4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
37 /* #define DCACHE_DEBUG 1 */
39 int sysctl_vfs_cache_pressure
= 100;
40 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
42 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
43 static seqlock_t rename_lock __cacheline_aligned_in_smp
= SEQLOCK_UNLOCKED
;
45 EXPORT_SYMBOL(dcache_lock
);
47 static kmem_cache_t
*dentry_cache
;
49 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
52 * This is the single most critical data structure when it comes
53 * to the dcache: the hashtable for lookups. Somebody should try
54 * to make this good - I've just made it work.
56 * This hash-function tries to avoid losing too many bits of hash
57 * information, yet avoid using a prime hash-size or similar.
59 #define D_HASHBITS d_hash_shift
60 #define D_HASHMASK d_hash_mask
62 static unsigned int d_hash_mask
;
63 static unsigned int d_hash_shift
;
64 static struct hlist_head
*dentry_hashtable
;
65 static LIST_HEAD(dentry_unused
);
67 /* Statistics gathering. */
68 struct dentry_stat_t dentry_stat
= {
72 static void d_callback(struct rcu_head
*head
)
74 struct dentry
* dentry
= container_of(head
, struct dentry
, d_rcu
);
76 if (dname_external(dentry
))
77 kfree(dentry
->d_name
.name
);
78 kmem_cache_free(dentry_cache
, dentry
);
82 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
85 static void d_free(struct dentry
*dentry
)
87 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
88 dentry
->d_op
->d_release(dentry
);
89 call_rcu(&dentry
->d_rcu
, d_callback
);
93 * Release the dentry's inode, using the filesystem
94 * d_iput() operation if defined.
95 * Called with dcache_lock and per dentry lock held, drops both.
97 static inline void dentry_iput(struct dentry
* dentry
)
99 struct inode
*inode
= dentry
->d_inode
;
101 dentry
->d_inode
= NULL
;
102 list_del_init(&dentry
->d_alias
);
103 spin_unlock(&dentry
->d_lock
);
104 spin_unlock(&dcache_lock
);
105 fsnotify_inoderemove(inode
);
106 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
107 dentry
->d_op
->d_iput(dentry
, inode
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
119 * This is complicated by the fact that we do not want to put
120 * dentries that are no longer on any hash chain on the unused
121 * list: we'd much rather just get rid of them immediately.
123 * However, that implies that we have to traverse the dentry
124 * tree upwards to the parents which might _also_ now be
125 * scheduled for deletion (it may have been only waiting for
126 * its last child to go away).
128 * This tail recursion is done by hand as we don't want to depend
129 * on the compiler to always get this right (gcc generally doesn't).
130 * Real recursion would eat up our stack space.
134 * dput - release a dentry
135 * @dentry: dentry to release
137 * Release a dentry. This will drop the usage count and if appropriate
138 * call the dentry unlink method as well as removing it from the queues and
139 * releasing its resources. If the parent dentries were scheduled for release
140 * they too may now get deleted.
142 * no dcache lock, please.
145 void dput(struct dentry
*dentry
)
151 if (atomic_read(&dentry
->d_count
) == 1)
153 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
156 spin_lock(&dentry
->d_lock
);
157 if (atomic_read(&dentry
->d_count
)) {
158 spin_unlock(&dentry
->d_lock
);
159 spin_unlock(&dcache_lock
);
164 * AV: ->d_delete() is _NOT_ allowed to block now.
166 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
167 if (dentry
->d_op
->d_delete(dentry
))
170 /* Unreachable? Get rid of it */
171 if (d_unhashed(dentry
))
173 if (list_empty(&dentry
->d_lru
)) {
174 dentry
->d_flags
|= DCACHE_REFERENCED
;
175 list_add(&dentry
->d_lru
, &dentry_unused
);
176 dentry_stat
.nr_unused
++;
178 spin_unlock(&dentry
->d_lock
);
179 spin_unlock(&dcache_lock
);
186 struct dentry
*parent
;
188 /* If dentry was on d_lru list
189 * delete it from there
191 if (!list_empty(&dentry
->d_lru
)) {
192 list_del(&dentry
->d_lru
);
193 dentry_stat
.nr_unused
--;
195 list_del(&dentry
->d_child
);
196 dentry_stat
.nr_dentry
--; /* For d_free, below */
197 /*drops the locks, at that point nobody can reach this dentry */
199 parent
= dentry
->d_parent
;
201 if (dentry
== parent
)
209 * d_invalidate - invalidate a dentry
210 * @dentry: dentry to invalidate
212 * Try to invalidate the dentry if it turns out to be
213 * possible. If there are other dentries that can be
214 * reached through this one we can't delete it and we
215 * return -EBUSY. On success we return 0.
220 int d_invalidate(struct dentry
* dentry
)
223 * If it's already been dropped, return OK.
225 spin_lock(&dcache_lock
);
226 if (d_unhashed(dentry
)) {
227 spin_unlock(&dcache_lock
);
231 * Check whether to do a partial shrink_dcache
232 * to get rid of unused child entries.
234 if (!list_empty(&dentry
->d_subdirs
)) {
235 spin_unlock(&dcache_lock
);
236 shrink_dcache_parent(dentry
);
237 spin_lock(&dcache_lock
);
241 * Somebody else still using it?
243 * If it's a directory, we can't drop it
244 * for fear of somebody re-populating it
245 * with children (even though dropping it
246 * would make it unreachable from the root,
247 * we might still populate it if it was a
248 * working directory or similar).
250 spin_lock(&dentry
->d_lock
);
251 if (atomic_read(&dentry
->d_count
) > 1) {
252 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
253 spin_unlock(&dentry
->d_lock
);
254 spin_unlock(&dcache_lock
);
260 spin_unlock(&dentry
->d_lock
);
261 spin_unlock(&dcache_lock
);
265 /* This should be called _only_ with dcache_lock held */
267 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
269 atomic_inc(&dentry
->d_count
);
270 if (!list_empty(&dentry
->d_lru
)) {
271 dentry_stat
.nr_unused
--;
272 list_del_init(&dentry
->d_lru
);
277 struct dentry
* dget_locked(struct dentry
*dentry
)
279 return __dget_locked(dentry
);
283 * d_find_alias - grab a hashed alias of inode
284 * @inode: inode in question
285 * @want_discon: flag, used by d_splice_alias, to request
286 * that only a DISCONNECTED alias be returned.
288 * If inode has a hashed alias, or is a directory and has any alias,
289 * acquire the reference to alias and return it. Otherwise return NULL.
290 * Notice that if inode is a directory there can be only one alias and
291 * it can be unhashed only if it has no children, or if it is the root
294 * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295 * any other hashed alias over that one unless @want_discon is set,
296 * in which case only return a DCACHE_DISCONNECTED alias.
299 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
301 struct list_head
*head
, *next
, *tmp
;
302 struct dentry
*alias
, *discon_alias
=NULL
;
304 head
= &inode
->i_dentry
;
305 next
= inode
->i_dentry
.next
;
306 while (next
!= head
) {
310 alias
= list_entry(tmp
, struct dentry
, d_alias
);
311 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
312 if (alias
->d_flags
& DCACHE_DISCONNECTED
)
313 discon_alias
= alias
;
314 else if (!want_discon
) {
315 __dget_locked(alias
);
321 __dget_locked(discon_alias
);
325 struct dentry
* d_find_alias(struct inode
*inode
)
328 spin_lock(&dcache_lock
);
329 de
= __d_find_alias(inode
, 0);
330 spin_unlock(&dcache_lock
);
335 * Try to kill dentries associated with this inode.
336 * WARNING: you must own a reference to inode.
338 void d_prune_aliases(struct inode
*inode
)
340 struct dentry
*dentry
;
342 spin_lock(&dcache_lock
);
343 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
344 spin_lock(&dentry
->d_lock
);
345 if (!atomic_read(&dentry
->d_count
)) {
346 __dget_locked(dentry
);
348 spin_unlock(&dentry
->d_lock
);
349 spin_unlock(&dcache_lock
);
353 spin_unlock(&dentry
->d_lock
);
355 spin_unlock(&dcache_lock
);
359 * Throw away a dentry - free the inode, dput the parent.
360 * This requires that the LRU list has already been
362 * Called with dcache_lock, drops it and then regains.
364 static inline void prune_one_dentry(struct dentry
* dentry
)
366 struct dentry
* parent
;
369 list_del(&dentry
->d_child
);
370 dentry_stat
.nr_dentry
--; /* For d_free, below */
372 parent
= dentry
->d_parent
;
374 if (parent
!= dentry
)
376 spin_lock(&dcache_lock
);
380 * prune_dcache - shrink the dcache
381 * @count: number of entries to try and free
383 * Shrink the dcache. This is done when we need
384 * more memory, or simply when we need to unmount
385 * something (at which point we need to unuse
388 * This function may fail to free any resources if
389 * all the dentries are in use.
392 static void prune_dcache(int count
)
394 spin_lock(&dcache_lock
);
395 for (; count
; count
--) {
396 struct dentry
*dentry
;
397 struct list_head
*tmp
;
399 cond_resched_lock(&dcache_lock
);
401 tmp
= dentry_unused
.prev
;
402 if (tmp
== &dentry_unused
)
405 prefetch(dentry_unused
.prev
);
406 dentry_stat
.nr_unused
--;
407 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
409 spin_lock(&dentry
->d_lock
);
411 * We found an inuse dentry which was not removed from
412 * dentry_unused because of laziness during lookup. Do not free
413 * it - just keep it off the dentry_unused list.
415 if (atomic_read(&dentry
->d_count
)) {
416 spin_unlock(&dentry
->d_lock
);
419 /* If the dentry was recently referenced, don't free it. */
420 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
421 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
422 list_add(&dentry
->d_lru
, &dentry_unused
);
423 dentry_stat
.nr_unused
++;
424 spin_unlock(&dentry
->d_lock
);
427 prune_one_dentry(dentry
);
429 spin_unlock(&dcache_lock
);
433 * Shrink the dcache for the specified super block.
434 * This allows us to unmount a device without disturbing
435 * the dcache for the other devices.
437 * This implementation makes just two traversals of the
438 * unused list. On the first pass we move the selected
439 * dentries to the most recent end, and on the second
440 * pass we free them. The second pass must restart after
441 * each dput(), but since the target dentries are all at
442 * the end, it's really just a single traversal.
446 * shrink_dcache_sb - shrink dcache for a superblock
449 * Shrink the dcache for the specified super block. This
450 * is used to free the dcache before unmounting a file
454 void shrink_dcache_sb(struct super_block
* sb
)
456 struct list_head
*tmp
, *next
;
457 struct dentry
*dentry
;
460 * Pass one ... move the dentries for the specified
461 * superblock to the most recent end of the unused list.
463 spin_lock(&dcache_lock
);
464 list_for_each_safe(tmp
, next
, &dentry_unused
) {
465 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
466 if (dentry
->d_sb
!= sb
)
469 list_add(tmp
, &dentry_unused
);
473 * Pass two ... free the dentries for this superblock.
476 list_for_each_safe(tmp
, next
, &dentry_unused
) {
477 dentry
= list_entry(tmp
, struct dentry
, d_lru
);
478 if (dentry
->d_sb
!= sb
)
480 dentry_stat
.nr_unused
--;
482 spin_lock(&dentry
->d_lock
);
483 if (atomic_read(&dentry
->d_count
)) {
484 spin_unlock(&dentry
->d_lock
);
487 prune_one_dentry(dentry
);
490 spin_unlock(&dcache_lock
);
494 * Search for at least 1 mount point in the dentry's subdirs.
495 * We descend to the next level whenever the d_subdirs
496 * list is non-empty and continue searching.
500 * have_submounts - check for mounts over a dentry
501 * @parent: dentry to check.
503 * Return true if the parent or its subdirectories contain
507 int have_submounts(struct dentry
*parent
)
509 struct dentry
*this_parent
= parent
;
510 struct list_head
*next
;
512 spin_lock(&dcache_lock
);
513 if (d_mountpoint(parent
))
516 next
= this_parent
->d_subdirs
.next
;
518 while (next
!= &this_parent
->d_subdirs
) {
519 struct list_head
*tmp
= next
;
520 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
522 /* Have we found a mount point ? */
523 if (d_mountpoint(dentry
))
525 if (!list_empty(&dentry
->d_subdirs
)) {
526 this_parent
= dentry
;
531 * All done at this level ... ascend and resume the search.
533 if (this_parent
!= parent
) {
534 next
= this_parent
->d_child
.next
;
535 this_parent
= this_parent
->d_parent
;
538 spin_unlock(&dcache_lock
);
539 return 0; /* No mount points found in tree */
541 spin_unlock(&dcache_lock
);
546 * Search the dentry child list for the specified parent,
547 * and move any unused dentries to the end of the unused
548 * list for prune_dcache(). We descend to the next level
549 * whenever the d_subdirs list is non-empty and continue
552 * It returns zero iff there are no unused children,
553 * otherwise it returns the number of children moved to
554 * the end of the unused list. This may not be the total
555 * number of unused children, because select_parent can
556 * drop the lock and return early due to latency
559 static int select_parent(struct dentry
* parent
)
561 struct dentry
*this_parent
= parent
;
562 struct list_head
*next
;
565 spin_lock(&dcache_lock
);
567 next
= this_parent
->d_subdirs
.next
;
569 while (next
!= &this_parent
->d_subdirs
) {
570 struct list_head
*tmp
= next
;
571 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
574 if (!list_empty(&dentry
->d_lru
)) {
575 dentry_stat
.nr_unused
--;
576 list_del_init(&dentry
->d_lru
);
579 * move only zero ref count dentries to the end
580 * of the unused list for prune_dcache
582 if (!atomic_read(&dentry
->d_count
)) {
583 list_add(&dentry
->d_lru
, dentry_unused
.prev
);
584 dentry_stat
.nr_unused
++;
589 * We can return to the caller if we have found some (this
590 * ensures forward progress). We'll be coming back to find
593 if (found
&& need_resched())
597 * Descend a level if the d_subdirs list is non-empty.
599 if (!list_empty(&dentry
->d_subdirs
)) {
600 this_parent
= dentry
;
602 printk(KERN_DEBUG
"select_parent: descending to %s/%s, found=%d\n",
603 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
, found
);
609 * All done at this level ... ascend and resume the search.
611 if (this_parent
!= parent
) {
612 next
= this_parent
->d_child
.next
;
613 this_parent
= this_parent
->d_parent
;
615 printk(KERN_DEBUG
"select_parent: ascending to %s/%s, found=%d\n",
616 this_parent
->d_parent
->d_name
.name
, this_parent
->d_name
.name
, found
);
621 spin_unlock(&dcache_lock
);
626 * shrink_dcache_parent - prune dcache
627 * @parent: parent of entries to prune
629 * Prune the dcache to remove unused children of the parent dentry.
632 void shrink_dcache_parent(struct dentry
* parent
)
636 while ((found
= select_parent(parent
)) != 0)
641 * shrink_dcache_anon - further prune the cache
642 * @head: head of d_hash list of dentries to prune
644 * Prune the dentries that are anonymous
646 * parsing d_hash list does not hlist_for_each_rcu() as it
647 * done under dcache_lock.
650 void shrink_dcache_anon(struct hlist_head
*head
)
652 struct hlist_node
*lp
;
656 spin_lock(&dcache_lock
);
657 hlist_for_each(lp
, head
) {
658 struct dentry
*this = hlist_entry(lp
, struct dentry
, d_hash
);
659 if (!list_empty(&this->d_lru
)) {
660 dentry_stat
.nr_unused
--;
661 list_del_init(&this->d_lru
);
665 * move only zero ref count dentries to the end
666 * of the unused list for prune_dcache
668 if (!atomic_read(&this->d_count
)) {
669 list_add_tail(&this->d_lru
, &dentry_unused
);
670 dentry_stat
.nr_unused
++;
674 spin_unlock(&dcache_lock
);
680 * Scan `nr' dentries and return the number which remain.
682 * We need to avoid reentering the filesystem if the caller is performing a
683 * GFP_NOFS allocation attempt. One example deadlock is:
685 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
686 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
687 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
689 * In this case we return -1 to tell the caller that we baled.
691 static int shrink_dcache_memory(int nr
, unsigned int gfp_mask
)
694 if (!(gfp_mask
& __GFP_FS
))
698 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
702 * d_alloc - allocate a dcache entry
703 * @parent: parent of entry to allocate
704 * @name: qstr of the name
706 * Allocates a dentry. It returns %NULL if there is insufficient memory
707 * available. On a success the dentry is returned. The name passed in is
708 * copied and the copy passed in may be reused after this call.
711 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
713 struct dentry
*dentry
;
716 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
720 if (name
->len
> DNAME_INLINE_LEN
-1) {
721 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
723 kmem_cache_free(dentry_cache
, dentry
);
727 dname
= dentry
->d_iname
;
729 dentry
->d_name
.name
= dname
;
731 dentry
->d_name
.len
= name
->len
;
732 dentry
->d_name
.hash
= name
->hash
;
733 memcpy(dname
, name
->name
, name
->len
);
734 dname
[name
->len
] = 0;
736 atomic_set(&dentry
->d_count
, 1);
737 dentry
->d_flags
= DCACHE_UNHASHED
;
738 spin_lock_init(&dentry
->d_lock
);
739 dentry
->d_inode
= NULL
;
740 dentry
->d_parent
= NULL
;
743 dentry
->d_fsdata
= NULL
;
744 dentry
->d_mounted
= 0;
745 dentry
->d_cookie
= NULL
;
746 INIT_HLIST_NODE(&dentry
->d_hash
);
747 INIT_LIST_HEAD(&dentry
->d_lru
);
748 INIT_LIST_HEAD(&dentry
->d_subdirs
);
749 INIT_LIST_HEAD(&dentry
->d_alias
);
752 dentry
->d_parent
= dget(parent
);
753 dentry
->d_sb
= parent
->d_sb
;
755 INIT_LIST_HEAD(&dentry
->d_child
);
758 spin_lock(&dcache_lock
);
760 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
761 dentry_stat
.nr_dentry
++;
762 spin_unlock(&dcache_lock
);
767 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
772 q
.len
= strlen(name
);
773 q
.hash
= full_name_hash(q
.name
, q
.len
);
774 return d_alloc(parent
, &q
);
778 * d_instantiate - fill in inode information for a dentry
779 * @entry: dentry to complete
780 * @inode: inode to attach to this dentry
782 * Fill in inode information in the entry.
784 * This turns negative dentries into productive full members
787 * NOTE! This assumes that the inode count has been incremented
788 * (or otherwise set) by the caller to indicate that it is now
789 * in use by the dcache.
792 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
794 if (!list_empty(&entry
->d_alias
)) BUG();
795 spin_lock(&dcache_lock
);
797 list_add(&entry
->d_alias
, &inode
->i_dentry
);
798 entry
->d_inode
= inode
;
799 spin_unlock(&dcache_lock
);
800 security_d_instantiate(entry
, inode
);
804 * d_instantiate_unique - instantiate a non-aliased dentry
805 * @entry: dentry to instantiate
806 * @inode: inode to attach to this dentry
808 * Fill in inode information in the entry. On success, it returns NULL.
809 * If an unhashed alias of "entry" already exists, then we return the
810 * aliased dentry instead.
812 * Note that in order to avoid conflicts with rename() etc, the caller
813 * had better be holding the parent directory semaphore.
815 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
817 struct dentry
*alias
;
818 int len
= entry
->d_name
.len
;
819 const char *name
= entry
->d_name
.name
;
820 unsigned int hash
= entry
->d_name
.hash
;
822 BUG_ON(!list_empty(&entry
->d_alias
));
823 spin_lock(&dcache_lock
);
826 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
827 struct qstr
*qstr
= &alias
->d_name
;
829 if (qstr
->hash
!= hash
)
831 if (alias
->d_parent
!= entry
->d_parent
)
833 if (qstr
->len
!= len
)
835 if (memcmp(qstr
->name
, name
, len
))
838 spin_unlock(&dcache_lock
);
839 BUG_ON(!d_unhashed(alias
));
842 list_add(&entry
->d_alias
, &inode
->i_dentry
);
844 entry
->d_inode
= inode
;
845 spin_unlock(&dcache_lock
);
846 security_d_instantiate(entry
, inode
);
849 EXPORT_SYMBOL(d_instantiate_unique
);
852 * d_alloc_root - allocate root dentry
853 * @root_inode: inode to allocate the root for
855 * Allocate a root ("/") dentry for the inode given. The inode is
856 * instantiated and returned. %NULL is returned if there is insufficient
857 * memory or the inode passed is %NULL.
860 struct dentry
* d_alloc_root(struct inode
* root_inode
)
862 struct dentry
*res
= NULL
;
865 static const struct qstr name
= { .name
= "/", .len
= 1 };
867 res
= d_alloc(NULL
, &name
);
869 res
->d_sb
= root_inode
->i_sb
;
871 d_instantiate(res
, root_inode
);
877 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
880 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
881 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
882 return dentry_hashtable
+ (hash
& D_HASHMASK
);
886 * d_alloc_anon - allocate an anonymous dentry
887 * @inode: inode to allocate the dentry for
889 * This is similar to d_alloc_root. It is used by filesystems when
890 * creating a dentry for a given inode, often in the process of
891 * mapping a filehandle to a dentry. The returned dentry may be
892 * anonymous, or may have a full name (if the inode was already
893 * in the cache). The file system may need to make further
894 * efforts to connect this dentry into the dcache properly.
896 * When called on a directory inode, we must ensure that
897 * the inode only ever has one dentry. If a dentry is
898 * found, that is returned instead of allocating a new one.
900 * On successful return, the reference to the inode has been transferred
901 * to the dentry. If %NULL is returned (indicating kmalloc failure),
902 * the reference on the inode has not been released.
905 struct dentry
* d_alloc_anon(struct inode
*inode
)
907 static const struct qstr anonstring
= { .name
= "" };
911 if ((res
= d_find_alias(inode
))) {
916 tmp
= d_alloc(NULL
, &anonstring
);
920 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
922 spin_lock(&dcache_lock
);
923 res
= __d_find_alias(inode
, 0);
925 /* attach a disconnected dentry */
928 spin_lock(&res
->d_lock
);
929 res
->d_sb
= inode
->i_sb
;
931 res
->d_inode
= inode
;
932 res
->d_flags
|= DCACHE_DISCONNECTED
;
933 res
->d_flags
&= ~DCACHE_UNHASHED
;
934 list_add(&res
->d_alias
, &inode
->i_dentry
);
935 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
936 spin_unlock(&res
->d_lock
);
938 inode
= NULL
; /* don't drop reference */
940 spin_unlock(&dcache_lock
);
951 * d_splice_alias - splice a disconnected dentry into the tree if one exists
952 * @inode: the inode which may have a disconnected dentry
953 * @dentry: a negative dentry which we want to point to the inode.
955 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
956 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
957 * and return it, else simply d_add the inode to the dentry and return NULL.
959 * This is needed in the lookup routine of any filesystem that is exportable
960 * (via knfsd) so that we can build dcache paths to directories effectively.
962 * If a dentry was found and moved, then it is returned. Otherwise NULL
963 * is returned. This matches the expected return value of ->lookup.
966 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
968 struct dentry
*new = NULL
;
971 spin_lock(&dcache_lock
);
972 new = __d_find_alias(inode
, 1);
974 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
975 spin_unlock(&dcache_lock
);
976 security_d_instantiate(new, inode
);
981 /* d_instantiate takes dcache_lock, so we do it by hand */
982 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
983 dentry
->d_inode
= inode
;
984 spin_unlock(&dcache_lock
);
985 security_d_instantiate(dentry
, inode
);
989 d_add(dentry
, inode
);
995 * d_lookup - search for a dentry
996 * @parent: parent dentry
997 * @name: qstr of name we wish to find
999 * Searches the children of the parent dentry for the name in question. If
1000 * the dentry is found its reference count is incremented and the dentry
1001 * is returned. The caller must use d_put to free the entry when it has
1002 * finished using it. %NULL is returned on failure.
1004 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1005 * Memory barriers are used while updating and doing lockless traversal.
1006 * To avoid races with d_move while rename is happening, d_lock is used.
1008 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1009 * and name pointer in one structure pointed by d_qstr.
1011 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1012 * lookup is going on.
1014 * dentry_unused list is not updated even if lookup finds the required dentry
1015 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1016 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1019 * d_lookup() is protected against the concurrent renames in some unrelated
1020 * directory using the seqlockt_t rename_lock.
1023 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1025 struct dentry
* dentry
= NULL
;
1029 seq
= read_seqbegin(&rename_lock
);
1030 dentry
= __d_lookup(parent
, name
);
1033 } while (read_seqretry(&rename_lock
, seq
));
1037 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1039 unsigned int len
= name
->len
;
1040 unsigned int hash
= name
->hash
;
1041 const unsigned char *str
= name
->name
;
1042 struct hlist_head
*head
= d_hash(parent
,hash
);
1043 struct dentry
*found
= NULL
;
1044 struct hlist_node
*node
;
1048 hlist_for_each_rcu(node
, head
) {
1049 struct dentry
*dentry
;
1052 dentry
= hlist_entry(node
, struct dentry
, d_hash
);
1054 if (dentry
->d_name
.hash
!= hash
)
1056 if (dentry
->d_parent
!= parent
)
1059 spin_lock(&dentry
->d_lock
);
1062 * Recheck the dentry after taking the lock - d_move may have
1063 * changed things. Don't bother checking the hash because we're
1064 * about to compare the whole name anyway.
1066 if (dentry
->d_parent
!= parent
)
1070 * It is safe to compare names since d_move() cannot
1071 * change the qstr (protected by d_lock).
1073 qstr
= &dentry
->d_name
;
1074 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1075 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1078 if (qstr
->len
!= len
)
1080 if (memcmp(qstr
->name
, str
, len
))
1084 if (!d_unhashed(dentry
)) {
1085 atomic_inc(&dentry
->d_count
);
1088 spin_unlock(&dentry
->d_lock
);
1091 spin_unlock(&dentry
->d_lock
);
1099 * d_validate - verify dentry provided from insecure source
1100 * @dentry: The dentry alleged to be valid child of @dparent
1101 * @dparent: The parent dentry (known to be valid)
1102 * @hash: Hash of the dentry
1103 * @len: Length of the name
1105 * An insecure source has sent us a dentry, here we verify it and dget() it.
1106 * This is used by ncpfs in its readdir implementation.
1107 * Zero is returned in the dentry is invalid.
1110 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1112 struct hlist_head
*base
;
1113 struct hlist_node
*lhp
;
1115 /* Check whether the ptr might be valid at all.. */
1116 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1119 if (dentry
->d_parent
!= dparent
)
1122 spin_lock(&dcache_lock
);
1123 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1124 hlist_for_each(lhp
,base
) {
1125 /* hlist_for_each_rcu() not required for d_hash list
1126 * as it is parsed under dcache_lock
1128 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1129 __dget_locked(dentry
);
1130 spin_unlock(&dcache_lock
);
1134 spin_unlock(&dcache_lock
);
1140 * When a file is deleted, we have two options:
1141 * - turn this dentry into a negative dentry
1142 * - unhash this dentry and free it.
1144 * Usually, we want to just turn this into
1145 * a negative dentry, but if anybody else is
1146 * currently using the dentry or the inode
1147 * we can't do that and we fall back on removing
1148 * it from the hash queues and waiting for
1149 * it to be deleted later when it has no users
1153 * d_delete - delete a dentry
1154 * @dentry: The dentry to delete
1156 * Turn the dentry into a negative dentry if possible, otherwise
1157 * remove it from the hash queues so it can be deleted later
1160 void d_delete(struct dentry
* dentry
)
1164 * Are we the only user?
1166 spin_lock(&dcache_lock
);
1167 spin_lock(&dentry
->d_lock
);
1168 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1169 if (atomic_read(&dentry
->d_count
) == 1) {
1170 dentry_iput(dentry
);
1171 fsnotify_nameremove(dentry
, isdir
);
1175 if (!d_unhashed(dentry
))
1178 spin_unlock(&dentry
->d_lock
);
1179 spin_unlock(&dcache_lock
);
1181 fsnotify_nameremove(dentry
, isdir
);
1184 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1187 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1188 hlist_add_head_rcu(&entry
->d_hash
, list
);
1192 * d_rehash - add an entry back to the hash
1193 * @entry: dentry to add to the hash
1195 * Adds a dentry to the hash according to its name.
1198 void d_rehash(struct dentry
* entry
)
1200 struct hlist_head
*list
= d_hash(entry
->d_parent
, entry
->d_name
.hash
);
1202 spin_lock(&dcache_lock
);
1203 spin_lock(&entry
->d_lock
);
1204 __d_rehash(entry
, list
);
1205 spin_unlock(&entry
->d_lock
);
1206 spin_unlock(&dcache_lock
);
1209 #define do_switch(x,y) do { \
1210 __typeof__ (x) __tmp = x; \
1211 x = y; y = __tmp; } while (0)
1214 * When switching names, the actual string doesn't strictly have to
1215 * be preserved in the target - because we're dropping the target
1216 * anyway. As such, we can just do a simple memcpy() to copy over
1217 * the new name before we switch.
1219 * Note that we have to be a lot more careful about getting the hash
1220 * switched - we have to switch the hash value properly even if it
1221 * then no longer matches the actual (corrupted) string of the target.
1222 * The hash value has to match the hash queue that the dentry is on..
1224 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1226 if (dname_external(target
)) {
1227 if (dname_external(dentry
)) {
1229 * Both external: swap the pointers
1231 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1234 * dentry:internal, target:external. Steal target's
1235 * storage and make target internal.
1237 dentry
->d_name
.name
= target
->d_name
.name
;
1238 target
->d_name
.name
= target
->d_iname
;
1241 if (dname_external(dentry
)) {
1243 * dentry:external, target:internal. Give dentry's
1244 * storage to target and make dentry internal
1246 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1247 target
->d_name
.len
+ 1);
1248 target
->d_name
.name
= dentry
->d_name
.name
;
1249 dentry
->d_name
.name
= dentry
->d_iname
;
1252 * Both are internal. Just copy target to dentry
1254 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1255 target
->d_name
.len
+ 1);
1261 * We cannibalize "target" when moving dentry on top of it,
1262 * because it's going to be thrown away anyway. We could be more
1263 * polite about it, though.
1265 * This forceful removal will result in ugly /proc output if
1266 * somebody holds a file open that got deleted due to a rename.
1267 * We could be nicer about the deleted file, and let it show
1268 * up under the name it got deleted rather than the name that
1273 * d_move - move a dentry
1274 * @dentry: entry to move
1275 * @target: new dentry
1277 * Update the dcache to reflect the move of a file name. Negative
1278 * dcache entries should not be moved in this way.
1281 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1283 struct hlist_head
*list
;
1285 if (!dentry
->d_inode
)
1286 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1288 spin_lock(&dcache_lock
);
1289 write_seqlock(&rename_lock
);
1291 * XXXX: do we really need to take target->d_lock?
1293 if (target
< dentry
) {
1294 spin_lock(&target
->d_lock
);
1295 spin_lock(&dentry
->d_lock
);
1297 spin_lock(&dentry
->d_lock
);
1298 spin_lock(&target
->d_lock
);
1301 /* Move the dentry to the target hash queue, if on different bucket */
1302 if (dentry
->d_flags
& DCACHE_UNHASHED
)
1303 goto already_unhashed
;
1305 hlist_del_rcu(&dentry
->d_hash
);
1308 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1309 __d_rehash(dentry
, list
);
1311 /* Unhash the target: dput() will then get rid of it */
1314 list_del(&dentry
->d_child
);
1315 list_del(&target
->d_child
);
1317 /* Switch the names.. */
1318 switch_names(dentry
, target
);
1319 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1320 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1322 /* ... and switch the parents */
1323 if (IS_ROOT(dentry
)) {
1324 dentry
->d_parent
= target
->d_parent
;
1325 target
->d_parent
= target
;
1326 INIT_LIST_HEAD(&target
->d_child
);
1328 do_switch(dentry
->d_parent
, target
->d_parent
);
1330 /* And add them back to the (new) parent lists */
1331 list_add(&target
->d_child
, &target
->d_parent
->d_subdirs
);
1334 list_add(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
1335 spin_unlock(&target
->d_lock
);
1336 spin_unlock(&dentry
->d_lock
);
1337 write_sequnlock(&rename_lock
);
1338 spin_unlock(&dcache_lock
);
1342 * d_path - return the path of a dentry
1343 * @dentry: dentry to report
1344 * @vfsmnt: vfsmnt to which the dentry belongs
1345 * @root: root dentry
1346 * @rootmnt: vfsmnt to which the root dentry belongs
1347 * @buffer: buffer to return value in
1348 * @buflen: buffer length
1350 * Convert a dentry into an ASCII path name. If the entry has been deleted
1351 * the string " (deleted)" is appended. Note that this is ambiguous.
1353 * Returns the buffer or an error code if the path was too long.
1355 * "buflen" should be positive. Caller holds the dcache_lock.
1357 static char * __d_path( struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1358 struct dentry
*root
, struct vfsmount
*rootmnt
,
1359 char *buffer
, int buflen
)
1361 char * end
= buffer
+buflen
;
1367 if (!IS_ROOT(dentry
) && d_unhashed(dentry
)) {
1372 memcpy(end
, " (deleted)", 10);
1382 struct dentry
* parent
;
1384 if (dentry
== root
&& vfsmnt
== rootmnt
)
1386 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1388 spin_lock(&vfsmount_lock
);
1389 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1390 spin_unlock(&vfsmount_lock
);
1393 dentry
= vfsmnt
->mnt_mountpoint
;
1394 vfsmnt
= vfsmnt
->mnt_parent
;
1395 spin_unlock(&vfsmount_lock
);
1398 parent
= dentry
->d_parent
;
1400 namelen
= dentry
->d_name
.len
;
1401 buflen
-= namelen
+ 1;
1405 memcpy(end
, dentry
->d_name
.name
, namelen
);
1414 namelen
= dentry
->d_name
.len
;
1418 retval
-= namelen
-1; /* hit the slash */
1419 memcpy(retval
, dentry
->d_name
.name
, namelen
);
1422 return ERR_PTR(-ENAMETOOLONG
);
1425 /* write full pathname into buffer and return start of pathname */
1426 char * d_path(struct dentry
*dentry
, struct vfsmount
*vfsmnt
,
1427 char *buf
, int buflen
)
1430 struct vfsmount
*rootmnt
;
1431 struct dentry
*root
;
1433 read_lock(¤t
->fs
->lock
);
1434 rootmnt
= mntget(current
->fs
->rootmnt
);
1435 root
= dget(current
->fs
->root
);
1436 read_unlock(¤t
->fs
->lock
);
1437 spin_lock(&dcache_lock
);
1438 res
= __d_path(dentry
, vfsmnt
, root
, rootmnt
, buf
, buflen
);
1439 spin_unlock(&dcache_lock
);
1446 * NOTE! The user-level library version returns a
1447 * character pointer. The kernel system call just
1448 * returns the length of the buffer filled (which
1449 * includes the ending '\0' character), or a negative
1450 * error value. So libc would do something like
1452 * char *getcwd(char * buf, size_t size)
1456 * retval = sys_getcwd(buf, size);
1463 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1466 struct vfsmount
*pwdmnt
, *rootmnt
;
1467 struct dentry
*pwd
, *root
;
1468 char *page
= (char *) __get_free_page(GFP_USER
);
1473 read_lock(¤t
->fs
->lock
);
1474 pwdmnt
= mntget(current
->fs
->pwdmnt
);
1475 pwd
= dget(current
->fs
->pwd
);
1476 rootmnt
= mntget(current
->fs
->rootmnt
);
1477 root
= dget(current
->fs
->root
);
1478 read_unlock(¤t
->fs
->lock
);
1481 /* Has the current directory has been unlinked? */
1482 spin_lock(&dcache_lock
);
1483 if (pwd
->d_parent
== pwd
|| !d_unhashed(pwd
)) {
1487 cwd
= __d_path(pwd
, pwdmnt
, root
, rootmnt
, page
, PAGE_SIZE
);
1488 spin_unlock(&dcache_lock
);
1490 error
= PTR_ERR(cwd
);
1495 len
= PAGE_SIZE
+ page
- cwd
;
1498 if (copy_to_user(buf
, cwd
, len
))
1502 spin_unlock(&dcache_lock
);
1509 free_page((unsigned long) page
);
1514 * Test whether new_dentry is a subdirectory of old_dentry.
1516 * Trivially implemented using the dcache structure
1520 * is_subdir - is new dentry a subdirectory of old_dentry
1521 * @new_dentry: new dentry
1522 * @old_dentry: old dentry
1524 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1525 * Returns 0 otherwise.
1526 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1529 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
1532 struct dentry
* saved
= new_dentry
;
1535 /* need rcu_readlock to protect against the d_parent trashing due to
1540 /* for restarting inner loop in case of seq retry */
1543 seq
= read_seqbegin(&rename_lock
);
1545 if (new_dentry
!= old_dentry
) {
1546 struct dentry
* parent
= new_dentry
->d_parent
;
1547 if (parent
== new_dentry
)
1549 new_dentry
= parent
;
1555 } while (read_seqretry(&rename_lock
, seq
));
1561 void d_genocide(struct dentry
*root
)
1563 struct dentry
*this_parent
= root
;
1564 struct list_head
*next
;
1566 spin_lock(&dcache_lock
);
1568 next
= this_parent
->d_subdirs
.next
;
1570 while (next
!= &this_parent
->d_subdirs
) {
1571 struct list_head
*tmp
= next
;
1572 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1574 if (d_unhashed(dentry
)||!dentry
->d_inode
)
1576 if (!list_empty(&dentry
->d_subdirs
)) {
1577 this_parent
= dentry
;
1580 atomic_dec(&dentry
->d_count
);
1582 if (this_parent
!= root
) {
1583 next
= this_parent
->d_child
.next
;
1584 atomic_dec(&this_parent
->d_count
);
1585 this_parent
= this_parent
->d_parent
;
1588 spin_unlock(&dcache_lock
);
1592 * find_inode_number - check for dentry with name
1593 * @dir: directory to check
1594 * @name: Name to find.
1596 * Check whether a dentry already exists for the given name,
1597 * and return the inode number if it has an inode. Otherwise
1600 * This routine is used to post-process directory listings for
1601 * filesystems using synthetic inode numbers, and is necessary
1602 * to keep getcwd() working.
1605 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
1607 struct dentry
* dentry
;
1611 * Check for a fs-specific hash function. Note that we must
1612 * calculate the standard hash first, as the d_op->d_hash()
1613 * routine may choose to leave the hash value unchanged.
1615 name
->hash
= full_name_hash(name
->name
, name
->len
);
1616 if (dir
->d_op
&& dir
->d_op
->d_hash
)
1618 if (dir
->d_op
->d_hash(dir
, name
) != 0)
1622 dentry
= d_lookup(dir
, name
);
1625 if (dentry
->d_inode
)
1626 ino
= dentry
->d_inode
->i_ino
;
1633 static __initdata
unsigned long dhash_entries
;
1634 static int __init
set_dhash_entries(char *str
)
1638 dhash_entries
= simple_strtoul(str
, &str
, 0);
1641 __setup("dhash_entries=", set_dhash_entries
);
1643 static void __init
dcache_init_early(void)
1647 /* If hashes are distributed across NUMA nodes, defer
1648 * hash allocation until vmalloc space is available.
1654 alloc_large_system_hash("Dentry cache",
1655 sizeof(struct hlist_head
),
1663 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1664 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1667 static void __init
dcache_init(unsigned long mempages
)
1672 * A constructor could be added for stable state like the lists,
1673 * but it is probably not worth it because of the cache nature
1676 dentry_cache
= kmem_cache_create("dentry_cache",
1677 sizeof(struct dentry
),
1679 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
,
1682 set_shrinker(DEFAULT_SEEKS
, shrink_dcache_memory
);
1684 /* Hash may have been set up in dcache_init_early */
1689 alloc_large_system_hash("Dentry cache",
1690 sizeof(struct hlist_head
),
1698 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
1699 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
1702 /* SLAB cache for __getname() consumers */
1703 kmem_cache_t
*names_cachep
;
1705 /* SLAB cache for file structures */
1706 kmem_cache_t
*filp_cachep
;
1708 EXPORT_SYMBOL(d_genocide
);
1710 extern void bdev_cache_init(void);
1711 extern void chrdev_init(void);
1713 void __init
vfs_caches_init_early(void)
1715 dcache_init_early();
1719 void __init
vfs_caches_init(unsigned long mempages
)
1721 unsigned long reserve
;
1723 /* Base hash sizes on available memory, with a reserve equal to
1724 150% of current kernel size */
1726 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
1727 mempages
-= reserve
;
1729 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
1730 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1732 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
1733 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, filp_ctor
, filp_dtor
);
1735 dcache_init(mempages
);
1736 inode_init(mempages
);
1737 files_init(mempages
);
1743 EXPORT_SYMBOL(d_alloc
);
1744 EXPORT_SYMBOL(d_alloc_anon
);
1745 EXPORT_SYMBOL(d_alloc_root
);
1746 EXPORT_SYMBOL(d_delete
);
1747 EXPORT_SYMBOL(d_find_alias
);
1748 EXPORT_SYMBOL(d_instantiate
);
1749 EXPORT_SYMBOL(d_invalidate
);
1750 EXPORT_SYMBOL(d_lookup
);
1751 EXPORT_SYMBOL(d_move
);
1752 EXPORT_SYMBOL(d_path
);
1753 EXPORT_SYMBOL(d_prune_aliases
);
1754 EXPORT_SYMBOL(d_rehash
);
1755 EXPORT_SYMBOL(d_splice_alias
);
1756 EXPORT_SYMBOL(d_validate
);
1757 EXPORT_SYMBOL(dget_locked
);
1758 EXPORT_SYMBOL(dput
);
1759 EXPORT_SYMBOL(find_inode_number
);
1760 EXPORT_SYMBOL(have_submounts
);
1761 EXPORT_SYMBOL(names_cachep
);
1762 EXPORT_SYMBOL(shrink_dcache_parent
);
1763 EXPORT_SYMBOL(shrink_dcache_sb
);