2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
22 #include <linux/config.h>
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
32 #include <linux/proc_fs.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #define RT6_TRACE(x...) do { ; } while (0)
50 struct rt6_statistics rt6_stats
;
52 static kmem_cache_t
* fib6_node_kmem __read_mostly
;
56 #ifdef CONFIG_IPV6_SUBTREES
67 struct fib6_walker_t w
;
68 int (*func
)(struct rt6_info
*, void *arg
);
72 DEFINE_RWLOCK(fib6_walker_lock
);
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #define SUBTREE(fn) ((fn)->subtree)
79 #define FWS_INIT FWS_L
80 #define SUBTREE(fn) NULL
83 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
);
84 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
);
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
93 static __u32 rt_sernum
;
95 static struct timer_list ip6_fib_timer
= TIMER_INITIALIZER(fib6_run_gc
, 0, 0);
97 struct fib6_walker_t fib6_walker_list
= {
98 .prev
= &fib6_walker_list
,
99 .next
= &fib6_walker_list
,
102 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104 static __inline__ u32
fib6_new_sernum(void)
113 * Auxiliary address test functions for the radix tree.
115 * These assume a 32bit processor (although it will work on
123 static __inline__
int addr_bit_set(void *token
, int fn_bit
)
127 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
131 * find the first different bit between two addresses
132 * length of address must be a multiple of 32bits
135 static __inline__
int addr_diff(void *token1
, void *token2
, int addrlen
)
143 for (i
= 0; i
< addrlen
; i
++) {
153 while ((xb
& (1 << j
)) == 0)
156 return (i
* 32 + 31 - j
);
161 * we should *never* get to this point since that
162 * would mean the addrs are equal
164 * However, we do get to it 8) And exacly, when
165 * addresses are equal 8)
167 * ip route add 1111::/128 via ...
168 * ip route add 1111::/64 via ...
171 * Ideally, this function should stop comparison
172 * at prefix length. It does not, but it is still OK,
173 * if returned value is greater than prefix length.
180 static __inline__
struct fib6_node
* node_alloc(void)
182 struct fib6_node
*fn
;
184 if ((fn
= kmem_cache_alloc(fib6_node_kmem
, SLAB_ATOMIC
)) != NULL
)
185 memset(fn
, 0, sizeof(struct fib6_node
));
190 static __inline__
void node_free(struct fib6_node
* fn
)
192 kmem_cache_free(fib6_node_kmem
, fn
);
195 static __inline__
void rt6_release(struct rt6_info
*rt
)
197 if (atomic_dec_and_test(&rt
->rt6i_ref
))
198 dst_free(&rt
->u
.dst
);
205 * return the appropriate node for a routing tree "add" operation
206 * by either creating and inserting or by returning an existing
210 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
211 int addrlen
, int plen
,
214 struct fib6_node
*fn
, *in
, *ln
;
215 struct fib6_node
*pn
= NULL
;
219 __u32 sernum
= fib6_new_sernum();
221 RT6_TRACE("fib6_add_1\n");
223 /* insert node in tree */
228 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
233 if (plen
< fn
->fn_bit
||
234 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
241 if (plen
== fn
->fn_bit
) {
242 /* clean up an intermediate node */
243 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
244 rt6_release(fn
->leaf
);
248 fn
->fn_sernum
= sernum
;
254 * We have more bits to go
257 /* Try to walk down on tree. */
258 fn
->fn_sernum
= sernum
;
259 dir
= addr_bit_set(addr
, fn
->fn_bit
);
261 fn
= dir
? fn
->right
: fn
->left
;
265 * We walked to the bottom of tree.
266 * Create new leaf node without children.
276 ln
->fn_sernum
= sernum
;
288 * split since we don't have a common prefix anymore or
289 * we have a less significant route.
290 * we've to insert an intermediate node on the list
291 * this new node will point to the one we need to create
297 /* find 1st bit in difference between the 2 addrs.
299 See comment in addr_diff: bit may be an invalid value,
300 but if it is >= plen, the value is ignored in any case.
303 bit
= addr_diff(addr
, &key
->addr
, addrlen
);
308 * (new leaf node)[ln] (old node)[fn]
314 if (in
== NULL
|| ln
== NULL
) {
323 * new intermediate node.
325 * be off since that an address that chooses one of
326 * the branches would not match less specific routes
327 * in the other branch
334 atomic_inc(&in
->leaf
->rt6i_ref
);
336 in
->fn_sernum
= sernum
;
338 /* update parent pointer */
349 ln
->fn_sernum
= sernum
;
351 if (addr_bit_set(addr
, bit
)) {
358 } else { /* plen <= bit */
361 * (new leaf node)[ln]
363 * (old node)[fn] NULL
375 ln
->fn_sernum
= sernum
;
382 if (addr_bit_set(&key
->addr
, plen
))
393 * Insert routing information in a node.
396 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
397 struct nlmsghdr
*nlh
, struct netlink_skb_parms
*req
)
399 struct rt6_info
*iter
= NULL
;
400 struct rt6_info
**ins
;
404 if (fn
->fn_flags
&RTN_TL_ROOT
&&
405 fn
->leaf
== &ip6_null_entry
&&
406 !(rt
->rt6i_flags
& (RTF_DEFAULT
| RTF_ADDRCONF
)) ){
412 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.next
) {
414 * Search for duplicates
417 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
419 * Same priority level
422 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
423 iter
->rt6i_idev
== rt
->rt6i_idev
&&
424 ipv6_addr_equal(&iter
->rt6i_gateway
,
425 &rt
->rt6i_gateway
)) {
426 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
428 iter
->rt6i_expires
= rt
->rt6i_expires
;
429 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
430 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
431 iter
->rt6i_expires
= 0;
437 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
451 atomic_inc(&rt
->rt6i_ref
);
452 inet6_rt_notify(RTM_NEWROUTE
, rt
, nlh
, req
);
453 rt6_stats
.fib_rt_entries
++;
455 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
456 rt6_stats
.fib_route_nodes
++;
457 fn
->fn_flags
|= RTN_RTINFO
;
463 static __inline__
void fib6_start_gc(struct rt6_info
*rt
)
465 if (ip6_fib_timer
.expires
== 0 &&
466 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
467 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
470 void fib6_force_start_gc(void)
472 if (ip6_fib_timer
.expires
== 0)
473 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
477 * Add routing information to the routing tree.
478 * <destination addr>/<source addr>
479 * with source addr info in sub-trees
482 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
,
483 struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
485 struct fib6_node
*fn
;
488 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
489 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
494 #ifdef CONFIG_IPV6_SUBTREES
495 if (rt
->rt6i_src
.plen
) {
496 struct fib6_node
*sn
;
498 if (fn
->subtree
== NULL
) {
499 struct fib6_node
*sfn
;
511 /* Create subtree root node */
516 sfn
->leaf
= &ip6_null_entry
;
517 atomic_inc(&ip6_null_entry
.rt6i_ref
);
518 sfn
->fn_flags
= RTN_ROOT
;
519 sfn
->fn_sernum
= fib6_new_sernum();
521 /* Now add the first leaf node to new subtree */
523 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
524 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
525 offsetof(struct rt6_info
, rt6i_src
));
528 /* If it is failed, discard just allocated
529 root, and then (in st_failure) stale node
536 /* Now link new subtree to main tree */
539 if (fn
->leaf
== NULL
) {
541 atomic_inc(&rt
->rt6i_ref
);
544 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
545 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
546 offsetof(struct rt6_info
, rt6i_src
));
556 err
= fib6_add_rt2node(fn
, rt
, nlh
, req
);
560 if (!(rt
->rt6i_flags
&RTF_CACHE
))
561 fib6_prune_clones(fn
, rt
);
566 dst_free(&rt
->u
.dst
);
569 #ifdef CONFIG_IPV6_SUBTREES
570 /* Subtree creation failed, probably main tree node
571 is orphan. If it is, shoot it.
574 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
575 fib6_repair_tree(fn
);
576 dst_free(&rt
->u
.dst
);
582 * Routing tree lookup
587 int offset
; /* key offset on rt6_info */
588 struct in6_addr
*addr
; /* search key */
591 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
592 struct lookup_args
*args
)
594 struct fib6_node
*fn
;
604 struct fib6_node
*next
;
606 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
608 next
= dir
? fn
->right
: fn
->left
;
618 while ((fn
->fn_flags
& RTN_ROOT
) == 0) {
619 #ifdef CONFIG_IPV6_SUBTREES
621 struct fib6_node
*st
;
622 struct lookup_args
*narg
;
627 st
= fib6_lookup_1(fn
->subtree
, narg
);
629 if (st
&& !(st
->fn_flags
& RTN_ROOT
))
635 if (fn
->fn_flags
& RTN_RTINFO
) {
638 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
641 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
))
651 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
652 struct in6_addr
*saddr
)
654 struct lookup_args args
[2];
655 struct fib6_node
*fn
;
657 args
[0].offset
= offsetof(struct rt6_info
, rt6i_dst
);
658 args
[0].addr
= daddr
;
660 #ifdef CONFIG_IPV6_SUBTREES
661 args
[1].offset
= offsetof(struct rt6_info
, rt6i_src
);
662 args
[1].addr
= saddr
;
665 fn
= fib6_lookup_1(root
, args
);
667 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
674 * Get node with specified destination prefix (and source prefix,
675 * if subtrees are used)
679 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
680 struct in6_addr
*addr
,
681 int plen
, int offset
)
683 struct fib6_node
*fn
;
685 for (fn
= root
; fn
; ) {
686 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
691 if (plen
< fn
->fn_bit
||
692 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
695 if (plen
== fn
->fn_bit
)
699 * We have more bits to go
701 if (addr_bit_set(addr
, fn
->fn_bit
))
709 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
710 struct in6_addr
*daddr
, int dst_len
,
711 struct in6_addr
*saddr
, int src_len
)
713 struct fib6_node
*fn
;
715 fn
= fib6_locate_1(root
, daddr
, dst_len
,
716 offsetof(struct rt6_info
, rt6i_dst
));
718 #ifdef CONFIG_IPV6_SUBTREES
720 BUG_TRAP(saddr
!=NULL
);
724 fn
= fib6_locate_1(fn
, saddr
, src_len
,
725 offsetof(struct rt6_info
, rt6i_src
));
729 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
741 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
)
743 if (fn
->fn_flags
&RTN_ROOT
)
744 return &ip6_null_entry
;
748 return fn
->left
->leaf
;
751 return fn
->right
->leaf
;
759 * Called to trim the tree of intermediate nodes when possible. "fn"
760 * is the node we want to try and remove.
763 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
)
767 struct fib6_node
*child
, *pn
;
768 struct fib6_walker_t
*w
;
772 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
775 BUG_TRAP(!(fn
->fn_flags
&RTN_RTINFO
));
776 BUG_TRAP(!(fn
->fn_flags
&RTN_TL_ROOT
));
777 BUG_TRAP(fn
->leaf
==NULL
);
781 if (fn
->right
) child
= fn
->right
, children
|= 1;
782 if (fn
->left
) child
= fn
->left
, children
|= 2;
784 if (children
== 3 || SUBTREE(fn
)
785 #ifdef CONFIG_IPV6_SUBTREES
786 /* Subtree root (i.e. fn) may have one child */
787 || (children
&& fn
->fn_flags
&RTN_ROOT
)
790 fn
->leaf
= fib6_find_prefix(fn
);
792 if (fn
->leaf
==NULL
) {
794 fn
->leaf
= &ip6_null_entry
;
797 atomic_inc(&fn
->leaf
->rt6i_ref
);
802 #ifdef CONFIG_IPV6_SUBTREES
803 if (SUBTREE(pn
) == fn
) {
804 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
808 BUG_TRAP(!(fn
->fn_flags
&RTN_ROOT
));
810 if (pn
->right
== fn
) pn
->right
= child
;
811 else if (pn
->left
== fn
) pn
->left
= child
;
818 #ifdef CONFIG_IPV6_SUBTREES
822 read_lock(&fib6_walker_lock
);
826 w
->root
= w
->node
= NULL
;
827 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
828 } else if (w
->node
== fn
) {
829 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
836 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
841 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
842 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
844 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
845 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
850 read_unlock(&fib6_walker_lock
);
853 if (pn
->fn_flags
&RTN_RTINFO
|| SUBTREE(pn
))
856 rt6_release(pn
->leaf
);
862 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
863 struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
865 struct fib6_walker_t
*w
;
866 struct rt6_info
*rt
= *rtp
;
868 RT6_TRACE("fib6_del_route\n");
872 rt
->rt6i_node
= NULL
;
873 rt6_stats
.fib_rt_entries
--;
874 rt6_stats
.fib_discarded_routes
++;
877 read_lock(&fib6_walker_lock
);
879 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
880 RT6_TRACE("walker %p adjusted by delroute\n", w
);
881 w
->leaf
= rt
->u
.next
;
886 read_unlock(&fib6_walker_lock
);
890 if (fn
->leaf
== NULL
&& fn
->fn_flags
&RTN_TL_ROOT
)
891 fn
->leaf
= &ip6_null_entry
;
893 /* If it was last route, expunge its radix tree node */
894 if (fn
->leaf
== NULL
) {
895 fn
->fn_flags
&= ~RTN_RTINFO
;
896 rt6_stats
.fib_route_nodes
--;
897 fn
= fib6_repair_tree(fn
);
900 if (atomic_read(&rt
->rt6i_ref
) != 1) {
901 /* This route is used as dummy address holder in some split
902 * nodes. It is not leaked, but it still holds other resources,
903 * which must be released in time. So, scan ascendant nodes
904 * and replace dummy references to this route with references
905 * to still alive ones.
908 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
909 fn
->leaf
= fib6_find_prefix(fn
);
910 atomic_inc(&fn
->leaf
->rt6i_ref
);
915 /* No more references are possible at this point. */
916 if (atomic_read(&rt
->rt6i_ref
) != 1) BUG();
919 inet6_rt_notify(RTM_DELROUTE
, rt
, nlh
, req
);
923 int fib6_del(struct rt6_info
*rt
, struct nlmsghdr
*nlh
, void *_rtattr
, struct netlink_skb_parms
*req
)
925 struct fib6_node
*fn
= rt
->rt6i_node
;
926 struct rt6_info
**rtp
;
929 if (rt
->u
.dst
.obsolete
>0) {
934 if (fn
== NULL
|| rt
== &ip6_null_entry
)
937 BUG_TRAP(fn
->fn_flags
&RTN_RTINFO
);
939 if (!(rt
->rt6i_flags
&RTF_CACHE
))
940 fib6_prune_clones(fn
, rt
);
943 * Walk the leaf entries looking for ourself
946 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.next
) {
948 fib6_del_route(fn
, rtp
, nlh
, _rtattr
, req
);
956 * Tree traversal function.
958 * Certainly, it is not interrupt safe.
959 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
960 * It means, that we can modify tree during walking
961 * and use this function for garbage collection, clone pruning,
962 * cleaning tree when a device goes down etc. etc.
964 * It guarantees that every node will be traversed,
965 * and that it will be traversed only once.
967 * Callback function w->func may return:
968 * 0 -> continue walking.
969 * positive value -> walking is suspended (used by tree dumps,
970 * and probably by gc, if it will be split to several slices)
971 * negative value -> terminate walking.
973 * The function itself returns:
974 * 0 -> walk is complete.
975 * >0 -> walk is incomplete (i.e. suspended)
976 * <0 -> walk is terminated by an error.
979 int fib6_walk_continue(struct fib6_walker_t
*w
)
981 struct fib6_node
*fn
, *pn
;
988 if (w
->prune
&& fn
!= w
->root
&&
989 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
994 #ifdef CONFIG_IPV6_SUBTREES
997 w
->node
= SUBTREE(fn
);
1005 w
->state
= FWS_INIT
;
1011 w
->node
= fn
->right
;
1012 w
->state
= FWS_INIT
;
1018 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1019 int err
= w
->func(w
);
1030 #ifdef CONFIG_IPV6_SUBTREES
1031 if (SUBTREE(pn
) == fn
) {
1032 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1037 if (pn
->left
== fn
) {
1041 if (pn
->right
== fn
) {
1043 w
->leaf
= w
->node
->leaf
;
1053 int fib6_walk(struct fib6_walker_t
*w
)
1057 w
->state
= FWS_INIT
;
1060 fib6_walker_link(w
);
1061 res
= fib6_walk_continue(w
);
1063 fib6_walker_unlink(w
);
1067 static int fib6_clean_node(struct fib6_walker_t
*w
)
1070 struct rt6_info
*rt
;
1071 struct fib6_cleaner_t
*c
= (struct fib6_cleaner_t
*)w
;
1073 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.next
) {
1074 res
= c
->func(rt
, c
->arg
);
1077 res
= fib6_del(rt
, NULL
, NULL
, NULL
);
1080 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1093 * Convenient frontend to tree walker.
1095 * func is called on each route.
1096 * It may return -1 -> delete this route.
1097 * 0 -> continue walking
1099 * prune==1 -> only immediate children of node (certainly,
1100 * ignoring pure split nodes) will be scanned.
1103 void fib6_clean_tree(struct fib6_node
*root
,
1104 int (*func
)(struct rt6_info
*, void *arg
),
1105 int prune
, void *arg
)
1107 struct fib6_cleaner_t c
;
1110 c
.w
.func
= fib6_clean_node
;
1118 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1120 if (rt
->rt6i_flags
& RTF_CACHE
) {
1121 RT6_TRACE("pruning clone %p\n", rt
);
1128 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
)
1130 fib6_clean_tree(fn
, fib6_prune_clone
, 1, rt
);
1134 * Garbage collection
1137 static struct fib6_gc_args
1143 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1145 unsigned long now
= jiffies
;
1148 * check addrconf expiration here.
1149 * Routes are expired even if they are in use.
1151 * Also age clones. Note, that clones are aged out
1152 * only if they are not in use now.
1155 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1156 if (time_after(now
, rt
->rt6i_expires
)) {
1157 RT6_TRACE("expiring %p\n", rt
);
1158 rt6_reset_dflt_pointer(rt
);
1162 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1163 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1164 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1165 RT6_TRACE("aging clone %p\n", rt
);
1167 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1168 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1169 RT6_TRACE("purging route %p via non-router but gateway\n",
1179 static DEFINE_SPINLOCK(fib6_gc_lock
);
1181 void fib6_run_gc(unsigned long dummy
)
1183 if (dummy
!= ~0UL) {
1184 spin_lock_bh(&fib6_gc_lock
);
1185 gc_args
.timeout
= dummy
? (int)dummy
: ip6_rt_gc_interval
;
1188 if (!spin_trylock(&fib6_gc_lock
)) {
1189 mod_timer(&ip6_fib_timer
, jiffies
+ HZ
);
1193 gc_args
.timeout
= ip6_rt_gc_interval
;
1198 write_lock_bh(&rt6_lock
);
1199 ndisc_dst_gc(&gc_args
.more
);
1200 fib6_clean_tree(&ip6_routing_table
, fib6_age
, 0, NULL
);
1201 write_unlock_bh(&rt6_lock
);
1204 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
1206 del_timer(&ip6_fib_timer
);
1207 ip6_fib_timer
.expires
= 0;
1209 spin_unlock_bh(&fib6_gc_lock
);
1212 void __init
fib6_init(void)
1214 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1215 sizeof(struct fib6_node
),
1216 0, SLAB_HWCACHE_ALIGN
,
1218 if (!fib6_node_kmem
)
1219 panic("cannot create fib6_nodes cache");
1222 void fib6_gc_cleanup(void)
1224 del_timer(&ip6_fib_timer
);
1225 kmem_cache_destroy(fib6_node_kmem
);