[PATCH] x86: fix EFI memory map parsing
[linux-2.6/verdex.git] / arch / i386 / kernel / efi.c
blob850648ae8305c17249307985790af915157f94e2
1 /*
2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
12 * All EFI Runtime Services are not implemented yet as EFI only
13 * supports physical mode addressing on SoftSDV. This is to be fixed
14 * in a future version. --drummond 1999-07-20
16 * Implemented EFI runtime services and virtual mode calls. --davidm
18 * Goutham Rao: <goutham.rao@intel.com>
19 * Skip non-WB memory and ignore empty memory ranges.
22 #include <linux/config.h>
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/types.h>
27 #include <linux/time.h>
28 #include <linux/spinlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/ioport.h>
31 #include <linux/module.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
35 #include <asm/setup.h>
36 #include <asm/io.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/desc.h>
41 #include <asm/tlbflush.h>
43 #define EFI_DEBUG 0
44 #define PFX "EFI: "
46 extern efi_status_t asmlinkage efi_call_phys(void *, ...);
48 struct efi efi;
49 EXPORT_SYMBOL(efi);
50 static struct efi efi_phys;
51 struct efi_memory_map memmap;
54 * We require an early boot_ioremap mapping mechanism initially
56 extern void * boot_ioremap(unsigned long, unsigned long);
59 * To make EFI call EFI runtime service in physical addressing mode we need
60 * prelog/epilog before/after the invocation to disable interrupt, to
61 * claim EFI runtime service handler exclusively and to duplicate a memory in
62 * low memory space say 0 - 3G.
65 static unsigned long efi_rt_eflags;
66 static DEFINE_SPINLOCK(efi_rt_lock);
67 static pgd_t efi_bak_pg_dir_pointer[2];
69 static void efi_call_phys_prelog(void)
71 unsigned long cr4;
72 unsigned long temp;
74 spin_lock(&efi_rt_lock);
75 local_irq_save(efi_rt_eflags);
78 * If I don't have PSE, I should just duplicate two entries in page
79 * directory. If I have PSE, I just need to duplicate one entry in
80 * page directory.
82 __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4));
84 if (cr4 & X86_CR4_PSE) {
85 efi_bak_pg_dir_pointer[0].pgd =
86 swapper_pg_dir[pgd_index(0)].pgd;
87 swapper_pg_dir[0].pgd =
88 swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
89 } else {
90 efi_bak_pg_dir_pointer[0].pgd =
91 swapper_pg_dir[pgd_index(0)].pgd;
92 efi_bak_pg_dir_pointer[1].pgd =
93 swapper_pg_dir[pgd_index(0x400000)].pgd;
94 swapper_pg_dir[pgd_index(0)].pgd =
95 swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
96 temp = PAGE_OFFSET + 0x400000;
97 swapper_pg_dir[pgd_index(0x400000)].pgd =
98 swapper_pg_dir[pgd_index(temp)].pgd;
102 * After the lock is released, the original page table is restored.
104 local_flush_tlb();
106 cpu_gdt_descr[0].address = __pa(cpu_gdt_descr[0].address);
107 __asm__ __volatile__("lgdt %0":"=m"
108 (*(struct Xgt_desc_struct *) __pa(&cpu_gdt_descr[0])));
111 static void efi_call_phys_epilog(void)
113 unsigned long cr4;
115 cpu_gdt_descr[0].address =
116 (unsigned long) __va(cpu_gdt_descr[0].address);
117 __asm__ __volatile__("lgdt %0":"=m"(cpu_gdt_descr));
118 __asm__ __volatile__("movl %%cr4, %0":"=r"(cr4));
120 if (cr4 & X86_CR4_PSE) {
121 swapper_pg_dir[pgd_index(0)].pgd =
122 efi_bak_pg_dir_pointer[0].pgd;
123 } else {
124 swapper_pg_dir[pgd_index(0)].pgd =
125 efi_bak_pg_dir_pointer[0].pgd;
126 swapper_pg_dir[pgd_index(0x400000)].pgd =
127 efi_bak_pg_dir_pointer[1].pgd;
131 * After the lock is released, the original page table is restored.
133 local_flush_tlb();
135 local_irq_restore(efi_rt_eflags);
136 spin_unlock(&efi_rt_lock);
139 static efi_status_t
140 phys_efi_set_virtual_address_map(unsigned long memory_map_size,
141 unsigned long descriptor_size,
142 u32 descriptor_version,
143 efi_memory_desc_t *virtual_map)
145 efi_status_t status;
147 efi_call_phys_prelog();
148 status = efi_call_phys(efi_phys.set_virtual_address_map,
149 memory_map_size, descriptor_size,
150 descriptor_version, virtual_map);
151 efi_call_phys_epilog();
152 return status;
155 static efi_status_t
156 phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
158 efi_status_t status;
160 efi_call_phys_prelog();
161 status = efi_call_phys(efi_phys.get_time, tm, tc);
162 efi_call_phys_epilog();
163 return status;
166 inline int efi_set_rtc_mmss(unsigned long nowtime)
168 int real_seconds, real_minutes;
169 efi_status_t status;
170 efi_time_t eft;
171 efi_time_cap_t cap;
173 spin_lock(&efi_rt_lock);
174 status = efi.get_time(&eft, &cap);
175 spin_unlock(&efi_rt_lock);
176 if (status != EFI_SUCCESS)
177 panic("Ooops, efitime: can't read time!\n");
178 real_seconds = nowtime % 60;
179 real_minutes = nowtime / 60;
181 if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
182 real_minutes += 30;
183 real_minutes %= 60;
185 eft.minute = real_minutes;
186 eft.second = real_seconds;
188 if (status != EFI_SUCCESS) {
189 printk("Ooops: efitime: can't read time!\n");
190 return -1;
192 return 0;
195 * This should only be used during kernel init and before runtime
196 * services have been remapped, therefore, we'll need to call in physical
197 * mode. Note, this call isn't used later, so mark it __init.
199 inline unsigned long __init efi_get_time(void)
201 efi_status_t status;
202 efi_time_t eft;
203 efi_time_cap_t cap;
205 status = phys_efi_get_time(&eft, &cap);
206 if (status != EFI_SUCCESS)
207 printk("Oops: efitime: can't read time status: 0x%lx\n",status);
209 return mktime(eft.year, eft.month, eft.day, eft.hour,
210 eft.minute, eft.second);
213 int is_available_memory(efi_memory_desc_t * md)
215 if (!(md->attribute & EFI_MEMORY_WB))
216 return 0;
218 switch (md->type) {
219 case EFI_LOADER_CODE:
220 case EFI_LOADER_DATA:
221 case EFI_BOOT_SERVICES_CODE:
222 case EFI_BOOT_SERVICES_DATA:
223 case EFI_CONVENTIONAL_MEMORY:
224 return 1;
226 return 0;
230 * We need to map the EFI memory map again after paging_init().
232 void __init efi_map_memmap(void)
234 memmap.map = NULL;
236 memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
237 (memmap.nr_map * memmap.desc_size));
238 if (memmap.map == NULL)
239 printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
241 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
244 #if EFI_DEBUG
245 static void __init print_efi_memmap(void)
247 efi_memory_desc_t *md;
248 void *p;
249 int i;
251 for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
252 md = p;
253 printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
254 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
255 i, md->type, md->attribute, md->phys_addr,
256 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
257 (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
260 #endif /* EFI_DEBUG */
263 * Walks the EFI memory map and calls CALLBACK once for each EFI
264 * memory descriptor that has memory that is available for kernel use.
266 void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
268 int prev_valid = 0;
269 struct range {
270 unsigned long start;
271 unsigned long end;
272 } prev, curr;
273 efi_memory_desc_t *md;
274 unsigned long start, end;
275 void *p;
277 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
278 md = p;
280 if ((md->num_pages == 0) || (!is_available_memory(md)))
281 continue;
283 curr.start = md->phys_addr;
284 curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
286 if (!prev_valid) {
287 prev = curr;
288 prev_valid = 1;
289 } else {
290 if (curr.start < prev.start)
291 printk(KERN_INFO PFX "Unordered memory map\n");
292 if (prev.end == curr.start)
293 prev.end = curr.end;
294 else {
295 start =
296 (unsigned long) (PAGE_ALIGN(prev.start));
297 end = (unsigned long) (prev.end & PAGE_MASK);
298 if ((end > start)
299 && (*callback) (start, end, arg) < 0)
300 return;
301 prev = curr;
305 if (prev_valid) {
306 start = (unsigned long) PAGE_ALIGN(prev.start);
307 end = (unsigned long) (prev.end & PAGE_MASK);
308 if (end > start)
309 (*callback) (start, end, arg);
313 void __init efi_init(void)
315 efi_config_table_t *config_tables;
316 efi_runtime_services_t *runtime;
317 efi_char16_t *c16;
318 char vendor[100] = "unknown";
319 unsigned long num_config_tables;
320 int i = 0;
322 memset(&efi, 0, sizeof(efi) );
323 memset(&efi_phys, 0, sizeof(efi_phys));
325 efi_phys.systab = EFI_SYSTAB;
326 memmap.phys_map = EFI_MEMMAP;
327 memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
328 memmap.desc_version = EFI_MEMDESC_VERSION;
329 memmap.desc_size = EFI_MEMDESC_SIZE;
331 efi.systab = (efi_system_table_t *)
332 boot_ioremap((unsigned long) efi_phys.systab,
333 sizeof(efi_system_table_t));
335 * Verify the EFI Table
337 if (efi.systab == NULL)
338 printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
339 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
340 printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
341 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
342 printk(KERN_ERR PFX
343 "Warning: EFI system table major version mismatch: "
344 "got %d.%02d, expected %d.%02d\n",
345 efi.systab->hdr.revision >> 16,
346 efi.systab->hdr.revision & 0xffff,
347 EFI_SYSTEM_TABLE_REVISION >> 16,
348 EFI_SYSTEM_TABLE_REVISION & 0xffff);
350 * Grab some details from the system table
352 num_config_tables = efi.systab->nr_tables;
353 config_tables = (efi_config_table_t *)efi.systab->tables;
354 runtime = efi.systab->runtime;
357 * Show what we know for posterity
359 c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
360 if (c16) {
361 for (i = 0; i < sizeof(vendor) && *c16; ++i)
362 vendor[i] = *c16++;
363 vendor[i] = '\0';
364 } else
365 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
367 printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
368 efi.systab->hdr.revision >> 16,
369 efi.systab->hdr.revision & 0xffff, vendor);
372 * Let's see what config tables the firmware passed to us.
374 config_tables = (efi_config_table_t *)
375 boot_ioremap((unsigned long) config_tables,
376 num_config_tables * sizeof(efi_config_table_t));
378 if (config_tables == NULL)
379 printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
381 for (i = 0; i < num_config_tables; i++) {
382 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
383 efi.mps = (void *)config_tables[i].table;
384 printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
385 } else
386 if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
387 efi.acpi20 = __va(config_tables[i].table);
388 printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
389 } else
390 if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
391 efi.acpi = __va(config_tables[i].table);
392 printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
393 } else
394 if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
395 efi.smbios = (void *) config_tables[i].table;
396 printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
397 } else
398 if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
399 efi.hcdp = (void *)config_tables[i].table;
400 printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
401 } else
402 if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
403 efi.uga = (void *)config_tables[i].table;
404 printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
407 printk("\n");
410 * Check out the runtime services table. We need to map
411 * the runtime services table so that we can grab the physical
412 * address of several of the EFI runtime functions, needed to
413 * set the firmware into virtual mode.
416 runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
417 runtime,
418 sizeof(efi_runtime_services_t));
419 if (runtime != NULL) {
421 * We will only need *early* access to the following
422 * two EFI runtime services before set_virtual_address_map
423 * is invoked.
425 efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
426 efi_phys.set_virtual_address_map =
427 (efi_set_virtual_address_map_t *)
428 runtime->set_virtual_address_map;
429 } else
430 printk(KERN_ERR PFX "Could not map the runtime service table!\n");
432 /* Map the EFI memory map for use until paging_init() */
433 memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
434 if (memmap.map == NULL)
435 printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
437 memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
439 #if EFI_DEBUG
440 print_efi_memmap();
441 #endif
444 static inline void __init check_range_for_systab(efi_memory_desc_t *md)
446 if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
447 ((unsigned long)efi_phys.systab < md->phys_addr +
448 ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
449 unsigned long addr;
451 addr = md->virt_addr - md->phys_addr +
452 (unsigned long)efi_phys.systab;
453 efi.systab = (efi_system_table_t *)addr;
458 * This function will switch the EFI runtime services to virtual mode.
459 * Essentially, look through the EFI memmap and map every region that
460 * has the runtime attribute bit set in its memory descriptor and update
461 * that memory descriptor with the virtual address obtained from ioremap().
462 * This enables the runtime services to be called without having to
463 * thunk back into physical mode for every invocation.
466 void __init efi_enter_virtual_mode(void)
468 efi_memory_desc_t *md;
469 efi_status_t status;
470 void *p;
472 efi.systab = NULL;
474 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
475 md = p;
477 if (!(md->attribute & EFI_MEMORY_RUNTIME))
478 continue;
480 md->virt_addr = (unsigned long)ioremap(md->phys_addr,
481 md->num_pages << EFI_PAGE_SHIFT);
482 if (!(unsigned long)md->virt_addr) {
483 printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
484 (unsigned long)md->phys_addr);
486 /* update the virtual address of the EFI system table */
487 check_range_for_systab(md);
490 if (!efi.systab)
491 BUG();
493 status = phys_efi_set_virtual_address_map(
494 memmap.desc_size * memmap.nr_map,
495 memmap.desc_size,
496 memmap.desc_version,
497 memmap.phys_map);
499 if (status != EFI_SUCCESS) {
500 printk (KERN_ALERT "You are screwed! "
501 "Unable to switch EFI into virtual mode "
502 "(status=%lx)\n", status);
503 panic("EFI call to SetVirtualAddressMap() failed!");
507 * Now that EFI is in virtual mode, update the function
508 * pointers in the runtime service table to the new virtual addresses.
511 efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
512 efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
513 efi.get_wakeup_time = (efi_get_wakeup_time_t *)
514 efi.systab->runtime->get_wakeup_time;
515 efi.set_wakeup_time = (efi_set_wakeup_time_t *)
516 efi.systab->runtime->set_wakeup_time;
517 efi.get_variable = (efi_get_variable_t *)
518 efi.systab->runtime->get_variable;
519 efi.get_next_variable = (efi_get_next_variable_t *)
520 efi.systab->runtime->get_next_variable;
521 efi.set_variable = (efi_set_variable_t *)
522 efi.systab->runtime->set_variable;
523 efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
524 efi.systab->runtime->get_next_high_mono_count;
525 efi.reset_system = (efi_reset_system_t *)
526 efi.systab->runtime->reset_system;
529 void __init
530 efi_initialize_iomem_resources(struct resource *code_resource,
531 struct resource *data_resource)
533 struct resource *res;
534 efi_memory_desc_t *md;
535 void *p;
537 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
538 md = p;
540 if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
541 0x100000000ULL)
542 continue;
543 res = alloc_bootmem_low(sizeof(struct resource));
544 switch (md->type) {
545 case EFI_RESERVED_TYPE:
546 res->name = "Reserved Memory";
547 break;
548 case EFI_LOADER_CODE:
549 res->name = "Loader Code";
550 break;
551 case EFI_LOADER_DATA:
552 res->name = "Loader Data";
553 break;
554 case EFI_BOOT_SERVICES_DATA:
555 res->name = "BootServices Data";
556 break;
557 case EFI_BOOT_SERVICES_CODE:
558 res->name = "BootServices Code";
559 break;
560 case EFI_RUNTIME_SERVICES_CODE:
561 res->name = "Runtime Service Code";
562 break;
563 case EFI_RUNTIME_SERVICES_DATA:
564 res->name = "Runtime Service Data";
565 break;
566 case EFI_CONVENTIONAL_MEMORY:
567 res->name = "Conventional Memory";
568 break;
569 case EFI_UNUSABLE_MEMORY:
570 res->name = "Unusable Memory";
571 break;
572 case EFI_ACPI_RECLAIM_MEMORY:
573 res->name = "ACPI Reclaim";
574 break;
575 case EFI_ACPI_MEMORY_NVS:
576 res->name = "ACPI NVS";
577 break;
578 case EFI_MEMORY_MAPPED_IO:
579 res->name = "Memory Mapped IO";
580 break;
581 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
582 res->name = "Memory Mapped IO Port Space";
583 break;
584 default:
585 res->name = "Reserved";
586 break;
588 res->start = md->phys_addr;
589 res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
590 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
591 if (request_resource(&iomem_resource, res) < 0)
592 printk(KERN_ERR PFX "Failed to allocate res %s : 0x%lx-0x%lx\n",
593 res->name, res->start, res->end);
595 * We don't know which region contains kernel data so we try
596 * it repeatedly and let the resource manager test it.
598 if (md->type == EFI_CONVENTIONAL_MEMORY) {
599 request_resource(res, code_resource);
600 request_resource(res, data_resource);
601 #ifdef CONFIG_KEXEC
602 request_resource(res, &crashk_res);
603 #endif
609 * Convenience functions to obtain memory types and attributes
612 u32 efi_mem_type(unsigned long phys_addr)
614 efi_memory_desc_t *md;
615 void *p;
617 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
618 md = p;
619 if ((md->phys_addr <= phys_addr) && (phys_addr <
620 (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
621 return md->type;
623 return 0;
626 u64 efi_mem_attributes(unsigned long phys_addr)
628 efi_memory_desc_t *md;
629 void *p;
631 for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
632 md = p;
633 if ((md->phys_addr <= phys_addr) && (phys_addr <
634 (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
635 return md->attribute;
637 return 0;