPU A 3",
257 .type = FCU_FAN_RPM,
258 .id = FCU_FAN_ABSENT_ID,
260 [CPU_B1_FAN_RPM_INDEX] = {
261 .loc = "CPU B 1",
262 .type = FCU_FAN_RPM,
263 .id = FCU_FAN_ABSENT_ID,
265 [CPU_B2_FAN_RPM_INDEX] = {
266 .loc = "CPU B 2",
267 .type = FCU_FAN_RPM,
268 .id = FCU_FAN_ABSENT_ID,
270 [CPU_B3_FAN_RPM_INDEX] = {
271 .loc = "CPU B 3",
272 .type = FCU_FAN_RPM,
273 .id = FCU_FAN_ABSENT_ID,
278 * i2c_driver structure to attach to the host i2c controller
281 static int therm_pm72_attach(struct i2c_adapter *adapter);
282 static int therm_pm72_detach(struct i2c_adapter *adapter);
284 static struct i2c_driver therm_pm72_driver =
286 .owner = THIS_MODULE,
287 .name = "therm_pm72",
288 .flags = I2C_DF_NOTIFY,
289 .attach_adapter = therm_pm72_attach,
290 .detach_adapter = therm_pm72_detach,
294 * Utility function to create an i2c_client structure and
295 * attach it to one of u3 adapters
297 static struct i2c_client *attach_i2c_chip(int id, const char *name)
299 struct i2c_client *clt;
300 struct i2c_adapter *adap;
302 if (id & 0x200)
303 adap = k2;
304 else if (id & 0x100)
305 adap = u3_1;
306 else
307 adap = u3_0;
308 if (adap == NULL)
309 return NULL;
311 clt = kmalloc(sizeof(struct i2c_client), GFP_KERNEL);
312 if (clt == NULL)
313 return NULL;
314 memset(clt, 0, sizeof(struct i2c_client));
316 clt->addr = (id >> 1) & 0x7f;
317 clt->adapter = adap;
318 clt->driver = &therm_pm72_driver;
319 strncpy(clt->name, name, I2C_NAME_SIZE-1);
321 if (i2c_attach_client(clt)) {
322 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
323 kfree(clt);
324 return NULL;
326 return clt;
330 * Utility function to get rid of the i2c_client structure
331 * (will also detach from the adapter hopepfully)
333 static void detach_i2c_chip(struct i2c_client *clt)
335 i2c_detach_client(clt);
336 kfree(clt);
340 * Here are the i2c chip access wrappers
343 static void initialize_adc(struct cpu_pid_state *state)
345 int rc;
346 u8 buf[2];
348 /* Read ADC the configuration register and cache it. We
349 * also make sure Config2 contains proper values, I've seen
350 * cases where we got stale grabage in there, thus preventing
351 * proper reading of conv. values
354 /* Clear Config2 */
355 buf[0] = 5;
356 buf[1] = 0;
357 i2c_master_send(state->monitor, buf, 2);
359 /* Read & cache Config1 */
360 buf[0] = 1;
361 rc = i2c_master_send(state->monitor, buf, 1);
362 if (rc > 0) {
363 rc = i2c_master_recv(state->monitor, buf, 1);
364 if (rc > 0) {
365 state->adc_config = buf[0];
366 DBG("ADC config reg: %02x\n", state->adc_config);
367 /* Disable shutdown mode */
368 state->adc_config &= 0xfe;
369 buf[0] = 1;
370 buf[1] = state->adc_config;
371 rc = i2c_master_send(state->monitor, buf, 2);
374 if (rc <= 0)
375 printk(KERN_ERR "therm_pm72: Error reading ADC config"
376 " register !\n");
379 static int read_smon_adc(struct cpu_pid_state *state, int chan)
381 int rc, data, tries = 0;
382 u8 buf[2];
384 for (;;) {
385 /* Set channel */
386 buf[0] = 1;
387 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
388 rc = i2c_master_send(state->monitor, buf, 2);
389 if (rc <= 0)
390 goto error;
391 /* Wait for convertion */
392 msleep(1);
393 /* Switch to data register */
394 buf[0] = 4;
395 rc = i2c_master_send(state->monitor, buf, 1);
396 if (rc <= 0)
397 goto error;
398 /* Read result */
399 rc = i2c_master_recv(state->monitor, buf, 2);
400 if (rc < 0)
401 goto error;
402 data = ((u16)buf[0]) << 8 | (u16)buf[1];
403 return data >> 6;
404 error:
405 DBG("Error reading ADC, retrying...\n");
406 if (++tries > 10) {
407 printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
408 return -1;
410 msleep(10);
414 static int read_lm87_reg(struct i2c_client * chip, int reg)
416 int rc, tries = 0;
417 u8 buf;
419 for (;;) {
420 /* Set address */
421 buf = (u8)reg;
422 rc = i2c_master_send(chip, &buf, 1);
423 if (rc <= 0)
424 goto error;
425 rc = i2c_master_recv(chip, &buf, 1);
426 if (rc <= 0)
427 goto error;
428 return (int)buf;
429 error:
430 DBG("Error reading LM87, retrying...\n");
431 if (++tries > 10) {
432 printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
433 return -1;
435 msleep(10);
439 static int fan_read_reg(int reg, unsigned char *buf, int nb)
441 int tries, nr, nw;
443 buf[0] = reg;
444 tries = 0;
445 for (;;) {
446 nw = i2c_master_send(fcu, buf, 1);
447 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
448 break;
449 msleep(10);
450 ++tries;
452 if (nw <= 0) {
453 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
454 return -EIO;
456 tries = 0;
457 for (;;) {
458 nr = i2c_master_recv(fcu, buf, nb);
459 if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
460 break;
461 msleep(10);
462 ++tries;
464 if (nr <= 0)
465 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
466 return nr;
469 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
471 int tries, nw;
472 unsigned char buf[16];
474 buf[0] = reg;
475 memcpy(buf+1, ptr, nb);
476 ++nb;
477 tries = 0;
478 for (;;) {
479 nw = i2c_master_send(fcu, buf, nb);
480 if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
481 break;
482 msleep(10);
483 ++tries;
485 if (nw < 0)
486 printk(KERN_ERR "Failure writing to FCU: %d", nw);
487 return nw;
490 static int start_fcu(void)
492 unsigned char buf = 0xff;
493 int rc;
495 rc = fan_write_reg(0xe, &buf, 1);
496 if (rc < 0)
497 return -EIO;
498 rc = fan_write_reg(0x2e, &buf, 1);
499 if (rc < 0)
500 return -EIO;
501 return 0;
504 static int set_rpm_fan(int fan_index, int rpm)
506 unsigned char buf[2];
507 int rc, id;
509 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
510 return -EINVAL;
511 id = fcu_fans[fan_index].id;
512 if (id == FCU_FAN_ABSENT_ID)
513 return -EINVAL;
515 if (rpm < 300)
516 rpm = 300;
517 else if (rpm > 8191)
518 rpm = 8191;
519 buf[0] = rpm >> 5;
520 buf[1] = rpm << 3;
521 rc = fan_write_reg(0x10 + (id * 2), buf, 2);
522 if (rc < 0)
523 return -EIO;
524 return 0;
527 static int get_rpm_fan(int fan_index, int programmed)
529 unsigned char failure;
530 unsigned char active;
531 unsigned char buf[2];
532 int rc, id, reg_base;
534 if (fcu_fans[fan_index].type != FCU_FAN_RPM)
535 return -EINVAL;
536 id = fcu_fans[fan_index].id;
537 if (id == FCU_FAN_ABSENT_ID)
538 return -EINVAL;
540 rc = fan_read_reg(0xb, &failure, 1);
541 if (rc != 1)
542 return -EIO;
543 if ((failure & (1 << id)) != 0)
544 return -EFAULT;
545 rc = fan_read_reg(0xd, &active, 1);
546 if (rc != 1)
547 return -EIO;
548 if ((active & (1 << id)) == 0)
549 return -ENXIO;
551 /* Programmed value or real current speed */
552 reg_base = programmed ? 0x10 : 0x11;
553 rc = fan_read_reg(reg_base + (id * 2), buf, 2);
554 if (rc != 2)
555 return -EIO;
557 return (buf[0] << 5) | buf[1] >> 3;
560 static int set_pwm_fan(int fan_index, int pwm)
562 unsigned char buf[2];
563 int rc, id;
565 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
566 return -EINVAL;
567 id = fcu_fans[fan_index].id;
568 if (id == FCU_FAN_ABSENT_ID)
569 return -EINVAL;
571 if (pwm < 10)
572 pwm = 10;
573 else if (pwm > 100)
574 pwm = 100;
575 pwm = (pwm * 2559) / 1000;
576 buf[0] = pwm;
577 rc = fan_write_reg(0x30 + (id * 2), buf, 1);
578 if (rc < 0)
579 return rc;
580 return 0;
583 static int get_pwm_fan(int fan_index)
585 unsigned char failure;
586 unsigned char active;
587 unsigned char buf[2];
588 int rc, id;
590 if (fcu_fans[fan_index].type != FCU_FAN_PWM)
591 return -EINVAL;
592 id = fcu_fans[fan_index].id;
593 if (id == FCU_FAN_ABSENT_ID)
594 return -EINVAL;
596 rc = fan_read_reg(0x2b, &failure, 1);
597 if (rc != 1)
598 return -EIO;
599 if ((failure & (1 << id)) != 0)
600 return -EFAULT;
601 rc = fan_read_reg(0x2d, &active, 1);
602 if (rc != 1)
603 return -EIO;
604 if ((active & (1 << id)) == 0)
605 return -ENXIO;
607 /* Programmed value or real current speed */
608 rc = fan_read_reg(0x30 + (id * 2), buf, 1);
609 if (rc != 1)
610 return -EIO;
612 return (buf[0] * 1000) / 2559;
616 * Utility routine to read the CPU calibration EEPROM data
617 * from the device-tree
619 static int read_eeprom(int cpu, struct mpu_data *out)
621 struct device_node *np;
622 char nodename[64];
623 u8 *data;
624 int len;
626 /* prom.c routine for finding a node by path is a bit brain dead
627 * and requires exact @xxx unit numbers. This is a bit ugly but
628 * will work for these machines
630 sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
631 np = of_find_node_by_path(nodename);
632 if (np == NULL) {
633 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid node from device-tree\n");
634 return -ENODEV;
636 data = (u8 *)get_property(np, "cpuid", &len);
637 if (data == NULL) {
638 printk(KERN_ERR "therm_pm72: Failed to retreive cpuid property from device-tree\n");
639 of_node_put(np);
640 return -ENODEV;
642 memcpy(out, data, sizeof(struct mpu_data));
643 of_node_put(np);
645 return 0;
648 static void fetch_cpu_pumps_minmax(void)
650 struct cpu_pid_state *state0 = &cpu_state[0];
651 struct cpu_pid_state *state1 = &cpu_state[1];
652 u16 pump_min = 0, pump_max = 0xffff;
653 u16 tmp[4];
655 /* Try to fetch pumps min/max infos from eeprom */
657 memcpy(&tmp, &state0->mpu.processor_part_num, 8);
658 if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
659 pump_min = max(pump_min, tmp[0]);
660 pump_max = min(pump_max, tmp[1]);
662 if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
663 pump_min = max(pump_min, tmp[2]);
664 pump_max = min(pump_max, tmp[3]);
667 /* Double check the values, this _IS_ needed as the EEPROM on
668 * some dual 2.5Ghz G5s seem, at least, to have both min & max
669 * same to the same value ... (grrrr)
671 if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
672 pump_min = CPU_PUMP_OUTPUT_MIN;
673 pump_max = CPU_PUMP_OUTPUT_MAX;
676 state0->pump_min = state1->pump_min = pump_min;
677 state0->pump_max = state1->pump_max = pump_max;
681 * Now, unfortunately, sysfs doesn't give us a nice void * we could
682 * pass around to the attribute functions, so we don't really have
683 * choice but implement a bunch of them...
685 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
686 * the input twice... I accept patches :)
688 #define BUILD_SHOW_FUNC_FIX(name, data) \
689 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
691 ssize_t r; \
692 down(&driver_lock); \
693 r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data)); \
694 up(&driver_lock); \
695 return r; \
697 #define BUILD_SHOW_FUNC_INT(name, data) \
698 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf) \
700 return sprintf(buf, "%d", data); \
703 BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
704 BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
705 BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
706 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
707 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
709 BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
710 BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
711 BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
712 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
713 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
715 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
716 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
718 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
719 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
721 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
723 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
724 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
725 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
726 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
727 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
729 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
730 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
731 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
732 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
733 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
735 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
736 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
738 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
739 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
741 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
744 * CPUs fans control loop
747 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
749 s32 ltemp, volts, amps;
750 int index, rc = 0;
752 /* Default (in case of error) */
753 *temp = state->cur_temp;
754 *power = state->cur_power;
756 if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
757 index = (state->index == 0) ?
758 CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
759 else
760 index = (state->index == 0) ?
761 CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
763 /* Read current fan status */
764 rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
765 if (rc < 0) {
766 /* XXX What do we do now ? Nothing for now, keep old value, but
767 * return error upstream
769 DBG(" cpu %d, fan reading error !\n", state->index);
770 } else {
771 state->rpm = rc;
772 DBG(" cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
775 /* Get some sensor readings and scale it */
776 ltemp = read_smon_adc(state, 1);
777 if (ltemp == -1) {
778 /* XXX What do we do now ? */
779 state->overtemp++;
780 if (rc == 0)
781 rc = -EIO;
782 DBG(" cpu %d, temp reading error !\n", state->index);
783 } else {
784 /* Fixup temperature according to diode calibration
786 DBG(" cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
787 state->index,
788 ltemp, state->mpu.mdiode, state->mpu.bdiode);
789 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
790 state->last_temp = *temp;
791 DBG(" temp: %d.%03d\n", FIX32TOPRINT((*temp)));
795 * Read voltage & current and calculate power
797 volts = read_smon_adc(state, 3);
798 amps = read_smon_adc(state, 4);
800 /* Scale voltage and current raw sensor values according to fixed scales
801 * obtained in Darwin and calculate power from I and V
803 volts *= ADC_CPU_VOLTAGE_SCALE;
804 amps *= ADC_CPU_CURRENT_SCALE;
805 *power = (((u64)volts) * ((u64)amps)) >> 16;
806 state->voltage = volts;
807 state->current_a = amps;
808 state->last_power = *power;
810 DBG(" cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
811 state->index, FIX32TOPRINT(state->current_a),
812 FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
814 return 0;
817 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
819 s32 power_target, integral, derivative, proportional, adj_in_target, sval;
820 s64 integ_p, deriv_p, prop_p, sum;
821 int i;
823 /* Calculate power target value (could be done once for all)
824 * and convert to a 16.16 fp number
826 power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
827 DBG(" power target: %d.%03d, error: %d.%03d\n",
828 FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
830 /* Store temperature and power in history array */
831 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
832 state->temp_history[state->cur_temp] = temp;
833 state->cur_power = (state->cur_power + 1) % state->count_power;
834 state->power_history[state->cur_power] = power;
835 state->error_history[state->cur_power] = power_target - power;
837 /* If first loop, fill the history table */
838 if (state->first) {
839 for (i = 0; i < (state->count_power - 1); i++) {
840 state->cur_power = (state->cur_power + 1) % state->count_power;
841 state->power_history[state->cur_power] = power;
842 state->error_history[state->cur_power] = power_target - power;
844 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
845 state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
846 state->temp_history[state->cur_temp] = temp;
848 state->first = 0;
851 /* Calculate the integral term normally based on the "power" values */
852 sum = 0;
853 integral = 0;
854 for (i = 0; i < state->count_power; i++)
855 integral += state->error_history[i];
856 integral *= CPU_PID_INTERVAL;
857 DBG(" integral: %08x\n", integral);
859 /* Calculate the adjusted input (sense value).
860 * G_r is 12.20
861 * integ is 16.16
862 * so the result is 28.36
864 * input target is mpu.ttarget, input max is mpu.tmax
866 integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
867 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
868 sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
869 adj_in_target = (state->mpu.ttarget << 16);
870 if (adj_in_target > sval)
871 adj_in_target = sval;
872 DBG(" adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
873 state->mpu.ttarget);
875 /* Calculate the derivative term */
876 derivative = state->temp_history[state->cur_temp] -
877 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
878 % CPU_TEMP_HISTORY_SIZE];
879 derivative /= CPU_PID_INTERVAL;
880 deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
881 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
882 sum += deriv_p;
884 /* Calculate the proportional term */
885 proportional = temp - adj_in_target;
886 prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
887 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
888 sum += prop_p;
890 /* Scale sum */
891 sum >>= 36;
893 DBG(" sum: %d\n", (int)sum);
894 state->rpm += (s32)sum;
897 static void do_monitor_cpu_combined(void)
899 struct cpu_pid_state *state0 = &cpu_state[0];
900 struct cpu_pid_state *state1 = &cpu_state[1];
901 s32 temp0, power0, temp1, power1;
902 s32 temp_combi, power_combi;
903 int rc, intake, pump;
905 rc = do_read_one_cpu_values(state0, &temp0, &power0);
906 if (rc < 0) {
907 /* XXX What do we do now ? */
909 state1->overtemp = 0;
910 rc = do_read_one_cpu_values(state1, &temp1, &power1);
911 if (rc < 0) {
912 /* XXX What do we do now ? */
914 if (state1->overtemp)
915 state0->overtemp++;
917 temp_combi = max(temp0, temp1);
918 power_combi = max(power0, power1);
920 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
921 * full blown immediately and try to trigger a shutdown
923 if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
924 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
925 temp_combi >> 16);
926 state0->overtemp = CPU_MAX_OVERTEMP;
927 } else if (temp_combi > (state0->mpu.tmax << 16))
928 state0->overtemp++;
929 else
930 state0->overtemp = 0;
931 if (state0->overtemp >= CPU_MAX_OVERTEMP)
932 critical_state = 1;
933 if (state0->overtemp > 0) {
934 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
935 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
936 pump = state0->pump_min;
937 goto do_set_fans;
940 /* Do the PID */
941 do_cpu_pid(state0, temp_combi, power_combi);
943 /* Range check */
944 state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
945 state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
947 /* Calculate intake fan speed */
948 intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
949 intake = max(intake, (int)state0->mpu.rminn_intake_fan);
950 intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
951 state0->intake_rpm = intake;
953 /* Calculate pump speed */
954 pump = (state0->rpm * state0->pump_max) /
955 state0->mpu.rmaxn_exhaust_fan;
956 pump = min(pump, state0->pump_max);
957 pump = max(pump, state0->pump_min);
959 do_set_fans:
960 /* We copy values from state 0 to state 1 for /sysfs */
961 state1->rpm = state0->rpm;
962 state1->intake_rpm = state0->intake_rpm;
964 DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
965 state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
967 /* We should check for errors, shouldn't we ? But then, what
968 * do we do once the error occurs ? For FCU notified fan
969 * failures (-EFAULT) we probably want to notify userland
970 * some way...
972 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
973 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
974 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
975 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
977 if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
978 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
979 if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
980 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
983 static void do_monitor_cpu_split(struct cpu_pid_state *state)
985 s32 temp, power;
986 int rc, intake;
988 /* Read current fan status */
989 rc = do_read_one_cpu_values(state, &temp, &power);
990 if (rc < 0) {
991 /* XXX What do we do now ? */
994 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
995 * full blown immediately and try to trigger a shutdown
997 if (temp >= ((state->mpu.tmax + 8) << 16)) {
998 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
999 " (%d) !\n",
1000 state->index, temp >> 16);
1001 state->overtemp = CPU_MAX_OVERTEMP;
1002 } else if (temp > (state->mpu.tmax << 16))
1003 state->overtemp++;
1004 else
1005 state->overtemp = 0;
1006 if (state->overtemp >= CPU_MAX_OVERTEMP)
1007 critical_state = 1;
1008 if (state->overtemp > 0) {
1009 state->rpm = state->mpu.rmaxn_exhaust_fan;
1010 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1011 goto do_set_fans;
1014 /* Do the PID */
1015 do_cpu_pid(state, temp, power);
1017 /* Range check */
1018 state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1019 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1021 /* Calculate intake fan */
1022 intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1023 intake = max(intake, (int)state->mpu.rminn_intake_fan);
1024 intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1025 state->intake_rpm = intake;
1027 do_set_fans:
1028 DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1029 state->index, (int)state->rpm, intake, state->overtemp);
1031 /* We should check for errors, shouldn't we ? But then, what
1032 * do we do once the error occurs ? For FCU notified fan
1033 * failures (-EFAULT) we probably want to notify userland
1034 * some way...
1036 if (state->index == 0) {
1037 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1038 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1039 } else {
1040 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1041 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1045 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1047 s32 temp, power, fan_min;
1048 int rc;
1050 /* Read current fan status */
1051 rc = do_read_one_cpu_values(state, &temp, &power);
1052 if (rc < 0) {
1053 /* XXX What do we do now ? */
1056 /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1057 * full blown immediately and try to trigger a shutdown
1059 if (temp >= ((state->mpu.tmax + 8) << 16)) {
1060 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1061 " (%d) !\n",
1062 state->index, temp >> 16);
1063 state->overtemp = CPU_MAX_OVERTEMP;
1064 } else if (temp > (state->mpu.tmax << 16))
1065 state->overtemp++;
1066 else
1067 state->overtemp = 0;
1068 if (state->overtemp >= CPU_MAX_OVERTEMP)
1069 critical_state = 1;
1070 if (state->overtemp > 0) {
1071 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1072 goto do_set_fans;
1075 /* Do the PID */
1076 do_cpu_pid(state, temp, power);
1078 /* Check clamp from dimms */
1079 fan_min = dimm_output_clamp;
1080 fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1082 state->rpm = max(state->rpm, (int)fan_min);
1083 state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1084 state->intake_rpm = state->rpm;
1086 do_set_fans:
1087 DBG("** CPU %d RPM: %d overtemp: %d\n",
1088 state->index, (int)state->rpm, state->overtemp);
1090 /* We should check for errors, shouldn't we ? But then, what
1091 * do we do once the error occurs ? For FCU notified fan
1092 * failures (-EFAULT) we probably want to notify userland
1093 * some way...
1095 if (state->index == 0) {
1096 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1097 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1098 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1099 } else {
1100 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1101 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1102 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1107 * Initialize the state structure for one CPU control loop
1109 static int init_cpu_state(struct cpu_pid_state *state, int index)
1111 state->index = index;
1112 state->first = 1;
1113 state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1114 state->overtemp = 0;
1115 state->adc_config = 0x00;
1118 if (index == 0)
1119 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1120 else if (index == 1)
1121 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1122 if (state->monitor == NULL)
1123 goto fail;
1125 if (read_eeprom(index, &state->mpu))
1126 goto fail;
1128 state->count_power = state->mpu.tguardband;
1129 if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1130 printk(KERN_WARNING "Warning ! too many power history slots\n");
1131 state->count_power = CPU_POWER_HISTORY_SIZE;
1133 DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1135 if (index == 0) {
1136 device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1137 device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1138 device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1139 device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1140 device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1141 } else {
1142 device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1143 device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1144 device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1145 device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1146 device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1149 return 0;
1150 fail:
1151 if (state->monitor)
1152 detach_i2c_chip(state->monitor);
1153 state->monitor = NULL;
1155 return -ENODEV;
1159 * Dispose of the state data for one CPU control loop
1161 static void dispose_cpu_state(struct cpu_pid_state *state)
1163 if (state->monitor == NULL)
1164 return;
1166 if (state->index == 0) {
1167 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1168 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1169 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1170 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1171 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1172 } else {
1173 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1174 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1175 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1176 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1177 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1180 detach_i2c_chip(state->monitor);
1181 state->monitor = NULL;
1185 * Motherboard backside & U3 heatsink fan control loop
1187 static void do_monitor_backside(struct backside_pid_state *state)
1189 s32 temp, integral, derivative, fan_min;
1190 s64 integ_p, deriv_p, prop_p, sum;
1191 int i, rc;
1193 if (--state->ticks != 0)
1194 return;
1195 state->ticks = backside_params.interval;
1197 DBG("backside:\n");
1199 /* Check fan status */
1200 rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1201 if (rc < 0) {
1202 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1203 /* XXX What do we do now ? */
1204 } else
1205 state->pwm = rc;
1206 DBG(" current pwm: %d\n", state->pwm);
1208 /* Get some sensor readings */
1209 temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1210 state->last_temp = temp;
1211 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1212 FIX32TOPRINT(backside_params.input_target));
1214 /* Store temperature and error in history array */
1215 state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1216 state->sample_history[state->cur_sample] = temp;
1217 state->error_history[state->cur_sample] = temp - backside_params.input_target;
1219 /* If first loop, fill the history table */
1220 if (state->first) {
1221 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1222 state->cur_sample = (state->cur_sample + 1) %
1223 BACKSIDE_PID_HISTORY_SIZE;
1224 state->sample_history[state->cur_sample] = temp;
1225 state->error_history[state->cur_sample] =
1226 temp - backside_params.input_target;
1228 state->first = 0;
1231 /* Calculate the integral term */
1232 sum = 0;
1233 integral = 0;
1234 for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1235 integral += state->error_history[i];
1236 integral *= backside_params.interval;
1237 DBG(" integral: %08x\n", integral);
1238 integ_p = ((s64)backside_params.G_r) * (s64)integral;
1239 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1240 sum += integ_p;
1242 /* Calculate the derivative term */
1243 derivative = state->error_history[state->cur_sample] -
1244 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1245 % BACKSIDE_PID_HISTORY_SIZE];
1246 derivative /= backside_params.interval;
1247 deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1248 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1249 sum += deriv_p;
1251 /* Calculate the proportional term */
1252 prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1253 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1254 sum += prop_p;
1256 /* Scale sum */
1257 sum >>= 36;
1259 DBG(" sum: %d\n", (int)sum);
1260 if (backside_params.additive)
1261 state->pwm += (s32)sum;
1262 else
1263 state->pwm = sum;
1265 /* Check for clamp */
1266 fan_min = (dimm_output_clamp * 100) / 14000;
1267 fan_min = max(fan_min, backside_params.output_min);
1269 state->pwm = max(state->pwm, fan_min);
1270 state->pwm = min(state->pwm, backside_params.output_max);
1272 DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1273 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1277 * Initialize the state structure for the backside fan control loop
1279 static int init_backside_state(struct backside_pid_state *state)
1281 struct device_node *u3;
1282 int u3h = 1; /* conservative by default */
1285 * There are different PID params for machines with U3 and machines
1286 * with U3H, pick the right ones now
1288 u3 = of_find_node_by_path("/u3@0,f8000000");
1289 if (u3 != NULL) {
1290 u32 *vers = (u32 *)get_property(u3, "device-rev", NULL);
1291 if (vers)
1292 if (((*vers) & 0x3f) < 0x34)
1293 u3h = 0;
1294 of_node_put(u3);
1297 if (rackmac) {
1298 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1299 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1300 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1301 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1302 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1303 backside_params.G_r = BACKSIDE_PID_G_r;
1304 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1305 backside_params.additive = 0;
1306 } else if (u3h) {
1307 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1308 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1309 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1310 backside_params.interval = BACKSIDE_PID_INTERVAL;
1311 backside_params.G_p = BACKSIDE_PID_G_p;
1312 backside_params.G_r = BACKSIDE_PID_G_r;
1313 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1314 backside_params.additive = 1;
1315 } else {
1316 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1317 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1318 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1319 backside_params.interval = BACKSIDE_PID_INTERVAL;
1320 backside_params.G_p = BACKSIDE_PID_G_p;
1321 backside_params.G_r = BACKSIDE_PID_G_r;
1322 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1323 backside_params.additive = 1;
1326 state->ticks = 1;
1327 state->first = 1;
1328 state->pwm = 50;
1330 state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1331 if (state->monitor == NULL)
1332 return -ENODEV;
1334 device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1335 device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1337 return 0;
1341 * Dispose of the state data for the backside control loop
1343 static void dispose_backside_state(struct backside_pid_state *state)
1345 if (state->monitor == NULL)
1346 return;
1348 device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1349 device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1351 detach_i2c_chip(state->monitor);
1352 state->monitor = NULL;
1356 * Drives bay fan control loop
1358 static void do_monitor_drives(struct drives_pid_state *state)
1360 s32 temp, integral, derivative;
1361 s64 integ_p, deriv_p, prop_p, sum;
1362 int i, rc;
1364 if (--state->ticks != 0)
1365 return;
1366 state->ticks = DRIVES_PID_INTERVAL;
1368 DBG("drives:\n");
1370 /* Check fan status */
1371 rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1372 if (rc < 0) {
1373 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1374 /* XXX What do we do now ? */
1375 } else
1376 state->rpm = rc;
1377 DBG(" current rpm: %d\n", state->rpm);
1379 /* Get some sensor readings */
1380 temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, DS1775_TEMP)) << 8;
1381 state->last_temp = temp;
1382 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1383 FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1385 /* Store temperature and error in history array */
1386 state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1387 state->sample_history[state->cur_sample] = temp;
1388 state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1390 /* If first loop, fill the history table */
1391 if (state->first) {
1392 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1393 state->cur_sample = (state->cur_sample + 1) %
1394 DRIVES_PID_HISTORY_SIZE;
1395 state->sample_history[state->cur_sample] = temp;
1396 state->error_history[state->cur_sample] =
1397 temp - DRIVES_PID_INPUT_TARGET;
1399 state->first = 0;
1402 /* Calculate the integral term */
1403 sum = 0;
1404 integral = 0;
1405 for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1406 integral += state->error_history[i];
1407 integral *= DRIVES_PID_INTERVAL;
1408 DBG(" integral: %08x\n", integral);
1409 integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1410 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1411 sum += integ_p;
1413 /* Calculate the derivative term */
1414 derivative = state->error_history[state->cur_sample] -
1415 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1416 % DRIVES_PID_HISTORY_SIZE];
1417 derivative /= DRIVES_PID_INTERVAL;
1418 deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1419 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1420 sum += deriv_p;
1422 /* Calculate the proportional term */
1423 prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1424 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1425 sum += prop_p;
1427 /* Scale sum */
1428 sum >>= 36;
1430 DBG(" sum: %d\n", (int)sum);
1431 state->rpm += (s32)sum;
1433 state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1434 state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1436 DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1437 set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1441 * Initialize the state structure for the drives bay fan control loop
1443 static int init_drives_state(struct drives_pid_state *state)
1445 state->ticks = 1;
1446 state->first = 1;
1447 state->rpm = 1000;
1449 state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1450 if (state->monitor == NULL)
1451 return -ENODEV;
1453 device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1454 device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1456 return 0;
1460 * Dispose of the state data for the drives control loop
1462 static void dispose_drives_state(struct drives_pid_state *state)
1464 if (state->monitor == NULL)
1465 return;
1467 device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1468 device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1470 detach_i2c_chip(state->monitor);
1471 state->monitor = NULL;
1475 * DIMMs temp control loop
1477 static void do_monitor_dimms(struct dimm_pid_state *state)
1479 s32 temp, integral, derivative, fan_min;
1480 s64 integ_p, deriv_p, prop_p, sum;
1481 int i;
1483 if (--state->ticks != 0)
1484 return;
1485 state->ticks = DIMM_PID_INTERVAL;
1487 DBG("DIMM:\n");
1489 DBG(" current value: %d\n", state->output);
1491 temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1492 if (temp < 0)
1493 return;
1494 temp <<= 16;
1495 state->last_temp = temp;
1496 DBG(" temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1497 FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1499 /* Store temperature and error in history array */
1500 state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1501 state->sample_history[state->cur_sample] = temp;
1502 state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1504 /* If first loop, fill the history table */
1505 if (state->first) {
1506 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1507 state->cur_sample = (state->cur_sample + 1) %
1508 DIMM_PID_HISTORY_SIZE;
1509 state->sample_history[state->cur_sample] = temp;
1510 state->error_history[state->cur_sample] =
1511 temp - DIMM_PID_INPUT_TARGET;
1513 state->first = 0;
1516 /* Calculate the integral term */
1517 sum = 0;
1518 integral = 0;
1519 for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1520 integral += state->error_history[i];
1521 integral *= DIMM_PID_INTERVAL;
1522 DBG(" integral: %08x\n", integral);
1523 integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1524 DBG(" integ_p: %d\n", (int)(integ_p >> 36));
1525 sum += integ_p;
1527 /* Calculate the derivative term */
1528 derivative = state->error_history[state->cur_sample] -
1529 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1530 % DIMM_PID_HISTORY_SIZE];
1531 derivative /= DIMM_PID_INTERVAL;
1532 deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1533 DBG(" deriv_p: %d\n", (int)(deriv_p >> 36));
1534 sum += deriv_p;
1536 /* Calculate the proportional term */
1537 prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1538 DBG(" prop_p: %d\n", (int)(prop_p >> 36));
1539 sum += prop_p;
1541 /* Scale sum */
1542 sum >>= 36;
1544 DBG(" sum: %d\n", (int)sum);
1545 state->output = (s32)sum;
1546 state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1547 state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1548 dimm_output_clamp = state->output;
1550 DBG("** DIMM clamp value: %d\n", (int)state->output);
1552 /* Backside PID is only every 5 seconds, force backside fan clamping now */
1553 fan_min = (dimm_output_clamp * 100) / 14000;
1554 fan_min = max(fan_min, backside_params.output_min);
1555 if (backside_state.pwm < fan_min) {
1556 backside_state.pwm = fan_min;
1557 DBG(" -> applying clamp to backside fan now: %d !\n", fan_min);
1558 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1563 * Initialize the state structure for the DIMM temp control loop
1565 static int init_dimms_state(struct dimm_pid_state *state)
1567 state->ticks = 1;
1568 state->first = 1;
1569 state->output = 4000;
1571 state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1572 if (state->monitor == NULL)
1573 return -ENODEV;
1575 device_create_file(&of_dev->dev, &dev_attr_dimms_temperature);
1577 return 0;
1581 * Dispose of the state data for the drives control loop
1583 static void dispose_dimms_state(struct dimm_pid_state *state)
1585 if (state->monitor == NULL)
1586 return;
1588 device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1590 detach_i2c_chip(state->monitor);
1591 state->monitor = NULL;
1594 static int call_critical_overtemp(void)
1596 char *argv[] = { critical_overtemp_path, NULL };
1597 static char *envp[] = { "HOME=/",
1598 "TERM=linux",
1599 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1600 NULL };
1602 return call_usermodehelper(critical_overtemp_path, argv, envp, 0);
1607 * Here's the kernel thread that calls the various control loops
1609 static int main_control_loop(void *x)
1611 daemonize("kfand");
1613 DBG("main_control_loop started\n");
1615 down(&driver_lock);
1617 if (start_fcu() < 0) {
1618 printk(KERN_ERR "kfand: failed to start FCU\n");
1619 up(&driver_lock);
1620 goto out;
1623 /* Set the PCI fan once for now */
1624 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1626 /* Initialize ADCs */
1627 initialize_adc(&cpu_state[0]);
1628 if (cpu_state[1].monitor != NULL)
1629 initialize_adc(&cpu_state[1]);
1631 up(&driver_lock);
1633 while (state == state_attached) {
1634 unsigned long elapsed, start;
1636 start = jiffies;
1638 down(&driver_lock);
1640 /* First, we always calculate the new DIMMs state on an Xserve */
1641 if (rackmac)
1642 do_monitor_dimms(&dimms_state);
1644 /* Then, the CPUs */
1645 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1646 do_monitor_cpu_combined();
1647 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1648 do_monitor_cpu_rack(&cpu_state[0]);
1649 if (cpu_state[1].monitor != NULL)
1650 do_monitor_cpu_rack(&cpu_state[1]);
1651 // better deal with UP
1652 } else {
1653 do_monitor_cpu_split(&cpu_state[0]);
1654 if (cpu_state[1].monitor != NULL)
1655 do_monitor_cpu_split(&cpu_state[1]);
1656 // better deal with UP
1658 /* Then, the rest */
1659 do_monitor_backside(&backside_state);
1660 if (!rackmac)
1661 do_monitor_drives(&drives_state);
1662 up(&driver_lock);
1664 if (critical_state == 1) {
1665 printk(KERN_WARNING "Temperature control detected a critical condition\n");
1666 printk(KERN_WARNING "Attempting to shut down...\n");
1667 if (call_critical_overtemp()) {
1668 printk(KERN_WARNING "Can't call %s, power off now!\n",
1669 critical_overtemp_path);
1670 machine_power_off();
1673 if (critical_state > 0)
1674 critical_state++;
1675 if (critical_state > MAX_CRITICAL_STATE) {
1676 printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1677 machine_power_off();
1680 // FIXME: Deal with signals
1681 set_current_state(TASK_INTERRUPTIBLE);
1682 elapsed = jiffies - start;
1683 if (elapsed < HZ)
1684 schedule_timeout(HZ - elapsed);
1687 out:
1688 DBG("main_control_loop ended\n");
1690 ctrl_task = 0;
1691 complete_and_exit(&ctrl_complete, 0);
1695 * Dispose the control loops when tearing down
1697 static void dispose_control_loops(void)
1699 dispose_cpu_state(&cpu_state[0]);
1700 dispose_cpu_state(&cpu_state[1]);
1701 dispose_backside_state(&backside_state);
1702 dispose_drives_state(&drives_state);
1703 dispose_dimms_state(&dimms_state);
1707 * Create the control loops. U3-0 i2c bus is up, so we can now
1708 * get to the various sensors
1710 static int create_control_loops(void)
1712 struct device_node *np;
1714 /* Count CPUs from the device-tree, we don't care how many are
1715 * actually used by Linux
1717 cpu_count = 0;
1718 for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1719 cpu_count++;
1721 DBG("counted %d CPUs in the device-tree\n", cpu_count);
1723 /* Decide the type of PID algorithm to use based on the presence of
1724 * the pumps, though that may not be the best way, that is good enough
1725 * for now
1727 if (rackmac)
1728 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1729 else if (machine_is_compatible("PowerMac7,3")
1730 && (cpu_count > 1)
1731 && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1732 && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1733 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1734 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1735 } else
1736 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1738 /* Create control loops for everything. If any fail, everything
1739 * fails
1741 if (init_cpu_state(&cpu_state[0], 0))
1742 goto fail;
1743 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1744 fetch_cpu_pumps_minmax();
1746 if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
1747 goto fail;
1748 if (init_backside_state(&backside_state))
1749 goto fail;
1750 if (rackmac && init_dimms_state(&dimms_state))
1751 goto fail;
1752 if (!rackmac && init_drives_state(&drives_state))
1753 goto fail;
1755 DBG("all control loops up !\n");
1757 return 0;
1759 fail:
1760 DBG("failure creating control loops, disposing\n");
1762 dispose_control_loops();
1764 return -ENODEV;
1768 * Start the control loops after everything is up, that is create
1769 * the thread that will make them run
1771 static void start_control_loops(void)
1773 init_completion(&ctrl_complete);
1775 ctrl_task = kernel_thread(main_control_loop, NULL, SIGCHLD | CLONE_KERNEL);
1779 * Stop the control loops when tearing down
1781 static void stop_control_loops(void)
1783 if (ctrl_task != 0)
1784 wait_for_completion(&ctrl_complete);
1788 * Attach to the i2c FCU after detecting U3-1 bus
1790 static int attach_fcu(void)
1792 fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1793 if (fcu == NULL)
1794 return -ENODEV;
1796 DBG("FCU attached\n");
1798 return 0;
1802 * Detach from the i2c FCU when tearing down
1804 static void detach_fcu(void)
1806 if (fcu)
1807 detach_i2c_chip(fcu);
1808 fcu = NULL;
1812 * Attach to the i2c controller. We probe the various chips based
1813 * on the device-tree nodes and build everything for the driver to
1814 * run, we then kick the driver monitoring thread
1816 static int therm_pm72_attach(struct i2c_adapter *adapter)
1818 down(&driver_lock);
1820 /* Check state */
1821 if (state == state_detached)
1822 state = state_attaching;
1823 if (state != state_attaching) {
1824 up(&driver_lock);
1825 return 0;
1828 /* Check if we are looking for one of these */
1829 if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
1830 u3_0 = adapter;
1831 DBG("found U3-0\n");
1832 if (k2 || !rackmac)
1833 if (create_control_loops())
1834 u3_0 = NULL;
1835 } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
1836 u3_1 = adapter;
1837 DBG("found U3-1, attaching FCU\n");
1838 if (attach_fcu())
1839 u3_1 = NULL;
1840 } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
1841 k2 = adapter;
1842 DBG("Found K2\n");
1843 if (u3_0 && rackmac)
1844 if (create_control_loops())
1845 k2 = NULL;
1847 /* We got all we need, start control loops */
1848 if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
1849 DBG("everything up, starting control loops\n");
1850 state = state_attached;
1851 start_control_loops();
1853 up(&driver_lock);
1855 return 0;
1859 * Called on every adapter when the driver or the i2c controller
1860 * is going away.
1862 static int therm_pm72_detach(struct i2c_adapter *adapter)
1864 down(&driver_lock);
1866 if (state != state_detached)
1867 state = state_detaching;
1869 /* Stop control loops if any */
1870 DBG("stopping control loops\n");
1871 up(&driver_lock);
1872 stop_control_loops();
1873 down(&driver_lock);
1875 if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
1876 DBG("lost U3-0, disposing control loops\n");
1877 dispose_control_loops();
1878 u3_0 = NULL;
1881 if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
1882 DBG("lost U3-1, detaching FCU\n");
1883 detach_fcu();
1884 u3_1 = NULL;
1886 if (u3_0 == NULL && u3_1 == NULL)
1887 state = state_detached;
1889 up(&driver_lock);
1891 return 0;
1894 static int fan_check_loc_match(const char *loc, int fan)
1896 char tmp[64];
1897 char *c, *e;
1899 strlcpy(tmp, fcu_fans[fan].loc, 64);
1901 c = tmp;
1902 for (;;) {
1903 e = strchr(c, ',');
1904 if (e)
1905 *e = 0;
1906 if (strcmp(loc, c) == 0)
1907 return 1;
1908 if (e == NULL)
1909 break;
1910 c = e + 1;
1912 return 0;
1915 static void fcu_lookup_fans(struct device_node *fcu_node)
1917 struct device_node *np = NULL;
1918 int i;
1920 /* The table is filled by default with values that are suitable
1921 * for the old machines without device-tree informations. We scan
1922 * the device-tree and override those values with whatever is
1923 * there
1926 DBG("Looking up FCU controls in device-tree...\n");
1928 while ((np = of_get_next_child(fcu_node, np)) != NULL) {
1929 int type = -1;
1930 char *loc;
1931 u32 *reg;
1933 DBG(" control: %s, type: %s\n", np->name, np->type);
1935 /* Detect control type */
1936 if (!strcmp(np->type, "fan-rpm-control") ||
1937 !strcmp(np->type, "fan-rpm"))
1938 type = FCU_FAN_RPM;
1939 if (!strcmp(np->type, "fan-pwm-control") ||
1940 !strcmp(np->type, "fan-pwm"))
1941 type = FCU_FAN_PWM;
1942 /* Only care about fans for now */
1943 if (type == -1)
1944 continue;
1946 /* Lookup for a matching location */
1947 loc = (char *)get_property(np, "location", NULL);
1948 reg = (u32 *)get_property(np, "reg", NULL);
1949 if (loc == NULL || reg == NULL)
1950 continue;
1951 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
1953 for (i = 0; i < FCU_FAN_COUNT; i++) {
1954 int fan_id;
1956 if (!fan_check_loc_match(loc, i))
1957 continue;
1958 DBG(" location match, index: %d\n", i);
1959 fcu_fans[i].id = FCU_FAN_ABSENT_ID;
1960 if (type != fcu_fans[i].type) {
1961 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
1962 "in device-tree for %s\n", np->full_name);
1963 break;
1965 if (type == FCU_FAN_RPM)
1966 fan_id = ((*reg) - 0x10) / 2;
1967 else
1968 fan_id = ((*reg) - 0x30) / 2;
1969 if (fan_id > 7) {
1970 printk(KERN_WARNING "therm_pm72: Can't parse "
1971 "fan ID in device-tree for %s\n", np->full_name);
1972 break;
1974 DBG(" fan id -> %d, type -> %d\n", fan_id, type);
1975 fcu_fans[i].id = fan_id;
1979 /* Now dump the array */
1980 printk(KERN_INFO "Detected fan controls:\n");
1981 for (i = 0; i < FCU_FAN_COUNT; i++) {
1982 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
1983 continue;
1984 printk(KERN_INFO " %d: %s fan, id %d, location: %s\n", i,
1985 fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
1986 fcu_fans[i].id, fcu_fans[i].loc);
1990 static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
1992 int rc;
1994 state = state_detached;
1996 /* Lookup the fans in the device tree */
1997 fcu_lookup_fans(dev->node);
1999 /* Add the driver */
2000 rc = i2c_add_driver(&therm_pm72_driver);
2001 if (rc < 0)
2002 return rc;
2003 return 0;
2006 static int fcu_of_remove(struct of_device* dev)
2008 i2c_del_driver(&therm_pm72_driver);
2010 return 0;
2013 static struct of_device_id fcu_match[] =
2016 .type = "fcu",
2021 static struct of_platform_driver fcu_of_platform_driver =
2023 .name = "temperature",
2024 .match_table = fcu_match,
2025 .probe = fcu_of_probe,
2026 .remove = fcu_of_remove
2030 * Check machine type, attach to i2c controller
2032 static int __init therm_pm72_init(void)
2034 struct device_node *np;
2036 rackmac = machine_is_compatible("RackMac3,1");
2038 if (!machine_is_compatible("PowerMac7,2") &&
2039 !machine_is_compatible("PowerMac7,3") &&
2040 !rackmac)
2041 return -ENODEV;
2043 printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
2045 np = of_find_node_by_type(NULL, "fcu");
2046 if (np == NULL) {
2047 /* Some machines have strangely broken device-tree */
2048 np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
2049 if (np == NULL) {
2050 printk(KERN_ERR "Can't find FCU in device-tree !\n");
2051 return -ENODEV;
2054 of_dev = of_platform_device_create(np, "temperature");
2055 if (of_dev == NULL) {
2056 printk(KERN_ERR "Can't register FCU platform device !\n");
2057 return -ENODEV;
2060 of_register_driver(&fcu_of_platform_driver);
2062 return 0;
2065 static void __exit therm_pm72_exit(void)
2067 of_unregister_driver(&fcu_of_platform_driver);
2069 if (of_dev)
2070 of_device_unregister(of_dev);
2073 module_init(therm_pm72_init);
2074 module_exit(therm_pm72_exit);
2076 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2077 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2078 MODULE_LICENSE("GPL");