2 * linux/drivers/block/cfq-iosched.c
4 * CFQ, or complete fairness queueing, disk scheduler.
6 * Based on ideas from a previously unfinished io
7 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
9 * Copyright (C) 2003 Jens Axboe <axboe@suse.de>
11 #include <linux/kernel.h>
13 #include <linux/blkdev.h>
14 #include <linux/elevator.h>
15 #include <linux/bio.h>
16 #include <linux/config.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/compiler.h>
21 #include <linux/hash.h>
22 #include <linux/rbtree.h>
23 #include <linux/mempool.h>
24 #include <linux/ioprio.h>
25 #include <linux/writeback.h>
30 static int cfq_quantum
= 4; /* max queue in one round of service */
31 static int cfq_queued
= 8; /* minimum rq allocate limit per-queue*/
32 static int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
33 static int cfq_back_max
= 16 * 1024; /* maximum backwards seek, in KiB */
34 static int cfq_back_penalty
= 2; /* penalty of a backwards seek */
36 static int cfq_slice_sync
= HZ
/ 10;
37 static int cfq_slice_async
= HZ
/ 25;
38 static int cfq_slice_async_rq
= 2;
39 static int cfq_slice_idle
= HZ
/ 100;
41 #define CFQ_IDLE_GRACE (HZ / 10)
42 #define CFQ_SLICE_SCALE (5)
44 #define CFQ_KEY_ASYNC (0)
45 #define CFQ_KEY_ANY (0xffff)
48 * disable queueing at the driver/hardware level
50 static int cfq_max_depth
= 2;
53 * for the hash of cfqq inside the cfqd
55 #define CFQ_QHASH_SHIFT 6
56 #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT)
57 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
60 * for the hash of crq inside the cfqq
62 #define CFQ_MHASH_SHIFT 6
63 #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3)
64 #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT)
65 #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
66 #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
67 #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash)
69 #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list)
70 #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist)
72 #define RQ_DATA(rq) (rq)->elevator_private
78 #define RB_EMPTY(node) ((node)->rb_node == NULL)
79 #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE
80 #define RB_CLEAR(node) do { \
81 (node)->rb_parent = NULL; \
82 RB_CLEAR_COLOR((node)); \
83 (node)->rb_right = NULL; \
84 (node)->rb_left = NULL; \
86 #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL)
87 #define ON_RB(node) ((node)->rb_color != RB_NONE)
88 #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node)
89 #define rq_rb_key(rq) (rq)->sector
91 static kmem_cache_t
*crq_pool
;
92 static kmem_cache_t
*cfq_pool
;
93 static kmem_cache_t
*cfq_ioc_pool
;
95 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
96 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
97 #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
98 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
103 #define cfq_cfqq_dispatched(cfqq) \
104 ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
106 #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC)
108 #define cfq_cfqq_sync(cfqq) \
109 (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
112 * Per block device queue structure
116 request_queue_t
*queue
;
119 * rr list of queues with requests and the count of them
121 struct list_head rr_list
[CFQ_PRIO_LISTS
];
122 struct list_head busy_rr
;
123 struct list_head cur_rr
;
124 struct list_head idle_rr
;
125 unsigned int busy_queues
;
128 * non-ordered list of empty cfqq's
130 struct list_head empty_list
;
135 struct hlist_head
*cfq_hash
;
138 * global crq hash for all queues
140 struct hlist_head
*crq_hash
;
142 unsigned int max_queued
;
149 * schedule slice state info
152 * idle window management
154 struct timer_list idle_slice_timer
;
155 struct work_struct unplug_work
;
157 struct cfq_queue
*active_queue
;
158 struct cfq_io_context
*active_cic
;
159 int cur_prio
, cur_end_prio
;
160 unsigned int dispatch_slice
;
162 struct timer_list idle_class_timer
;
164 sector_t last_sector
;
165 unsigned long last_end_request
;
167 unsigned int rq_starved
;
170 * tunables, see top of file
172 unsigned int cfq_quantum
;
173 unsigned int cfq_queued
;
174 unsigned int cfq_fifo_expire
[2];
175 unsigned int cfq_back_penalty
;
176 unsigned int cfq_back_max
;
177 unsigned int cfq_slice
[2];
178 unsigned int cfq_slice_async_rq
;
179 unsigned int cfq_slice_idle
;
180 unsigned int cfq_max_depth
;
184 * Per process-grouping structure
187 /* reference count */
189 /* parent cfq_data */
190 struct cfq_data
*cfqd
;
191 /* cfqq lookup hash */
192 struct hlist_node cfq_hash
;
195 /* on either rr or empty list of cfqd */
196 struct list_head cfq_list
;
197 /* sorted list of pending requests */
198 struct rb_root sort_list
;
199 /* if fifo isn't expired, next request to serve */
200 struct cfq_rq
*next_crq
;
201 /* requests queued in sort_list */
203 /* currently allocated requests */
205 /* fifo list of requests in sort_list */
206 struct list_head fifo
;
208 unsigned long slice_start
;
209 unsigned long slice_end
;
210 unsigned long slice_left
;
211 unsigned long service_last
;
213 /* number of requests that are on the dispatch list */
216 /* io prio of this group */
217 unsigned short ioprio
, org_ioprio
;
218 unsigned short ioprio_class
, org_ioprio_class
;
220 /* various state flags, see below */
225 struct rb_node rb_node
;
227 struct request
*request
;
228 struct hlist_node hash
;
230 struct cfq_queue
*cfq_queue
;
231 struct cfq_io_context
*io_context
;
233 unsigned int crq_flags
;
236 enum cfqq_state_flags
{
237 CFQ_CFQQ_FLAG_on_rr
= 0,
238 CFQ_CFQQ_FLAG_wait_request
,
239 CFQ_CFQQ_FLAG_must_alloc
,
240 CFQ_CFQQ_FLAG_must_alloc_slice
,
241 CFQ_CFQQ_FLAG_must_dispatch
,
242 CFQ_CFQQ_FLAG_fifo_expire
,
243 CFQ_CFQQ_FLAG_idle_window
,
244 CFQ_CFQQ_FLAG_prio_changed
,
245 CFQ_CFQQ_FLAG_expired
,
248 #define CFQ_CFQQ_FNS(name) \
249 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
251 cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
253 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
255 cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
257 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
259 return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
263 CFQ_CFQQ_FNS(wait_request
);
264 CFQ_CFQQ_FNS(must_alloc
);
265 CFQ_CFQQ_FNS(must_alloc_slice
);
266 CFQ_CFQQ_FNS(must_dispatch
);
267 CFQ_CFQQ_FNS(fifo_expire
);
268 CFQ_CFQQ_FNS(idle_window
);
269 CFQ_CFQQ_FNS(prio_changed
);
270 CFQ_CFQQ_FNS(expired
);
273 enum cfq_rq_state_flags
{
274 CFQ_CRQ_FLAG_in_flight
= 0,
275 CFQ_CRQ_FLAG_in_driver
,
276 CFQ_CRQ_FLAG_is_sync
,
277 CFQ_CRQ_FLAG_requeued
,
280 #define CFQ_CRQ_FNS(name) \
281 static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \
283 crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \
285 static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \
287 crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \
289 static inline int cfq_crq_##name(const struct cfq_rq *crq) \
291 return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \
294 CFQ_CRQ_FNS(in_flight
);
295 CFQ_CRQ_FNS(in_driver
);
296 CFQ_CRQ_FNS(is_sync
);
297 CFQ_CRQ_FNS(requeued
);
300 static struct cfq_queue
*cfq_find_cfq_hash(struct cfq_data
*, unsigned int, unsigned short);
301 static void cfq_dispatch_sort(request_queue_t
*, struct cfq_rq
*);
302 static void cfq_put_cfqd(struct cfq_data
*cfqd
);
304 #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE)
307 * lots of deadline iosched dupes, can be abstracted later...
309 static inline void cfq_del_crq_hash(struct cfq_rq
*crq
)
311 hlist_del_init(&crq
->hash
);
314 static void cfq_remove_merge_hints(request_queue_t
*q
, struct cfq_rq
*crq
)
316 cfq_del_crq_hash(crq
);
318 if (q
->last_merge
== crq
->request
)
319 q
->last_merge
= NULL
;
322 static inline void cfq_add_crq_hash(struct cfq_data
*cfqd
, struct cfq_rq
*crq
)
324 const int hash_idx
= CFQ_MHASH_FN(rq_hash_key(crq
->request
));
326 hlist_add_head(&crq
->hash
, &cfqd
->crq_hash
[hash_idx
]);
329 static struct request
*cfq_find_rq_hash(struct cfq_data
*cfqd
, sector_t offset
)
331 struct hlist_head
*hash_list
= &cfqd
->crq_hash
[CFQ_MHASH_FN(offset
)];
332 struct hlist_node
*entry
, *next
;
334 hlist_for_each_safe(entry
, next
, hash_list
) {
335 struct cfq_rq
*crq
= list_entry_hash(entry
);
336 struct request
*__rq
= crq
->request
;
338 if (!rq_mergeable(__rq
)) {
339 cfq_del_crq_hash(crq
);
343 if (rq_hash_key(__rq
) == offset
)
350 static inline int cfq_pending_requests(struct cfq_data
*cfqd
)
352 return !list_empty(&cfqd
->queue
->queue_head
) || cfqd
->busy_queues
;
356 * scheduler run of queue, if there are requests pending and no one in the
357 * driver that will restart queueing
359 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
361 if (!cfqd
->rq_in_driver
&& cfq_pending_requests(cfqd
))
362 kblockd_schedule_work(&cfqd
->unplug_work
);
365 static int cfq_queue_empty(request_queue_t
*q
)
367 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
369 return !cfq_pending_requests(cfqd
);
373 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
374 * We choose the request that is closest to the head right now. Distance
375 * behind the head are penalized and only allowed to a certain extent.
377 static struct cfq_rq
*
378 cfq_choose_req(struct cfq_data
*cfqd
, struct cfq_rq
*crq1
, struct cfq_rq
*crq2
)
380 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
381 int r1_wrap
= 0, r2_wrap
= 0; /* requests are behind the disk head */
382 unsigned long back_max
;
384 if (crq1
== NULL
|| crq1
== crq2
)
389 if (cfq_crq_requeued(crq1
) && !cfq_crq_requeued(crq2
))
391 else if (cfq_crq_requeued(crq2
) && !cfq_crq_requeued(crq1
))
394 if (cfq_crq_is_sync(crq1
) && !cfq_crq_is_sync(crq2
))
396 else if (cfq_crq_is_sync(crq2
) && !cfq_crq_is_sync(crq1
))
399 s1
= crq1
->request
->sector
;
400 s2
= crq2
->request
->sector
;
402 last
= cfqd
->last_sector
;
405 * by definition, 1KiB is 2 sectors
407 back_max
= cfqd
->cfq_back_max
* 2;
410 * Strict one way elevator _except_ in the case where we allow
411 * short backward seeks which are biased as twice the cost of a
412 * similar forward seek.
416 else if (s1
+ back_max
>= last
)
417 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
423 else if (s2
+ back_max
>= last
)
424 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
428 /* Found required data */
429 if (!r1_wrap
&& r2_wrap
)
431 else if (!r2_wrap
&& r1_wrap
)
433 else if (r1_wrap
&& r2_wrap
) {
434 /* both behind the head */
441 /* Both requests in front of the head */
455 * would be nice to take fifo expire time into account as well
457 static struct cfq_rq
*
458 cfq_find_next_crq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
461 struct cfq_rq
*crq_next
= NULL
, *crq_prev
= NULL
;
462 struct rb_node
*rbnext
, *rbprev
;
465 if (ON_RB(&last
->rb_node
))
466 rbnext
= rb_next(&last
->rb_node
);
468 rbnext
= rb_first(&cfqq
->sort_list
);
469 if (rbnext
== &last
->rb_node
)
473 rbprev
= rb_prev(&last
->rb_node
);
476 crq_prev
= rb_entry_crq(rbprev
);
478 crq_next
= rb_entry_crq(rbnext
);
480 return cfq_choose_req(cfqd
, crq_next
, crq_prev
);
483 static void cfq_update_next_crq(struct cfq_rq
*crq
)
485 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
487 if (cfqq
->next_crq
== crq
)
488 cfqq
->next_crq
= cfq_find_next_crq(cfqq
->cfqd
, cfqq
, crq
);
491 static void cfq_resort_rr_list(struct cfq_queue
*cfqq
, int preempted
)
493 struct cfq_data
*cfqd
= cfqq
->cfqd
;
494 struct list_head
*list
, *entry
;
496 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
498 list_del(&cfqq
->cfq_list
);
500 if (cfq_class_rt(cfqq
))
501 list
= &cfqd
->cur_rr
;
502 else if (cfq_class_idle(cfqq
))
503 list
= &cfqd
->idle_rr
;
506 * if cfqq has requests in flight, don't allow it to be
507 * found in cfq_set_active_queue before it has finished them.
508 * this is done to increase fairness between a process that
509 * has lots of io pending vs one that only generates one
510 * sporadically or synchronously
512 if (cfq_cfqq_dispatched(cfqq
))
513 list
= &cfqd
->busy_rr
;
515 list
= &cfqd
->rr_list
[cfqq
->ioprio
];
519 * if queue was preempted, just add to front to be fair. busy_rr
522 if (preempted
|| list
== &cfqd
->busy_rr
) {
523 list_add(&cfqq
->cfq_list
, list
);
528 * sort by when queue was last serviced
531 while ((entry
= entry
->prev
) != list
) {
532 struct cfq_queue
*__cfqq
= list_entry_cfqq(entry
);
534 if (!__cfqq
->service_last
)
536 if (time_before(__cfqq
->service_last
, cfqq
->service_last
))
540 list_add(&cfqq
->cfq_list
, entry
);
544 * add to busy list of queues for service, trying to be fair in ordering
545 * the pending list according to last request service
548 cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
, int requeue
)
550 BUG_ON(cfq_cfqq_on_rr(cfqq
));
551 cfq_mark_cfqq_on_rr(cfqq
);
554 cfq_resort_rr_list(cfqq
, requeue
);
558 cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
560 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
561 cfq_clear_cfqq_on_rr(cfqq
);
562 list_move(&cfqq
->cfq_list
, &cfqd
->empty_list
);
564 BUG_ON(!cfqd
->busy_queues
);
569 * rb tree support functions
571 static inline void cfq_del_crq_rb(struct cfq_rq
*crq
)
573 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
575 if (ON_RB(&crq
->rb_node
)) {
576 struct cfq_data
*cfqd
= cfqq
->cfqd
;
577 const int sync
= cfq_crq_is_sync(crq
);
579 BUG_ON(!cfqq
->queued
[sync
]);
580 cfqq
->queued
[sync
]--;
582 cfq_update_next_crq(crq
);
584 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
585 RB_CLEAR_COLOR(&crq
->rb_node
);
587 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY(&cfqq
->sort_list
))
588 cfq_del_cfqq_rr(cfqd
, cfqq
);
592 static struct cfq_rq
*
593 __cfq_add_crq_rb(struct cfq_rq
*crq
)
595 struct rb_node
**p
= &crq
->cfq_queue
->sort_list
.rb_node
;
596 struct rb_node
*parent
= NULL
;
597 struct cfq_rq
*__crq
;
601 __crq
= rb_entry_crq(parent
);
603 if (crq
->rb_key
< __crq
->rb_key
)
605 else if (crq
->rb_key
> __crq
->rb_key
)
611 rb_link_node(&crq
->rb_node
, parent
, p
);
615 static void cfq_add_crq_rb(struct cfq_rq
*crq
)
617 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
618 struct cfq_data
*cfqd
= cfqq
->cfqd
;
619 struct request
*rq
= crq
->request
;
620 struct cfq_rq
*__alias
;
622 crq
->rb_key
= rq_rb_key(rq
);
623 cfqq
->queued
[cfq_crq_is_sync(crq
)]++;
626 * looks a little odd, but the first insert might return an alias.
627 * if that happens, put the alias on the dispatch list
629 while ((__alias
= __cfq_add_crq_rb(crq
)) != NULL
)
630 cfq_dispatch_sort(cfqd
->queue
, __alias
);
632 rb_insert_color(&crq
->rb_node
, &cfqq
->sort_list
);
634 if (!cfq_cfqq_on_rr(cfqq
))
635 cfq_add_cfqq_rr(cfqd
, cfqq
, cfq_crq_requeued(crq
));
638 * check if this request is a better next-serve candidate
640 cfqq
->next_crq
= cfq_choose_req(cfqd
, cfqq
->next_crq
, crq
);
644 cfq_reposition_crq_rb(struct cfq_queue
*cfqq
, struct cfq_rq
*crq
)
646 if (ON_RB(&crq
->rb_node
)) {
647 rb_erase(&crq
->rb_node
, &cfqq
->sort_list
);
648 cfqq
->queued
[cfq_crq_is_sync(crq
)]--;
654 static struct request
*cfq_find_rq_rb(struct cfq_data
*cfqd
, sector_t sector
)
657 struct cfq_queue
*cfqq
= cfq_find_cfq_hash(cfqd
, current
->pid
, CFQ_KEY_ANY
);
663 n
= cfqq
->sort_list
.rb_node
;
665 struct cfq_rq
*crq
= rb_entry_crq(n
);
667 if (sector
< crq
->rb_key
)
669 else if (sector
> crq
->rb_key
)
679 static void cfq_deactivate_request(request_queue_t
*q
, struct request
*rq
)
681 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
682 struct cfq_rq
*crq
= RQ_DATA(rq
);
685 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
687 if (cfq_crq_in_driver(crq
)) {
688 cfq_clear_crq_in_driver(crq
);
689 WARN_ON(!cfqd
->rq_in_driver
);
690 cfqd
->rq_in_driver
--;
692 if (cfq_crq_in_flight(crq
)) {
693 const int sync
= cfq_crq_is_sync(crq
);
695 cfq_clear_crq_in_flight(crq
);
696 WARN_ON(!cfqq
->on_dispatch
[sync
]);
697 cfqq
->on_dispatch
[sync
]--;
699 cfq_mark_crq_requeued(crq
);
704 * make sure the service time gets corrected on reissue of this request
706 static void cfq_requeue_request(request_queue_t
*q
, struct request
*rq
)
708 cfq_deactivate_request(q
, rq
);
709 list_add(&rq
->queuelist
, &q
->queue_head
);
712 static void cfq_remove_request(request_queue_t
*q
, struct request
*rq
)
714 struct cfq_rq
*crq
= RQ_DATA(rq
);
717 list_del_init(&rq
->queuelist
);
719 cfq_remove_merge_hints(q
, crq
);
725 cfq_merge(request_queue_t
*q
, struct request
**req
, struct bio
*bio
)
727 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
728 struct request
*__rq
;
731 ret
= elv_try_last_merge(q
, bio
);
732 if (ret
!= ELEVATOR_NO_MERGE
) {
733 __rq
= q
->last_merge
;
737 __rq
= cfq_find_rq_hash(cfqd
, bio
->bi_sector
);
738 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
739 ret
= ELEVATOR_BACK_MERGE
;
743 __rq
= cfq_find_rq_rb(cfqd
, bio
->bi_sector
+ bio_sectors(bio
));
744 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
745 ret
= ELEVATOR_FRONT_MERGE
;
749 return ELEVATOR_NO_MERGE
;
751 q
->last_merge
= __rq
;
757 static void cfq_merged_request(request_queue_t
*q
, struct request
*req
)
759 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
760 struct cfq_rq
*crq
= RQ_DATA(req
);
762 cfq_del_crq_hash(crq
);
763 cfq_add_crq_hash(cfqd
, crq
);
765 if (ON_RB(&crq
->rb_node
) && (rq_rb_key(req
) != crq
->rb_key
)) {
766 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
768 cfq_update_next_crq(crq
);
769 cfq_reposition_crq_rb(cfqq
, crq
);
776 cfq_merged_requests(request_queue_t
*q
, struct request
*rq
,
777 struct request
*next
)
779 cfq_merged_request(q
, rq
);
782 * reposition in fifo if next is older than rq
784 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
785 time_before(next
->start_time
, rq
->start_time
))
786 list_move(&rq
->queuelist
, &next
->queuelist
);
788 cfq_remove_request(q
, next
);
792 __cfq_set_active_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
796 * stop potential idle class queues waiting service
798 del_timer(&cfqd
->idle_class_timer
);
800 cfqq
->slice_start
= jiffies
;
802 cfqq
->slice_left
= 0;
803 cfq_clear_cfqq_must_alloc_slice(cfqq
);
804 cfq_clear_cfqq_fifo_expire(cfqq
);
805 cfq_clear_cfqq_expired(cfqq
);
808 cfqd
->active_queue
= cfqq
;
821 static int cfq_get_next_prio_level(struct cfq_data
*cfqd
)
830 for (p
= cfqd
->cur_prio
; p
<= cfqd
->cur_end_prio
; p
++) {
831 if (!list_empty(&cfqd
->rr_list
[p
])) {
840 if (++cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
841 cfqd
->cur_end_prio
= 0;
848 if (unlikely(prio
== -1))
851 BUG_ON(prio
>= CFQ_PRIO_LISTS
);
853 list_splice_init(&cfqd
->rr_list
[prio
], &cfqd
->cur_rr
);
855 cfqd
->cur_prio
= prio
+ 1;
856 if (cfqd
->cur_prio
> cfqd
->cur_end_prio
) {
857 cfqd
->cur_end_prio
= cfqd
->cur_prio
;
860 if (cfqd
->cur_end_prio
== CFQ_PRIO_LISTS
) {
862 cfqd
->cur_end_prio
= 0;
868 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
)
870 struct cfq_queue
*cfqq
;
873 * if current queue is expired but not done with its requests yet,
874 * wait for that to happen
876 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
877 if (cfq_cfqq_expired(cfqq
) && cfq_cfqq_dispatched(cfqq
))
882 * if current list is non-empty, grab first entry. if it is empty,
883 * get next prio level and grab first entry then if any are spliced
885 if (!list_empty(&cfqd
->cur_rr
) || cfq_get_next_prio_level(cfqd
) != -1)
886 cfqq
= list_entry_cfqq(cfqd
->cur_rr
.next
);
889 * if we have idle queues and no rt or be queues had pending
890 * requests, either allow immediate service if the grace period
891 * has passed or arm the idle grace timer
893 if (!cfqq
&& !list_empty(&cfqd
->idle_rr
)) {
894 unsigned long end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
896 if (time_after_eq(jiffies
, end
))
897 cfqq
= list_entry_cfqq(cfqd
->idle_rr
.next
);
899 mod_timer(&cfqd
->idle_class_timer
, end
);
902 __cfq_set_active_queue(cfqd
, cfqq
);
907 * current cfqq expired its slice (or was too idle), select new one
910 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
913 unsigned long now
= jiffies
;
915 if (cfq_cfqq_wait_request(cfqq
))
916 del_timer(&cfqd
->idle_slice_timer
);
918 if (!preempted
&& !cfq_cfqq_dispatched(cfqq
))
919 cfqq
->service_last
= now
;
921 cfq_clear_cfqq_must_dispatch(cfqq
);
922 cfq_clear_cfqq_wait_request(cfqq
);
925 * store what was left of this slice, if the queue idled out
928 if (time_after(now
, cfqq
->slice_end
))
929 cfqq
->slice_left
= now
- cfqq
->slice_end
;
931 cfqq
->slice_left
= 0;
933 if (cfq_cfqq_on_rr(cfqq
))
934 cfq_resort_rr_list(cfqq
, preempted
);
936 if (cfqq
== cfqd
->active_queue
)
937 cfqd
->active_queue
= NULL
;
939 if (cfqd
->active_cic
) {
940 put_io_context(cfqd
->active_cic
->ioc
);
941 cfqd
->active_cic
= NULL
;
944 cfqd
->dispatch_slice
= 0;
947 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int preempted
)
949 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
953 * use deferred expiry, if there are requests in progress as
954 * not to disturb the slice of the next queue
956 if (cfq_cfqq_dispatched(cfqq
))
957 cfq_mark_cfqq_expired(cfqq
);
959 __cfq_slice_expired(cfqd
, cfqq
, preempted
);
963 static int cfq_arm_slice_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
966 WARN_ON(!RB_EMPTY(&cfqq
->sort_list
));
967 WARN_ON(cfqq
!= cfqd
->active_queue
);
970 * idle is disabled, either manually or by past process history
972 if (!cfqd
->cfq_slice_idle
)
974 if (!cfq_cfqq_idle_window(cfqq
))
977 * task has exited, don't wait
979 if (cfqd
->active_cic
&& !cfqd
->active_cic
->ioc
->task
)
982 cfq_mark_cfqq_must_dispatch(cfqq
);
983 cfq_mark_cfqq_wait_request(cfqq
);
985 if (!timer_pending(&cfqd
->idle_slice_timer
)) {
986 unsigned long slice_left
= min(cfqq
->slice_end
- 1, (unsigned long) cfqd
->cfq_slice_idle
);
988 cfqd
->idle_slice_timer
.expires
= jiffies
+ slice_left
;
989 add_timer(&cfqd
->idle_slice_timer
);
996 * we dispatch cfqd->cfq_quantum requests in total from the rr_list queues,
997 * this function sector sorts the selected request to minimize seeks. we start
998 * at cfqd->last_sector, not 0.
1000 static void cfq_dispatch_sort(request_queue_t
*q
, struct cfq_rq
*crq
)
1002 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1003 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1004 struct list_head
*head
= &q
->queue_head
, *entry
= head
;
1005 struct request
*__rq
;
1008 list_del(&crq
->request
->queuelist
);
1010 last
= cfqd
->last_sector
;
1011 list_for_each_entry_reverse(__rq
, head
, queuelist
) {
1012 struct cfq_rq
*__crq
= RQ_DATA(__rq
);
1014 if (blk_barrier_rq(__rq
))
1016 if (!blk_fs_request(__rq
))
1018 if (cfq_crq_requeued(__crq
))
1021 if (__rq
->sector
<= crq
->request
->sector
)
1023 if (__rq
->sector
> last
&& crq
->request
->sector
< last
) {
1024 last
= crq
->request
->sector
+ crq
->request
->nr_sectors
;
1027 entry
= &__rq
->queuelist
;
1030 cfqd
->last_sector
= last
;
1032 cfqq
->next_crq
= cfq_find_next_crq(cfqd
, cfqq
, crq
);
1034 cfq_del_crq_rb(crq
);
1035 cfq_remove_merge_hints(q
, crq
);
1037 cfq_mark_crq_in_flight(crq
);
1038 cfq_clear_crq_requeued(crq
);
1040 cfqq
->on_dispatch
[cfq_crq_is_sync(crq
)]++;
1041 list_add_tail(&crq
->request
->queuelist
, entry
);
1045 * return expired entry, or NULL to just start from scratch in rbtree
1047 static inline struct cfq_rq
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1049 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1053 if (cfq_cfqq_fifo_expire(cfqq
))
1056 if (!list_empty(&cfqq
->fifo
)) {
1057 int fifo
= cfq_cfqq_class_sync(cfqq
);
1059 crq
= RQ_DATA(list_entry_fifo(cfqq
->fifo
.next
));
1061 if (time_after(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
])) {
1062 cfq_mark_cfqq_fifo_expire(cfqq
);
1071 * Scale schedule slice based on io priority. Use the sync time slice only
1072 * if a queue is marked sync and has sync io queued. A sync queue with async
1073 * io only, should not get full sync slice length.
1076 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1078 const int base_slice
= cfqd
->cfq_slice
[cfq_cfqq_sync(cfqq
)];
1080 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1082 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - cfqq
->ioprio
));
1086 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1088 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
1092 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1094 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1096 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1098 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1102 * get next queue for service
1104 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
, int force
)
1106 unsigned long now
= jiffies
;
1107 struct cfq_queue
*cfqq
;
1109 cfqq
= cfqd
->active_queue
;
1113 if (cfq_cfqq_expired(cfqq
))
1119 if (!cfq_cfqq_must_dispatch(cfqq
) && time_after(now
, cfqq
->slice_end
))
1123 * if queue has requests, dispatch one. if not, check if
1124 * enough slice is left to wait for one
1126 if (!RB_EMPTY(&cfqq
->sort_list
))
1128 else if (!force
&& cfq_cfqq_class_sync(cfqq
) &&
1129 time_before(now
, cfqq
->slice_end
)) {
1130 if (cfq_arm_slice_timer(cfqd
, cfqq
))
1135 cfq_slice_expired(cfqd
, 0);
1137 cfqq
= cfq_set_active_queue(cfqd
);
1143 __cfq_dispatch_requests(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1148 BUG_ON(RB_EMPTY(&cfqq
->sort_list
));
1154 * follow expired path, else get first next available
1156 if ((crq
= cfq_check_fifo(cfqq
)) == NULL
)
1157 crq
= cfqq
->next_crq
;
1160 * finally, insert request into driver dispatch list
1162 cfq_dispatch_sort(cfqd
->queue
, crq
);
1164 cfqd
->dispatch_slice
++;
1167 if (!cfqd
->active_cic
) {
1168 atomic_inc(&crq
->io_context
->ioc
->refcount
);
1169 cfqd
->active_cic
= crq
->io_context
;
1172 if (RB_EMPTY(&cfqq
->sort_list
))
1175 } while (dispatched
< max_dispatch
);
1178 * if slice end isn't set yet, set it. if at least one request was
1179 * sync, use the sync time slice value
1181 if (!cfqq
->slice_end
)
1182 cfq_set_prio_slice(cfqd
, cfqq
);
1185 * expire an async queue immediately if it has used up its slice. idle
1186 * queue always expire after 1 dispatch round.
1188 if ((!cfq_cfqq_sync(cfqq
) &&
1189 cfqd
->dispatch_slice
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1190 cfq_class_idle(cfqq
))
1191 cfq_slice_expired(cfqd
, 0);
1197 cfq_dispatch_requests(request_queue_t
*q
, int max_dispatch
, int force
)
1199 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1200 struct cfq_queue
*cfqq
;
1202 if (!cfqd
->busy_queues
)
1205 cfqq
= cfq_select_queue(cfqd
, force
);
1207 cfq_clear_cfqq_must_dispatch(cfqq
);
1208 cfq_clear_cfqq_wait_request(cfqq
);
1209 del_timer(&cfqd
->idle_slice_timer
);
1211 if (cfq_class_idle(cfqq
))
1214 return __cfq_dispatch_requests(cfqd
, cfqq
, max_dispatch
);
1220 static inline void cfq_account_dispatch(struct cfq_rq
*crq
)
1222 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1223 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1225 if (unlikely(!blk_fs_request(crq
->request
)))
1229 * accounted bit is necessary since some drivers will call
1230 * elv_next_request() many times for the same request (eg ide)
1232 if (cfq_crq_in_driver(crq
))
1235 cfq_mark_crq_in_driver(crq
);
1236 cfqd
->rq_in_driver
++;
1240 cfq_account_completion(struct cfq_queue
*cfqq
, struct cfq_rq
*crq
)
1242 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1245 if (!cfq_crq_in_driver(crq
))
1250 WARN_ON(!cfqd
->rq_in_driver
);
1251 cfqd
->rq_in_driver
--;
1253 if (!cfq_class_idle(cfqq
))
1254 cfqd
->last_end_request
= now
;
1256 if (!cfq_cfqq_dispatched(cfqq
)) {
1257 if (cfq_cfqq_on_rr(cfqq
)) {
1258 cfqq
->service_last
= now
;
1259 cfq_resort_rr_list(cfqq
, 0);
1261 if (cfq_cfqq_expired(cfqq
)) {
1262 __cfq_slice_expired(cfqd
, cfqq
, 0);
1263 cfq_schedule_dispatch(cfqd
);
1267 if (cfq_crq_is_sync(crq
))
1268 crq
->io_context
->last_end_request
= now
;
1271 static struct request
*cfq_next_request(request_queue_t
*q
)
1273 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1276 if (!list_empty(&q
->queue_head
)) {
1279 rq
= list_entry_rq(q
->queue_head
.next
);
1283 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1286 * if idle window is disabled, allow queue buildup
1288 if (!cfq_crq_in_driver(crq
) &&
1289 !cfq_cfqq_idle_window(cfqq
) &&
1290 !blk_barrier_rq(rq
) &&
1291 cfqd
->rq_in_driver
>= cfqd
->cfq_max_depth
)
1294 cfq_remove_merge_hints(q
, crq
);
1295 cfq_account_dispatch(crq
);
1301 if (cfq_dispatch_requests(q
, cfqd
->cfq_quantum
, 0))
1308 * task holds one reference to the queue, dropped when task exits. each crq
1309 * in-flight on this queue also holds a reference, dropped when crq is freed.
1311 * queue lock must be held here.
1313 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1315 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1317 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1319 if (!atomic_dec_and_test(&cfqq
->ref
))
1322 BUG_ON(rb_first(&cfqq
->sort_list
));
1323 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1324 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1326 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1327 __cfq_slice_expired(cfqd
, cfqq
, 0);
1328 cfq_schedule_dispatch(cfqd
);
1331 cfq_put_cfqd(cfqq
->cfqd
);
1334 * it's on the empty list and still hashed
1336 list_del(&cfqq
->cfq_list
);
1337 hlist_del(&cfqq
->cfq_hash
);
1338 kmem_cache_free(cfq_pool
, cfqq
);
1341 static inline struct cfq_queue
*
1342 __cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned int prio
,
1345 struct hlist_head
*hash_list
= &cfqd
->cfq_hash
[hashval
];
1346 struct hlist_node
*entry
, *next
;
1348 hlist_for_each_safe(entry
, next
, hash_list
) {
1349 struct cfq_queue
*__cfqq
= list_entry_qhash(entry
);
1350 const unsigned short __p
= IOPRIO_PRIO_VALUE(__cfqq
->ioprio_class
, __cfqq
->ioprio
);
1352 if (__cfqq
->key
== key
&& (__p
== prio
|| prio
== CFQ_KEY_ANY
))
1359 static struct cfq_queue
*
1360 cfq_find_cfq_hash(struct cfq_data
*cfqd
, unsigned int key
, unsigned short prio
)
1362 return __cfq_find_cfq_hash(cfqd
, key
, prio
, hash_long(key
, CFQ_QHASH_SHIFT
));
1365 static void cfq_free_io_context(struct cfq_io_context
*cic
)
1367 struct cfq_io_context
*__cic
;
1368 struct list_head
*entry
, *next
;
1370 list_for_each_safe(entry
, next
, &cic
->list
) {
1371 __cic
= list_entry(entry
, struct cfq_io_context
, list
);
1372 kmem_cache_free(cfq_ioc_pool
, __cic
);
1375 kmem_cache_free(cfq_ioc_pool
, cic
);
1379 * Called with interrupts disabled
1381 static void cfq_exit_single_io_context(struct cfq_io_context
*cic
)
1383 struct cfq_data
*cfqd
= cic
->cfqq
->cfqd
;
1384 request_queue_t
*q
= cfqd
->queue
;
1386 WARN_ON(!irqs_disabled());
1388 spin_lock(q
->queue_lock
);
1390 if (unlikely(cic
->cfqq
== cfqd
->active_queue
)) {
1391 __cfq_slice_expired(cfqd
, cic
->cfqq
, 0);
1392 cfq_schedule_dispatch(cfqd
);
1395 cfq_put_queue(cic
->cfqq
);
1397 spin_unlock(q
->queue_lock
);
1401 * Another task may update the task cic list, if it is doing a queue lookup
1402 * on its behalf. cfq_cic_lock excludes such concurrent updates
1404 static void cfq_exit_io_context(struct cfq_io_context
*cic
)
1406 struct cfq_io_context
*__cic
;
1407 struct list_head
*entry
;
1408 unsigned long flags
;
1410 local_irq_save(flags
);
1413 * put the reference this task is holding to the various queues
1415 list_for_each(entry
, &cic
->list
) {
1416 __cic
= list_entry(entry
, struct cfq_io_context
, list
);
1417 cfq_exit_single_io_context(__cic
);
1420 cfq_exit_single_io_context(cic
);
1421 local_irq_restore(flags
);
1424 static struct cfq_io_context
*
1425 cfq_alloc_io_context(struct cfq_data
*cfqd
, int gfp_mask
)
1427 struct cfq_io_context
*cic
= kmem_cache_alloc(cfq_ioc_pool
, gfp_mask
);
1430 INIT_LIST_HEAD(&cic
->list
);
1433 cic
->last_end_request
= jiffies
;
1434 cic
->ttime_total
= 0;
1435 cic
->ttime_samples
= 0;
1436 cic
->ttime_mean
= 0;
1437 cic
->dtor
= cfq_free_io_context
;
1438 cic
->exit
= cfq_exit_io_context
;
1444 static void cfq_init_prio_data(struct cfq_queue
*cfqq
)
1446 struct task_struct
*tsk
= current
;
1449 if (!cfq_cfqq_prio_changed(cfqq
))
1452 ioprio_class
= IOPRIO_PRIO_CLASS(tsk
->ioprio
);
1453 switch (ioprio_class
) {
1455 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1456 case IOPRIO_CLASS_NONE
:
1458 * no prio set, place us in the middle of the BE classes
1460 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1461 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1463 case IOPRIO_CLASS_RT
:
1464 cfqq
->ioprio
= task_ioprio(tsk
);
1465 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1467 case IOPRIO_CLASS_BE
:
1468 cfqq
->ioprio
= task_ioprio(tsk
);
1469 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1471 case IOPRIO_CLASS_IDLE
:
1472 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1474 cfq_clear_cfqq_idle_window(cfqq
);
1479 * keep track of original prio settings in case we have to temporarily
1480 * elevate the priority of this queue
1482 cfqq
->org_ioprio
= cfqq
->ioprio
;
1483 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1485 if (cfq_cfqq_on_rr(cfqq
))
1486 cfq_resort_rr_list(cfqq
, 0);
1488 cfq_clear_cfqq_prio_changed(cfqq
);
1491 static inline void changed_ioprio(struct cfq_queue
*cfqq
)
1494 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1496 spin_lock(cfqd
->queue
->queue_lock
);
1497 cfq_mark_cfqq_prio_changed(cfqq
);
1498 cfq_init_prio_data(cfqq
);
1499 spin_unlock(cfqd
->queue
->queue_lock
);
1504 * callback from sys_ioprio_set, irqs are disabled
1506 static int cfq_ioc_set_ioprio(struct io_context
*ioc
, unsigned int ioprio
)
1508 struct cfq_io_context
*cic
= ioc
->cic
;
1510 changed_ioprio(cic
->cfqq
);
1512 list_for_each_entry(cic
, &cic
->list
, list
)
1513 changed_ioprio(cic
->cfqq
);
1518 static struct cfq_queue
*
1519 cfq_get_queue(struct cfq_data
*cfqd
, unsigned int key
, unsigned short ioprio
,
1522 const int hashval
= hash_long(key
, CFQ_QHASH_SHIFT
);
1523 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1526 cfqq
= __cfq_find_cfq_hash(cfqd
, key
, ioprio
, hashval
);
1532 } else if (gfp_mask
& __GFP_WAIT
) {
1533 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1534 new_cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1535 spin_lock_irq(cfqd
->queue
->queue_lock
);
1538 cfqq
= kmem_cache_alloc(cfq_pool
, gfp_mask
);
1543 memset(cfqq
, 0, sizeof(*cfqq
));
1545 INIT_HLIST_NODE(&cfqq
->cfq_hash
);
1546 INIT_LIST_HEAD(&cfqq
->cfq_list
);
1547 RB_CLEAR_ROOT(&cfqq
->sort_list
);
1548 INIT_LIST_HEAD(&cfqq
->fifo
);
1551 hlist_add_head(&cfqq
->cfq_hash
, &cfqd
->cfq_hash
[hashval
]);
1552 atomic_set(&cfqq
->ref
, 0);
1554 atomic_inc(&cfqd
->ref
);
1555 cfqq
->service_last
= 0;
1557 * set ->slice_left to allow preemption for a new process
1559 cfqq
->slice_left
= 2 * cfqd
->cfq_slice_idle
;
1560 cfq_mark_cfqq_idle_window(cfqq
);
1561 cfq_mark_cfqq_prio_changed(cfqq
);
1562 cfq_init_prio_data(cfqq
);
1566 kmem_cache_free(cfq_pool
, new_cfqq
);
1568 atomic_inc(&cfqq
->ref
);
1570 WARN_ON((gfp_mask
& __GFP_WAIT
) && !cfqq
);
1575 * Setup general io context and cfq io context. There can be several cfq
1576 * io contexts per general io context, if this process is doing io to more
1577 * than one device managed by cfq. Note that caller is holding a reference to
1578 * cfqq, so we don't need to worry about it disappearing
1580 static struct cfq_io_context
*
1581 cfq_get_io_context(struct cfq_data
*cfqd
, pid_t pid
, int gfp_mask
)
1583 struct io_context
*ioc
= NULL
;
1584 struct cfq_io_context
*cic
;
1586 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1588 ioc
= get_io_context(gfp_mask
);
1592 if ((cic
= ioc
->cic
) == NULL
) {
1593 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1599 * manually increment generic io_context usage count, it
1600 * cannot go away since we are already holding one ref to it
1603 ioc
->set_ioprio
= cfq_ioc_set_ioprio
;
1606 atomic_inc(&cfqd
->ref
);
1608 struct cfq_io_context
*__cic
;
1611 * the first cic on the list is actually the head itself
1613 if (cic
->key
== cfqd
)
1617 * cic exists, check if we already are there. linear search
1618 * should be ok here, the list will usually not be more than
1619 * 1 or a few entries long
1621 list_for_each_entry(__cic
, &cic
->list
, list
) {
1623 * this process is already holding a reference to
1624 * this queue, so no need to get one more
1626 if (__cic
->key
== cfqd
) {
1633 * nope, process doesn't have a cic assoicated with this
1634 * cfqq yet. get a new one and add to list
1636 __cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1642 atomic_inc(&cfqd
->ref
);
1643 list_add(&__cic
->list
, &cic
->list
);
1650 put_io_context(ioc
);
1655 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1657 unsigned long elapsed
, ttime
;
1660 * if this context already has stuff queued, thinktime is from
1661 * last queue not last end
1664 if (time_after(cic
->last_end_request
, cic
->last_queue
))
1665 elapsed
= jiffies
- cic
->last_end_request
;
1667 elapsed
= jiffies
- cic
->last_queue
;
1669 elapsed
= jiffies
- cic
->last_end_request
;
1672 ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1674 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1675 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1676 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1679 #define sample_valid(samples) ((samples) > 80)
1682 * Disable idle window if the process thinks too long or seeks so much that
1686 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1687 struct cfq_io_context
*cic
)
1689 int enable_idle
= cfq_cfqq_idle_window(cfqq
);
1691 if (!cic
->ioc
->task
|| !cfqd
->cfq_slice_idle
)
1693 else if (sample_valid(cic
->ttime_samples
)) {
1694 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1701 cfq_mark_cfqq_idle_window(cfqq
);
1703 cfq_clear_cfqq_idle_window(cfqq
);
1708 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1709 * no or if we aren't sure, a 1 will cause a preempt.
1712 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1715 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1717 if (cfq_class_idle(new_cfqq
))
1723 if (cfq_class_idle(cfqq
))
1725 if (!cfq_cfqq_wait_request(new_cfqq
))
1728 * if it doesn't have slice left, forget it
1730 if (new_cfqq
->slice_left
< cfqd
->cfq_slice_idle
)
1732 if (cfq_crq_is_sync(crq
) && !cfq_cfqq_sync(cfqq
))
1739 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1740 * let it have half of its nominal slice.
1742 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1744 struct cfq_queue
*__cfqq
, *next
;
1746 list_for_each_entry_safe(__cfqq
, next
, &cfqd
->cur_rr
, cfq_list
)
1747 cfq_resort_rr_list(__cfqq
, 1);
1749 if (!cfqq
->slice_left
)
1750 cfqq
->slice_left
= cfq_prio_to_slice(cfqd
, cfqq
) / 2;
1752 cfqq
->slice_end
= cfqq
->slice_left
+ jiffies
;
1753 __cfq_slice_expired(cfqd
, cfqq
, 1);
1754 __cfq_set_active_queue(cfqd
, cfqq
);
1758 * should really be a ll_rw_blk.c helper
1760 static void cfq_start_queueing(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1762 request_queue_t
*q
= cfqd
->queue
;
1764 if (!blk_queue_plugged(q
))
1767 __generic_unplug_device(q
);
1771 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1772 * something we should do about it
1775 cfq_crq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1778 struct cfq_io_context
*cic
;
1780 cfqq
->next_crq
= cfq_choose_req(cfqd
, cfqq
->next_crq
, crq
);
1783 * we never wait for an async request and we don't allow preemption
1784 * of an async request. so just return early
1786 if (!cfq_crq_is_sync(crq
))
1789 cic
= crq
->io_context
;
1791 cfq_update_io_thinktime(cfqd
, cic
);
1792 cfq_update_idle_window(cfqd
, cfqq
, cic
);
1794 cic
->last_queue
= jiffies
;
1796 if (cfqq
== cfqd
->active_queue
) {
1798 * if we are waiting for a request for this queue, let it rip
1799 * immediately and flag that we must not expire this queue
1802 if (cfq_cfqq_wait_request(cfqq
)) {
1803 cfq_mark_cfqq_must_dispatch(cfqq
);
1804 del_timer(&cfqd
->idle_slice_timer
);
1805 cfq_start_queueing(cfqd
, cfqq
);
1807 } else if (cfq_should_preempt(cfqd
, cfqq
, crq
)) {
1809 * not the active queue - expire current slice if it is
1810 * idle and has expired it's mean thinktime or this new queue
1811 * has some old slice time left and is of higher priority
1813 cfq_preempt_queue(cfqd
, cfqq
);
1814 cfq_mark_cfqq_must_dispatch(cfqq
);
1815 cfq_start_queueing(cfqd
, cfqq
);
1819 static void cfq_enqueue(struct cfq_data
*cfqd
, struct request
*rq
)
1821 struct cfq_rq
*crq
= RQ_DATA(rq
);
1822 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
1824 cfq_init_prio_data(cfqq
);
1826 cfq_add_crq_rb(crq
);
1828 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
1830 if (rq_mergeable(rq
)) {
1831 cfq_add_crq_hash(cfqd
, crq
);
1833 if (!cfqd
->queue
->last_merge
)
1834 cfqd
->queue
->last_merge
= rq
;
1837 cfq_crq_enqueued(cfqd
, cfqq
, crq
);
1841 cfq_insert_request(request_queue_t
*q
, struct request
*rq
, int where
)
1843 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1846 case ELEVATOR_INSERT_BACK
:
1847 while (cfq_dispatch_requests(q
, INT_MAX
, 1))
1849 list_add_tail(&rq
->queuelist
, &q
->queue_head
);
1851 * If we were idling with pending requests on
1852 * inactive cfqqs, force dispatching will
1853 * remove the idle timer and the queue won't
1854 * be kicked by __make_request() afterward.
1857 cfq_schedule_dispatch(cfqd
);
1859 case ELEVATOR_INSERT_FRONT
:
1860 list_add(&rq
->queuelist
, &q
->queue_head
);
1862 case ELEVATOR_INSERT_SORT
:
1863 BUG_ON(!blk_fs_request(rq
));
1864 cfq_enqueue(cfqd
, rq
);
1867 printk("%s: bad insert point %d\n", __FUNCTION__
,where
);
1872 static void cfq_completed_request(request_queue_t
*q
, struct request
*rq
)
1874 struct cfq_rq
*crq
= RQ_DATA(rq
);
1875 struct cfq_queue
*cfqq
;
1877 if (unlikely(!blk_fs_request(rq
)))
1880 cfqq
= crq
->cfq_queue
;
1882 if (cfq_crq_in_flight(crq
)) {
1883 const int sync
= cfq_crq_is_sync(crq
);
1885 WARN_ON(!cfqq
->on_dispatch
[sync
]);
1886 cfqq
->on_dispatch
[sync
]--;
1889 cfq_account_completion(cfqq
, crq
);
1892 static struct request
*
1893 cfq_former_request(request_queue_t
*q
, struct request
*rq
)
1895 struct cfq_rq
*crq
= RQ_DATA(rq
);
1896 struct rb_node
*rbprev
= rb_prev(&crq
->rb_node
);
1899 return rb_entry_crq(rbprev
)->request
;
1904 static struct request
*
1905 cfq_latter_request(request_queue_t
*q
, struct request
*rq
)
1907 struct cfq_rq
*crq
= RQ_DATA(rq
);
1908 struct rb_node
*rbnext
= rb_next(&crq
->rb_node
);
1911 return rb_entry_crq(rbnext
)->request
;
1917 * we temporarily boost lower priority queues if they are holding fs exclusive
1918 * resources. they are boosted to normal prio (CLASS_BE/4)
1920 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
1922 const int ioprio_class
= cfqq
->ioprio_class
;
1923 const int ioprio
= cfqq
->ioprio
;
1925 if (has_fs_excl()) {
1927 * boost idle prio on transactions that would lock out other
1928 * users of the filesystem
1930 if (cfq_class_idle(cfqq
))
1931 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1932 if (cfqq
->ioprio
> IOPRIO_NORM
)
1933 cfqq
->ioprio
= IOPRIO_NORM
;
1936 * check if we need to unboost the queue
1938 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
1939 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
1940 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
1941 cfqq
->ioprio
= cfqq
->org_ioprio
;
1945 * refile between round-robin lists if we moved the priority class
1947 if ((ioprio_class
!= cfqq
->ioprio_class
|| ioprio
!= cfqq
->ioprio
) &&
1948 cfq_cfqq_on_rr(cfqq
))
1949 cfq_resort_rr_list(cfqq
, 0);
1952 static inline pid_t
cfq_queue_pid(struct task_struct
*task
, int rw
)
1954 if (rw
== READ
|| process_sync(task
))
1957 return CFQ_KEY_ASYNC
;
1961 __cfq_may_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1962 struct task_struct
*task
, int rw
)
1965 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
1966 !cfq_cfqq_must_alloc_slice(cfqq
)) {
1967 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1968 return ELV_MQUEUE_MUST
;
1971 return ELV_MQUEUE_MAY
;
1973 if (!cfqq
|| task
->flags
& PF_MEMALLOC
)
1974 return ELV_MQUEUE_MAY
;
1975 if (!cfqq
->allocated
[rw
] || cfq_cfqq_must_alloc(cfqq
)) {
1976 if (cfq_cfqq_wait_request(cfqq
))
1977 return ELV_MQUEUE_MUST
;
1980 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1981 * can quickly flood the queue with writes from a single task
1983 if (rw
== READ
|| !cfq_cfqq_must_alloc_slice(cfqq
)) {
1984 cfq_mark_cfqq_must_alloc_slice(cfqq
);
1985 return ELV_MQUEUE_MUST
;
1988 return ELV_MQUEUE_MAY
;
1990 if (cfq_class_idle(cfqq
))
1991 return ELV_MQUEUE_NO
;
1992 if (cfqq
->allocated
[rw
] >= cfqd
->max_queued
) {
1993 struct io_context
*ioc
= get_io_context(GFP_ATOMIC
);
1994 int ret
= ELV_MQUEUE_NO
;
1996 if (ioc
&& ioc
->nr_batch_requests
)
1997 ret
= ELV_MQUEUE_MAY
;
1999 put_io_context(ioc
);
2003 return ELV_MQUEUE_MAY
;
2007 static int cfq_may_queue(request_queue_t
*q
, int rw
, struct bio
*bio
)
2009 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2010 struct task_struct
*tsk
= current
;
2011 struct cfq_queue
*cfqq
;
2014 * don't force setup of a queue from here, as a call to may_queue
2015 * does not necessarily imply that a request actually will be queued.
2016 * so just lookup a possibly existing queue, or return 'may queue'
2019 cfqq
= cfq_find_cfq_hash(cfqd
, cfq_queue_pid(tsk
, rw
), tsk
->ioprio
);
2021 cfq_init_prio_data(cfqq
);
2022 cfq_prio_boost(cfqq
);
2024 return __cfq_may_queue(cfqd
, cfqq
, tsk
, rw
);
2027 return ELV_MQUEUE_MAY
;
2030 static void cfq_check_waiters(request_queue_t
*q
, struct cfq_queue
*cfqq
)
2032 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2033 struct request_list
*rl
= &q
->rq
;
2035 if (cfqq
->allocated
[READ
] <= cfqd
->max_queued
|| cfqd
->rq_starved
) {
2037 if (waitqueue_active(&rl
->wait
[READ
]))
2038 wake_up(&rl
->wait
[READ
]);
2041 if (cfqq
->allocated
[WRITE
] <= cfqd
->max_queued
|| cfqd
->rq_starved
) {
2043 if (waitqueue_active(&rl
->wait
[WRITE
]))
2044 wake_up(&rl
->wait
[WRITE
]);
2049 * queue lock held here
2051 static void cfq_put_request(request_queue_t
*q
, struct request
*rq
)
2053 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2054 struct cfq_rq
*crq
= RQ_DATA(rq
);
2057 struct cfq_queue
*cfqq
= crq
->cfq_queue
;
2058 const int rw
= rq_data_dir(rq
);
2060 BUG_ON(!cfqq
->allocated
[rw
]);
2061 cfqq
->allocated
[rw
]--;
2063 put_io_context(crq
->io_context
->ioc
);
2065 mempool_free(crq
, cfqd
->crq_pool
);
2066 rq
->elevator_private
= NULL
;
2068 cfq_check_waiters(q
, cfqq
);
2069 cfq_put_queue(cfqq
);
2074 * Allocate cfq data structures associated with this request.
2077 cfq_set_request(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
,
2080 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2081 struct task_struct
*tsk
= current
;
2082 struct cfq_io_context
*cic
;
2083 const int rw
= rq_data_dir(rq
);
2084 pid_t key
= cfq_queue_pid(tsk
, rw
);
2085 struct cfq_queue
*cfqq
;
2087 unsigned long flags
;
2089 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2091 cic
= cfq_get_io_context(cfqd
, key
, gfp_mask
);
2093 spin_lock_irqsave(q
->queue_lock
, flags
);
2099 cfqq
= cfq_get_queue(cfqd
, key
, tsk
->ioprio
, gfp_mask
);
2107 cfqq
->allocated
[rw
]++;
2108 cfq_clear_cfqq_must_alloc(cfqq
);
2109 cfqd
->rq_starved
= 0;
2110 atomic_inc(&cfqq
->ref
);
2111 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2113 crq
= mempool_alloc(cfqd
->crq_pool
, gfp_mask
);
2115 RB_CLEAR(&crq
->rb_node
);
2118 INIT_HLIST_NODE(&crq
->hash
);
2119 crq
->cfq_queue
= cfqq
;
2120 crq
->io_context
= cic
;
2121 cfq_clear_crq_in_flight(crq
);
2122 cfq_clear_crq_in_driver(crq
);
2123 cfq_clear_crq_requeued(crq
);
2125 if (rw
== READ
|| process_sync(tsk
))
2126 cfq_mark_crq_is_sync(crq
);
2128 cfq_clear_crq_is_sync(crq
);
2130 rq
->elevator_private
= crq
;
2134 spin_lock_irqsave(q
->queue_lock
, flags
);
2135 cfqq
->allocated
[rw
]--;
2136 if (!(cfqq
->allocated
[0] + cfqq
->allocated
[1]))
2137 cfq_mark_cfqq_must_alloc(cfqq
);
2138 cfq_put_queue(cfqq
);
2141 put_io_context(cic
->ioc
);
2143 * mark us rq allocation starved. we need to kickstart the process
2144 * ourselves if there are no pending requests that can do it for us.
2145 * that would be an extremely rare OOM situation
2147 cfqd
->rq_starved
= 1;
2148 cfq_schedule_dispatch(cfqd
);
2149 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2153 static void cfq_kick_queue(void *data
)
2155 request_queue_t
*q
= data
;
2156 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2157 unsigned long flags
;
2159 spin_lock_irqsave(q
->queue_lock
, flags
);
2161 if (cfqd
->rq_starved
) {
2162 struct request_list
*rl
= &q
->rq
;
2165 * we aren't guaranteed to get a request after this, but we
2166 * have to be opportunistic
2169 if (waitqueue_active(&rl
->wait
[READ
]))
2170 wake_up(&rl
->wait
[READ
]);
2171 if (waitqueue_active(&rl
->wait
[WRITE
]))
2172 wake_up(&rl
->wait
[WRITE
]);
2177 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2181 * Timer running if the active_queue is currently idling inside its time slice
2183 static void cfq_idle_slice_timer(unsigned long data
)
2185 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2186 struct cfq_queue
*cfqq
;
2187 unsigned long flags
;
2189 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2191 if ((cfqq
= cfqd
->active_queue
) != NULL
) {
2192 unsigned long now
= jiffies
;
2197 if (time_after(now
, cfqq
->slice_end
))
2201 * only expire and reinvoke request handler, if there are
2202 * other queues with pending requests
2204 if (!cfq_pending_requests(cfqd
)) {
2205 cfqd
->idle_slice_timer
.expires
= min(now
+ cfqd
->cfq_slice_idle
, cfqq
->slice_end
);
2206 add_timer(&cfqd
->idle_slice_timer
);
2211 * not expired and it has a request pending, let it dispatch
2213 if (!RB_EMPTY(&cfqq
->sort_list
)) {
2214 cfq_mark_cfqq_must_dispatch(cfqq
);
2219 cfq_slice_expired(cfqd
, 0);
2221 cfq_schedule_dispatch(cfqd
);
2223 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2227 * Timer running if an idle class queue is waiting for service
2229 static void cfq_idle_class_timer(unsigned long data
)
2231 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2232 unsigned long flags
, end
;
2234 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2237 * race with a non-idle queue, reset timer
2239 end
= cfqd
->last_end_request
+ CFQ_IDLE_GRACE
;
2240 if (!time_after_eq(jiffies
, end
)) {
2241 cfqd
->idle_class_timer
.expires
= end
;
2242 add_timer(&cfqd
->idle_class_timer
);
2244 cfq_schedule_dispatch(cfqd
);
2246 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2249 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2251 del_timer_sync(&cfqd
->idle_slice_timer
);
2252 del_timer_sync(&cfqd
->idle_class_timer
);
2253 blk_sync_queue(cfqd
->queue
);
2256 static void cfq_put_cfqd(struct cfq_data
*cfqd
)
2258 request_queue_t
*q
= cfqd
->queue
;
2260 if (!atomic_dec_and_test(&cfqd
->ref
))
2263 cfq_shutdown_timer_wq(cfqd
);
2264 q
->elevator
->elevator_data
= NULL
;
2266 mempool_destroy(cfqd
->crq_pool
);
2267 kfree(cfqd
->crq_hash
);
2268 kfree(cfqd
->cfq_hash
);
2272 static void cfq_exit_queue(elevator_t
*e
)
2274 struct cfq_data
*cfqd
= e
->elevator_data
;
2276 cfq_shutdown_timer_wq(cfqd
);
2280 static int cfq_init_queue(request_queue_t
*q
, elevator_t
*e
)
2282 struct cfq_data
*cfqd
;
2285 cfqd
= kmalloc(sizeof(*cfqd
), GFP_KERNEL
);
2289 memset(cfqd
, 0, sizeof(*cfqd
));
2291 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2292 INIT_LIST_HEAD(&cfqd
->rr_list
[i
]);
2294 INIT_LIST_HEAD(&cfqd
->busy_rr
);
2295 INIT_LIST_HEAD(&cfqd
->cur_rr
);
2296 INIT_LIST_HEAD(&cfqd
->idle_rr
);
2297 INIT_LIST_HEAD(&cfqd
->empty_list
);
2299 cfqd
->crq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_MHASH_ENTRIES
, GFP_KERNEL
);
2300 if (!cfqd
->crq_hash
)
2303 cfqd
->cfq_hash
= kmalloc(sizeof(struct hlist_head
) * CFQ_QHASH_ENTRIES
, GFP_KERNEL
);
2304 if (!cfqd
->cfq_hash
)
2307 cfqd
->crq_pool
= mempool_create(BLKDEV_MIN_RQ
, mempool_alloc_slab
, mempool_free_slab
, crq_pool
);
2308 if (!cfqd
->crq_pool
)
2311 for (i
= 0; i
< CFQ_MHASH_ENTRIES
; i
++)
2312 INIT_HLIST_HEAD(&cfqd
->crq_hash
[i
]);
2313 for (i
= 0; i
< CFQ_QHASH_ENTRIES
; i
++)
2314 INIT_HLIST_HEAD(&cfqd
->cfq_hash
[i
]);
2316 e
->elevator_data
= cfqd
;
2320 cfqd
->max_queued
= q
->nr_requests
/ 4;
2321 q
->nr_batching
= cfq_queued
;
2323 init_timer(&cfqd
->idle_slice_timer
);
2324 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2325 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2327 init_timer(&cfqd
->idle_class_timer
);
2328 cfqd
->idle_class_timer
.function
= cfq_idle_class_timer
;
2329 cfqd
->idle_class_timer
.data
= (unsigned long) cfqd
;
2331 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
, q
);
2333 atomic_set(&cfqd
->ref
, 1);
2335 cfqd
->cfq_queued
= cfq_queued
;
2336 cfqd
->cfq_quantum
= cfq_quantum
;
2337 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2338 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2339 cfqd
->cfq_back_max
= cfq_back_max
;
2340 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2341 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2342 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2343 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2344 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2345 cfqd
->cfq_max_depth
= cfq_max_depth
;
2349 kfree(cfqd
->cfq_hash
);
2351 kfree(cfqd
->crq_hash
);
2357 static void cfq_slab_kill(void)
2360 kmem_cache_destroy(crq_pool
);
2362 kmem_cache_destroy(cfq_pool
);
2364 kmem_cache_destroy(cfq_ioc_pool
);
2367 static int __init
cfq_slab_setup(void)
2369 crq_pool
= kmem_cache_create("crq_pool", sizeof(struct cfq_rq
), 0, 0,
2374 cfq_pool
= kmem_cache_create("cfq_pool", sizeof(struct cfq_queue
), 0, 0,
2379 cfq_ioc_pool
= kmem_cache_create("cfq_ioc_pool",
2380 sizeof(struct cfq_io_context
), 0, 0, NULL
, NULL
);
2391 * sysfs parts below -->
2393 struct cfq_fs_entry
{
2394 struct attribute attr
;
2395 ssize_t (*show
)(struct cfq_data
*, char *);
2396 ssize_t (*store
)(struct cfq_data
*, const char *, size_t);
2400 cfq_var_show(unsigned int var
, char *page
)
2402 return sprintf(page
, "%d\n", var
);
2406 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2408 char *p
= (char *) page
;
2410 *var
= simple_strtoul(p
, &p
, 10);
2414 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2415 static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \
2417 unsigned int __data = __VAR; \
2419 __data = jiffies_to_msecs(__data); \
2420 return cfq_var_show(__data, (page)); \
2422 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2423 SHOW_FUNCTION(cfq_queued_show
, cfqd
->cfq_queued
, 0);
2424 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2425 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2426 SHOW_FUNCTION(cfq_back_max_show
, cfqd
->cfq_back_max
, 0);
2427 SHOW_FUNCTION(cfq_back_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2428 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2429 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2430 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2431 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2432 SHOW_FUNCTION(cfq_max_depth_show
, cfqd
->cfq_max_depth
, 0);
2433 #undef SHOW_FUNCTION
2435 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2436 static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \
2438 unsigned int __data; \
2439 int ret = cfq_var_store(&__data, (page), count); \
2440 if (__data < (MIN)) \
2442 else if (__data > (MAX)) \
2445 *(__PTR) = msecs_to_jiffies(__data); \
2447 *(__PTR) = __data; \
2450 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2451 STORE_FUNCTION(cfq_queued_store
, &cfqd
->cfq_queued
, 1, UINT_MAX
, 0);
2452 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1, UINT_MAX
, 1);
2453 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1, UINT_MAX
, 1);
2454 STORE_FUNCTION(cfq_back_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2455 STORE_FUNCTION(cfq_back_penalty_store
, &cfqd
->cfq_back_penalty
, 1, UINT_MAX
, 0);
2456 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2457 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2458 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2459 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1, UINT_MAX
, 0);
2460 STORE_FUNCTION(cfq_max_depth_store
, &cfqd
->cfq_max_depth
, 1, UINT_MAX
, 0);
2461 #undef STORE_FUNCTION
2463 static struct cfq_fs_entry cfq_quantum_entry
= {
2464 .attr
= {.name
= "quantum", .mode
= S_IRUGO
| S_IWUSR
},
2465 .show
= cfq_quantum_show
,
2466 .store
= cfq_quantum_store
,
2468 static struct cfq_fs_entry cfq_queued_entry
= {
2469 .attr
= {.name
= "queued", .mode
= S_IRUGO
| S_IWUSR
},
2470 .show
= cfq_queued_show
,
2471 .store
= cfq_queued_store
,
2473 static struct cfq_fs_entry cfq_fifo_expire_sync_entry
= {
2474 .attr
= {.name
= "fifo_expire_sync", .mode
= S_IRUGO
| S_IWUSR
},
2475 .show
= cfq_fifo_expire_sync_show
,
2476 .store
= cfq_fifo_expire_sync_store
,
2478 static struct cfq_fs_entry cfq_fifo_expire_async_entry
= {
2479 .attr
= {.name
= "fifo_expire_async", .mode
= S_IRUGO
| S_IWUSR
},
2480 .show
= cfq_fifo_expire_async_show
,
2481 .store
= cfq_fifo_expire_async_store
,
2483 static struct cfq_fs_entry cfq_back_max_entry
= {
2484 .attr
= {.name
= "back_seek_max", .mode
= S_IRUGO
| S_IWUSR
},
2485 .show
= cfq_back_max_show
,
2486 .store
= cfq_back_max_store
,
2488 static struct cfq_fs_entry cfq_back_penalty_entry
= {
2489 .attr
= {.name
= "back_seek_penalty", .mode
= S_IRUGO
| S_IWUSR
},
2490 .show
= cfq_back_penalty_show
,
2491 .store
= cfq_back_penalty_store
,
2493 static struct cfq_fs_entry cfq_slice_sync_entry
= {
2494 .attr
= {.name
= "slice_sync", .mode
= S_IRUGO
| S_IWUSR
},
2495 .show
= cfq_slice_sync_show
,
2496 .store
= cfq_slice_sync_store
,
2498 static struct cfq_fs_entry cfq_slice_async_entry
= {
2499 .attr
= {.name
= "slice_async", .mode
= S_IRUGO
| S_IWUSR
},
2500 .show
= cfq_slice_async_show
,
2501 .store
= cfq_slice_async_store
,
2503 static struct cfq_fs_entry cfq_slice_async_rq_entry
= {
2504 .attr
= {.name
= "slice_async_rq", .mode
= S_IRUGO
| S_IWUSR
},
2505 .show
= cfq_slice_async_rq_show
,
2506 .store
= cfq_slice_async_rq_store
,
2508 static struct cfq_fs_entry cfq_slice_idle_entry
= {
2509 .attr
= {.name
= "slice_idle", .mode
= S_IRUGO
| S_IWUSR
},
2510 .show
= cfq_slice_idle_show
,
2511 .store
= cfq_slice_idle_store
,
2513 static struct cfq_fs_entry cfq_max_depth_entry
= {
2514 .attr
= {.name
= "max_depth", .mode
= S_IRUGO
| S_IWUSR
},
2515 .show
= cfq_max_depth_show
,
2516 .store
= cfq_max_depth_store
,
2519 static struct attribute
*default_attrs
[] = {
2520 &cfq_quantum_entry
.attr
,
2521 &cfq_queued_entry
.attr
,
2522 &cfq_fifo_expire_sync_entry
.attr
,
2523 &cfq_fifo_expire_async_entry
.attr
,
2524 &cfq_back_max_entry
.attr
,
2525 &cfq_back_penalty_entry
.attr
,
2526 &cfq_slice_sync_entry
.attr
,
2527 &cfq_slice_async_entry
.attr
,
2528 &cfq_slice_async_rq_entry
.attr
,
2529 &cfq_slice_idle_entry
.attr
,
2530 &cfq_max_depth_entry
.attr
,
2534 #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2537 cfq_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
2539 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
2540 struct cfq_fs_entry
*entry
= to_cfq(attr
);
2545 return entry
->show(e
->elevator_data
, page
);
2549 cfq_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
2550 const char *page
, size_t length
)
2552 elevator_t
*e
= container_of(kobj
, elevator_t
, kobj
);
2553 struct cfq_fs_entry
*entry
= to_cfq(attr
);
2558 return entry
->store(e
->elevator_data
, page
, length
);
2561 static struct sysfs_ops cfq_sysfs_ops
= {
2562 .show
= cfq_attr_show
,
2563 .store
= cfq_attr_store
,
2566 static struct kobj_type cfq_ktype
= {
2567 .sysfs_ops
= &cfq_sysfs_ops
,
2568 .default_attrs
= default_attrs
,
2571 static struct elevator_type iosched_cfq
= {
2573 .elevator_merge_fn
= cfq_merge
,
2574 .elevator_merged_fn
= cfq_merged_request
,
2575 .elevator_merge_req_fn
= cfq_merged_requests
,
2576 .elevator_next_req_fn
= cfq_next_request
,
2577 .elevator_add_req_fn
= cfq_insert_request
,
2578 .elevator_remove_req_fn
= cfq_remove_request
,
2579 .elevator_requeue_req_fn
= cfq_requeue_request
,
2580 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2581 .elevator_queue_empty_fn
= cfq_queue_empty
,
2582 .elevator_completed_req_fn
= cfq_completed_request
,
2583 .elevator_former_req_fn
= cfq_former_request
,
2584 .elevator_latter_req_fn
= cfq_latter_request
,
2585 .elevator_set_req_fn
= cfq_set_request
,
2586 .elevator_put_req_fn
= cfq_put_request
,
2587 .elevator_may_queue_fn
= cfq_may_queue
,
2588 .elevator_init_fn
= cfq_init_queue
,
2589 .elevator_exit_fn
= cfq_exit_queue
,
2591 .elevator_ktype
= &cfq_ktype
,
2592 .elevator_name
= "cfq",
2593 .elevator_owner
= THIS_MODULE
,
2596 static int __init
cfq_init(void)
2601 * could be 0 on HZ < 1000 setups
2603 if (!cfq_slice_async
)
2604 cfq_slice_async
= 1;
2605 if (!cfq_slice_idle
)
2608 if (cfq_slab_setup())
2611 ret
= elv_register(&iosched_cfq
);
2618 static void __exit
cfq_exit(void)
2620 struct task_struct
*g
, *p
;
2621 unsigned long flags
;
2623 read_lock_irqsave(&tasklist_lock
, flags
);
2626 * iterate each process in the system, removing our io_context
2628 do_each_thread(g
, p
) {
2629 struct io_context
*ioc
= p
->io_context
;
2631 if (ioc
&& ioc
->cic
) {
2632 ioc
->cic
->exit(ioc
->cic
);
2633 cfq_free_io_context(ioc
->cic
);
2636 } while_each_thread(g
, p
);
2638 read_unlock_irqrestore(&tasklist_lock
, flags
);
2641 elv_unregister(&iosched_cfq
);
2644 module_init(cfq_init
);
2645 module_exit(cfq_exit
);
2647 MODULE_AUTHOR("Jens Axboe");
2648 MODULE_LICENSE("GPL");
2649 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");