[IPX]: Fix build error in ipx_recvmsg()
[linux-2.6/verdex.git] / net / ipv4 / fib_trie.c
blob395f64df6f9a3d1fea9de6ea9176d6d44b1234d4
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
46 #define VERSION "0.325"
48 #include <linux/config.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/bitops.h>
52 #include <linux/types.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/mm.h>
56 #include <linux/string.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/errno.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_arp.h>
64 #include <linux/proc_fs.h>
65 #include <linux/skbuff.h>
66 #include <linux/netlink.h>
67 #include <linux/init.h>
68 #include <linux/list.h>
69 #include <net/ip.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
72 #include <net/tcp.h>
73 #include <net/sock.h>
74 #include <net/ip_fib.h>
75 #include "fib_lookup.h"
77 #undef CONFIG_IP_FIB_TRIE_STATS
78 #define MAX_CHILDS 16384
80 #define KEYLENGTH (8*sizeof(t_key))
81 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
82 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84 static DEFINE_RWLOCK(fib_lock);
86 typedef unsigned int t_key;
88 #define T_TNODE 0
89 #define T_LEAF 1
90 #define NODE_TYPE_MASK 0x1UL
91 #define NODE_PARENT(node) \
92 ((struct tnode *)((node)->parent & ~NODE_TYPE_MASK))
93 #define NODE_SET_PARENT(node, ptr) \
94 ((node)->parent = (((unsigned long)(ptr)) | \
95 ((node)->parent & NODE_TYPE_MASK)))
96 #define NODE_INIT_PARENT(node, type) \
97 ((node)->parent = (type))
98 #define NODE_TYPE(node) \
99 ((node)->parent & NODE_TYPE_MASK)
101 #define IS_TNODE(n) (!(n->parent & T_LEAF))
102 #define IS_LEAF(n) (n->parent & T_LEAF)
104 struct node {
105 t_key key;
106 unsigned long parent;
109 struct leaf {
110 t_key key;
111 unsigned long parent;
112 struct hlist_head list;
115 struct leaf_info {
116 struct hlist_node hlist;
117 int plen;
118 struct list_head falh;
121 struct tnode {
122 t_key key;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
128 struct node *child[0];
131 #ifdef CONFIG_IP_FIB_TRIE_STATS
132 struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
138 unsigned int resize_node_skipped;
140 #endif
142 struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
148 unsigned int nodesizes[MAX_CHILDS];
151 struct trie {
152 struct node *trie;
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155 #endif
156 int size;
157 unsigned int revision;
160 static int trie_debug = 0;
162 #define DBG(x...) do { if (trie_debug) printk(x); } while (0)
164 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
165 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
166 static struct node *resize(struct trie *t, struct tnode *tn);
167 static struct tnode *inflate(struct trie *t, struct tnode *tn);
168 static struct tnode *halve(struct trie *t, struct tnode *tn);
169 static void tnode_free(struct tnode *tn);
170 static void trie_dump_seq(struct seq_file *seq, struct trie *t);
171 extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio);
172 extern int fib_detect_death(struct fib_info *fi, int order,
173 struct fib_info **last_resort, int *last_idx, int *dflt);
175 extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id,
176 struct nlmsghdr *n, struct netlink_skb_parms *req);
178 static kmem_cache_t *fn_alias_kmem;
179 static struct trie *trie_local = NULL, *trie_main = NULL;
181 static inline struct node *tnode_get_child(struct tnode *tn, int i)
183 BUG_ON(i >= 1 << tn->bits);
185 return tn->child[i];
188 static inline int tnode_child_length(const struct tnode *tn)
190 return 1 << tn->bits;
193 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
195 if (offset < KEYLENGTH)
196 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
197 else
198 return 0;
201 static inline int tkey_equals(t_key a, t_key b)
203 return a == b;
206 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
208 if (bits == 0 || offset >= KEYLENGTH)
209 return 1;
210 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
211 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
214 static inline int tkey_mismatch(t_key a, int offset, t_key b)
216 t_key diff = a ^ b;
217 int i = offset;
219 if (!diff)
220 return 0;
221 while ((diff << i) >> (KEYLENGTH-1) == 0)
222 i++;
223 return i;
226 /* Candidate for fib_semantics */
228 static void fn_free_alias(struct fib_alias *fa)
230 fib_release_info(fa->fa_info);
231 kmem_cache_free(fn_alias_kmem, fa);
235 To understand this stuff, an understanding of keys and all their bits is
236 necessary. Every node in the trie has a key associated with it, but not
237 all of the bits in that key are significant.
239 Consider a node 'n' and its parent 'tp'.
241 If n is a leaf, every bit in its key is significant. Its presence is
242 necessitaded by path compression, since during a tree traversal (when
243 searching for a leaf - unless we are doing an insertion) we will completely
244 ignore all skipped bits we encounter. Thus we need to verify, at the end of
245 a potentially successful search, that we have indeed been walking the
246 correct key path.
248 Note that we can never "miss" the correct key in the tree if present by
249 following the wrong path. Path compression ensures that segments of the key
250 that are the same for all keys with a given prefix are skipped, but the
251 skipped part *is* identical for each node in the subtrie below the skipped
252 bit! trie_insert() in this implementation takes care of that - note the
253 call to tkey_sub_equals() in trie_insert().
255 if n is an internal node - a 'tnode' here, the various parts of its key
256 have many different meanings.
258 Example:
259 _________________________________________________________________
260 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
261 -----------------------------------------------------------------
262 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
264 _________________________________________________________________
265 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
266 -----------------------------------------------------------------
267 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
269 tp->pos = 7
270 tp->bits = 3
271 n->pos = 15
272 n->bits = 4
274 First, let's just ignore the bits that come before the parent tp, that is
275 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
276 not use them for anything.
278 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
279 index into the parent's child array. That is, they will be used to find
280 'n' among tp's children.
282 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
283 for the node n.
285 All the bits we have seen so far are significant to the node n. The rest
286 of the bits are really not needed or indeed known in n->key.
288 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
289 n's child array, and will of course be different for each child.
292 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
293 at this point.
297 static void check_tnode(struct tnode *tn)
299 if (tn && tn->pos+tn->bits > 32) {
300 printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits);
304 static int halve_threshold = 25;
305 static int inflate_threshold = 50;
307 static struct leaf *leaf_new(void)
309 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
310 if (l) {
311 NODE_INIT_PARENT(l, T_LEAF);
312 INIT_HLIST_HEAD(&l->list);
314 return l;
317 static struct leaf_info *leaf_info_new(int plen)
319 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
321 if (!li)
322 return NULL;
324 li->plen = plen;
325 INIT_LIST_HEAD(&li->falh);
327 return li;
330 static inline void free_leaf(struct leaf *l)
332 kfree(l);
335 static inline void free_leaf_info(struct leaf_info *li)
337 kfree(li);
340 static struct tnode *tnode_alloc(unsigned int size)
342 if (size <= PAGE_SIZE) {
343 return kmalloc(size, GFP_KERNEL);
344 } else {
345 return (struct tnode *)
346 __get_free_pages(GFP_KERNEL, get_order(size));
350 static void __tnode_free(struct tnode *tn)
352 unsigned int size = sizeof(struct tnode) +
353 (1 << tn->bits) * sizeof(struct node *);
355 if (size <= PAGE_SIZE)
356 kfree(tn);
357 else
358 free_pages((unsigned long)tn, get_order(size));
361 static struct tnode* tnode_new(t_key key, int pos, int bits)
363 int nchildren = 1<<bits;
364 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
365 struct tnode *tn = tnode_alloc(sz);
367 if (tn) {
368 memset(tn, 0, sz);
369 NODE_INIT_PARENT(tn, T_TNODE);
370 tn->pos = pos;
371 tn->bits = bits;
372 tn->key = key;
373 tn->full_children = 0;
374 tn->empty_children = 1<<bits;
377 DBG("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
378 (unsigned int) (sizeof(struct node) * 1<<bits));
379 return tn;
382 static void tnode_free(struct tnode *tn)
384 BUG_ON(!tn);
386 if (IS_LEAF(tn)) {
387 free_leaf((struct leaf *)tn);
388 DBG("FL %p \n", tn);
389 } else {
390 __tnode_free(tn);
391 DBG("FT %p \n", tn);
396 * Check whether a tnode 'n' is "full", i.e. it is an internal node
397 * and no bits are skipped. See discussion in dyntree paper p. 6
400 static inline int tnode_full(const struct tnode *tn, const struct node *n)
402 if (n == NULL || IS_LEAF(n))
403 return 0;
405 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
408 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
410 tnode_put_child_reorg(tn, i, n, -1);
414 * Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
418 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
420 struct node *chi;
421 int isfull;
423 if (i >= 1<<tn->bits) {
424 printk("bits=%d, i=%d\n", tn->bits, i);
425 BUG();
427 write_lock_bh(&fib_lock);
428 chi = tn->child[i];
430 /* update emptyChildren */
431 if (n == NULL && chi != NULL)
432 tn->empty_children++;
433 else if (n != NULL && chi == NULL)
434 tn->empty_children--;
436 /* update fullChildren */
437 if (wasfull == -1)
438 wasfull = tnode_full(tn, chi);
440 isfull = tnode_full(tn, n);
441 if (wasfull && !isfull)
442 tn->full_children--;
443 else if (!wasfull && isfull)
444 tn->full_children++;
446 if (n)
447 NODE_SET_PARENT(n, tn);
449 tn->child[i] = n;
450 write_unlock_bh(&fib_lock);
453 static struct node *resize(struct trie *t, struct tnode *tn)
455 int i;
456 int err = 0;
457 struct tnode *old_tn;
459 if (!tn)
460 return NULL;
462 DBG("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
463 tn, inflate_threshold, halve_threshold);
465 /* No children */
466 if (tn->empty_children == tnode_child_length(tn)) {
467 tnode_free(tn);
468 return NULL;
470 /* One child */
471 if (tn->empty_children == tnode_child_length(tn) - 1)
472 for (i = 0; i < tnode_child_length(tn); i++) {
473 struct node *n;
475 write_lock_bh(&fib_lock);
476 n = tn->child[i];
477 if (!n) {
478 write_unlock_bh(&fib_lock);
479 continue;
482 /* compress one level */
483 NODE_INIT_PARENT(n, NODE_TYPE(n));
485 write_unlock_bh(&fib_lock);
486 tnode_free(tn);
487 return n;
490 * Double as long as the resulting node has a number of
491 * nonempty nodes that are above the threshold.
495 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
496 * the Helsinki University of Technology and Matti Tikkanen of Nokia
497 * Telecommunications, page 6:
498 * "A node is doubled if the ratio of non-empty children to all
499 * children in the *doubled* node is at least 'high'."
501 * 'high' in this instance is the variable 'inflate_threshold'. It
502 * is expressed as a percentage, so we multiply it with
503 * tnode_child_length() and instead of multiplying by 2 (since the
504 * child array will be doubled by inflate()) and multiplying
505 * the left-hand side by 100 (to handle the percentage thing) we
506 * multiply the left-hand side by 50.
508 * The left-hand side may look a bit weird: tnode_child_length(tn)
509 * - tn->empty_children is of course the number of non-null children
510 * in the current node. tn->full_children is the number of "full"
511 * children, that is non-null tnodes with a skip value of 0.
512 * All of those will be doubled in the resulting inflated tnode, so
513 * we just count them one extra time here.
515 * A clearer way to write this would be:
517 * to_be_doubled = tn->full_children;
518 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
519 * tn->full_children;
521 * new_child_length = tnode_child_length(tn) * 2;
523 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
524 * new_child_length;
525 * if (new_fill_factor >= inflate_threshold)
527 * ...and so on, tho it would mess up the while () loop.
529 * anyway,
530 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
531 * inflate_threshold
533 * avoid a division:
534 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
535 * inflate_threshold * new_child_length
537 * expand not_to_be_doubled and to_be_doubled, and shorten:
538 * 100 * (tnode_child_length(tn) - tn->empty_children +
539 * tn->full_children) >= inflate_threshold * new_child_length
541 * expand new_child_length:
542 * 100 * (tnode_child_length(tn) - tn->empty_children +
543 * tn->full_children) >=
544 * inflate_threshold * tnode_child_length(tn) * 2
546 * shorten again:
547 * 50 * (tn->full_children + tnode_child_length(tn) -
548 * tn->empty_children) >= inflate_threshold *
549 * tnode_child_length(tn)
553 check_tnode(tn);
555 err = 0;
556 while ((tn->full_children > 0 &&
557 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
558 inflate_threshold * tnode_child_length(tn))) {
560 old_tn = tn;
561 tn = inflate(t, tn);
562 if (IS_ERR(tn)) {
563 tn = old_tn;
564 #ifdef CONFIG_IP_FIB_TRIE_STATS
565 t->stats.resize_node_skipped++;
566 #endif
567 break;
571 check_tnode(tn);
574 * Halve as long as the number of empty children in this
575 * node is above threshold.
578 err = 0;
579 while (tn->bits > 1 &&
580 100 * (tnode_child_length(tn) - tn->empty_children) <
581 halve_threshold * tnode_child_length(tn)) {
583 old_tn = tn;
584 tn = halve(t, tn);
585 if (IS_ERR(tn)) {
586 tn = old_tn;
587 #ifdef CONFIG_IP_FIB_TRIE_STATS
588 t->stats.resize_node_skipped++;
589 #endif
590 break;
595 /* Only one child remains */
597 if (tn->empty_children == tnode_child_length(tn) - 1)
598 for (i = 0; i < tnode_child_length(tn); i++) {
599 struct node *n;
601 write_lock_bh(&fib_lock);
603 n = tn->child[i];
604 if (!n) {
605 write_unlock_bh(&fib_lock);
606 continue;
609 /* compress one level */
611 NODE_INIT_PARENT(n, NODE_TYPE(n));
613 write_unlock_bh(&fib_lock);
614 tnode_free(tn);
615 return n;
618 return (struct node *) tn;
621 static struct tnode *inflate(struct trie *t, struct tnode *tn)
623 struct tnode *inode;
624 struct tnode *oldtnode = tn;
625 int olen = tnode_child_length(tn);
626 int i;
628 DBG("In inflate\n");
630 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
632 if (!tn)
633 return ERR_PTR(-ENOMEM);
636 * Preallocate and store tnodes before the actual work so we
637 * don't get into an inconsistent state if memory allocation
638 * fails. In case of failure we return the oldnode and inflate
639 * of tnode is ignored.
642 for (i = 0; i < olen; i++) {
643 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
645 if (inode &&
646 IS_TNODE(inode) &&
647 inode->pos == oldtnode->pos + oldtnode->bits &&
648 inode->bits > 1) {
649 struct tnode *left, *right;
650 t_key m = TKEY_GET_MASK(inode->pos, 1);
652 left = tnode_new(inode->key&(~m), inode->pos + 1,
653 inode->bits - 1);
654 if (!left)
655 goto nomem;
657 right = tnode_new(inode->key|m, inode->pos + 1,
658 inode->bits - 1);
660 if (!right) {
661 tnode_free(left);
662 goto nomem;
665 put_child(t, tn, 2*i, (struct node *) left);
666 put_child(t, tn, 2*i+1, (struct node *) right);
670 for (i = 0; i < olen; i++) {
671 struct node *node = tnode_get_child(oldtnode, i);
672 struct tnode *left, *right;
673 int size, j;
675 /* An empty child */
676 if (node == NULL)
677 continue;
679 /* A leaf or an internal node with skipped bits */
681 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
682 tn->pos + tn->bits - 1) {
683 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
684 1) == 0)
685 put_child(t, tn, 2*i, node);
686 else
687 put_child(t, tn, 2*i+1, node);
688 continue;
691 /* An internal node with two children */
692 inode = (struct tnode *) node;
694 if (inode->bits == 1) {
695 put_child(t, tn, 2*i, inode->child[0]);
696 put_child(t, tn, 2*i+1, inode->child[1]);
698 tnode_free(inode);
699 continue;
702 /* An internal node with more than two children */
704 /* We will replace this node 'inode' with two new
705 * ones, 'left' and 'right', each with half of the
706 * original children. The two new nodes will have
707 * a position one bit further down the key and this
708 * means that the "significant" part of their keys
709 * (see the discussion near the top of this file)
710 * will differ by one bit, which will be "0" in
711 * left's key and "1" in right's key. Since we are
712 * moving the key position by one step, the bit that
713 * we are moving away from - the bit at position
714 * (inode->pos) - is the one that will differ between
715 * left and right. So... we synthesize that bit in the
716 * two new keys.
717 * The mask 'm' below will be a single "one" bit at
718 * the position (inode->pos)
721 /* Use the old key, but set the new significant
722 * bit to zero.
725 left = (struct tnode *) tnode_get_child(tn, 2*i);
726 put_child(t, tn, 2*i, NULL);
728 BUG_ON(!left);
730 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
731 put_child(t, tn, 2*i+1, NULL);
733 BUG_ON(!right);
735 size = tnode_child_length(left);
736 for (j = 0; j < size; j++) {
737 put_child(t, left, j, inode->child[j]);
738 put_child(t, right, j, inode->child[j + size]);
740 put_child(t, tn, 2*i, resize(t, left));
741 put_child(t, tn, 2*i+1, resize(t, right));
743 tnode_free(inode);
745 tnode_free(oldtnode);
746 return tn;
747 nomem:
749 int size = tnode_child_length(tn);
750 int j;
752 for(j = 0; j < size; j++)
753 if (tn->child[j])
754 tnode_free((struct tnode *)tn->child[j]);
756 tnode_free(tn);
758 return ERR_PTR(-ENOMEM);
762 static struct tnode *halve(struct trie *t, struct tnode *tn)
764 struct tnode *oldtnode = tn;
765 struct node *left, *right;
766 int i;
767 int olen = tnode_child_length(tn);
769 DBG("In halve\n");
771 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
773 if (!tn)
774 return ERR_PTR(-ENOMEM);
777 * Preallocate and store tnodes before the actual work so we
778 * don't get into an inconsistent state if memory allocation
779 * fails. In case of failure we return the oldnode and halve
780 * of tnode is ignored.
783 for (i = 0; i < olen; i += 2) {
784 left = tnode_get_child(oldtnode, i);
785 right = tnode_get_child(oldtnode, i+1);
787 /* Two nonempty children */
788 if (left && right) {
789 struct tnode *newn;
791 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
793 if (!newn)
794 goto nomem;
796 put_child(t, tn, i/2, (struct node *)newn);
801 for (i = 0; i < olen; i += 2) {
802 struct tnode *newBinNode;
804 left = tnode_get_child(oldtnode, i);
805 right = tnode_get_child(oldtnode, i+1);
807 /* At least one of the children is empty */
808 if (left == NULL) {
809 if (right == NULL) /* Both are empty */
810 continue;
811 put_child(t, tn, i/2, right);
812 continue;
815 if (right == NULL) {
816 put_child(t, tn, i/2, left);
817 continue;
820 /* Two nonempty children */
821 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
822 put_child(t, tn, i/2, NULL);
824 BUG_ON(!newBinNode);
826 put_child(t, newBinNode, 0, left);
827 put_child(t, newBinNode, 1, right);
828 put_child(t, tn, i/2, resize(t, newBinNode));
830 tnode_free(oldtnode);
831 return tn;
832 nomem:
834 int size = tnode_child_length(tn);
835 int j;
837 for(j = 0; j < size; j++)
838 if (tn->child[j])
839 tnode_free((struct tnode *)tn->child[j]);
841 tnode_free(tn);
843 return ERR_PTR(-ENOMEM);
847 static void trie_init(struct trie *t)
849 if (!t)
850 return;
852 t->size = 0;
853 t->trie = NULL;
854 t->revision = 0;
855 #ifdef CONFIG_IP_FIB_TRIE_STATS
856 memset(&t->stats, 0, sizeof(struct trie_use_stats));
857 #endif
860 static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
862 struct hlist_node *node;
863 struct leaf_info *li;
865 hlist_for_each_entry(li, node, head, hlist)
866 if (li->plen == plen)
867 return li;
869 return NULL;
872 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
874 struct leaf_info *li = find_leaf_info(&l->list, plen);
876 if (!li)
877 return NULL;
879 return &li->falh;
882 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
884 struct leaf_info *li = NULL, *last = NULL;
885 struct hlist_node *node;
887 write_lock_bh(&fib_lock);
889 if (hlist_empty(head)) {
890 hlist_add_head(&new->hlist, head);
891 } else {
892 hlist_for_each_entry(li, node, head, hlist) {
893 if (new->plen > li->plen)
894 break;
896 last = li;
898 if (last)
899 hlist_add_after(&last->hlist, &new->hlist);
900 else
901 hlist_add_before(&new->hlist, &li->hlist);
903 write_unlock_bh(&fib_lock);
906 static struct leaf *
907 fib_find_node(struct trie *t, u32 key)
909 int pos;
910 struct tnode *tn;
911 struct node *n;
913 pos = 0;
914 n = t->trie;
916 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
917 tn = (struct tnode *) n;
919 check_tnode(tn);
921 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
922 pos = tn->pos + tn->bits;
923 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
924 } else
925 break;
927 /* Case we have found a leaf. Compare prefixes */
929 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
930 return (struct leaf *)n;
932 return NULL;
935 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
937 int i;
938 int wasfull;
939 t_key cindex, key;
940 struct tnode *tp = NULL;
942 BUG_ON(!tn);
944 key = tn->key;
945 i = 0;
947 while (tn != NULL && NODE_PARENT(tn) != NULL) {
948 if (i > 10) {
949 printk("Rebalance tn=%p \n", tn);
950 if (tn)
951 printk("tn->parent=%p \n", NODE_PARENT(tn));
953 printk("Rebalance tp=%p \n", tp);
954 if (tp)
955 printk("tp->parent=%p \n", NODE_PARENT(tp));
958 BUG_ON(i > 12); /* Why is this a bug? -ojn */
959 i++;
961 tp = NODE_PARENT(tn);
962 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
963 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
964 tn = (struct tnode *) resize (t, (struct tnode *)tn);
965 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
967 if (!NODE_PARENT(tn))
968 break;
970 tn = NODE_PARENT(tn);
972 /* Handle last (top) tnode */
973 if (IS_TNODE(tn))
974 tn = (struct tnode*) resize(t, (struct tnode *)tn);
976 return (struct node*) tn;
979 static struct list_head *
980 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
982 int pos, newpos;
983 struct tnode *tp = NULL, *tn = NULL;
984 struct node *n;
985 struct leaf *l;
986 int missbit;
987 struct list_head *fa_head = NULL;
988 struct leaf_info *li;
989 t_key cindex;
991 pos = 0;
992 n = t->trie;
994 /* If we point to NULL, stop. Either the tree is empty and we should
995 * just put a new leaf in if, or we have reached an empty child slot,
996 * and we should just put our new leaf in that.
997 * If we point to a T_TNODE, check if it matches our key. Note that
998 * a T_TNODE might be skipping any number of bits - its 'pos' need
999 * not be the parent's 'pos'+'bits'!
1001 * If it does match the current key, get pos/bits from it, extract
1002 * the index from our key, push the T_TNODE and walk the tree.
1004 * If it doesn't, we have to replace it with a new T_TNODE.
1006 * If we point to a T_LEAF, it might or might not have the same key
1007 * as we do. If it does, just change the value, update the T_LEAF's
1008 * value, and return it.
1009 * If it doesn't, we need to replace it with a T_TNODE.
1012 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1013 tn = (struct tnode *) n;
1015 check_tnode(tn);
1017 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1018 tp = tn;
1019 pos = tn->pos + tn->bits;
1020 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1022 if (n && NODE_PARENT(n) != tn) {
1023 printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n));
1024 BUG();
1026 } else
1027 break;
1031 * n ----> NULL, LEAF or TNODE
1033 * tp is n's (parent) ----> NULL or TNODE
1036 BUG_ON(tp && IS_LEAF(tp));
1038 /* Case 1: n is a leaf. Compare prefixes */
1040 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1041 struct leaf *l = (struct leaf *) n;
1043 li = leaf_info_new(plen);
1045 if (!li) {
1046 *err = -ENOMEM;
1047 goto err;
1050 fa_head = &li->falh;
1051 insert_leaf_info(&l->list, li);
1052 goto done;
1054 t->size++;
1055 l = leaf_new();
1057 if (!l) {
1058 *err = -ENOMEM;
1059 goto err;
1062 l->key = key;
1063 li = leaf_info_new(plen);
1065 if (!li) {
1066 tnode_free((struct tnode *) l);
1067 *err = -ENOMEM;
1068 goto err;
1071 fa_head = &li->falh;
1072 insert_leaf_info(&l->list, li);
1074 if (t->trie && n == NULL) {
1075 /* Case 2: n is NULL, and will just insert a new leaf */
1077 NODE_SET_PARENT(l, tp);
1079 BUG_ON(!tp);
1081 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1082 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1083 } else {
1084 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1086 * Add a new tnode here
1087 * first tnode need some special handling
1090 if (tp)
1091 pos = tp->pos+tp->bits;
1092 else
1093 pos = 0;
1095 if (n) {
1096 newpos = tkey_mismatch(key, pos, n->key);
1097 tn = tnode_new(n->key, newpos, 1);
1098 } else {
1099 newpos = 0;
1100 tn = tnode_new(key, newpos, 1); /* First tnode */
1103 if (!tn) {
1104 free_leaf_info(li);
1105 tnode_free((struct tnode *) l);
1106 *err = -ENOMEM;
1107 goto err;
1110 NODE_SET_PARENT(tn, tp);
1112 missbit = tkey_extract_bits(key, newpos, 1);
1113 put_child(t, tn, missbit, (struct node *)l);
1114 put_child(t, tn, 1-missbit, n);
1116 if (tp) {
1117 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1118 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1119 } else {
1120 t->trie = (struct node*) tn; /* First tnode */
1121 tp = tn;
1125 if (tp && tp->pos + tp->bits > 32)
1126 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1127 tp, tp->pos, tp->bits, key, plen);
1129 /* Rebalance the trie */
1130 t->trie = trie_rebalance(t, tp);
1131 done:
1132 t->revision++;
1133 err:
1134 return fa_head;
1137 static int
1138 fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1139 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1141 struct trie *t = (struct trie *) tb->tb_data;
1142 struct fib_alias *fa, *new_fa;
1143 struct list_head *fa_head = NULL;
1144 struct fib_info *fi;
1145 int plen = r->rtm_dst_len;
1146 int type = r->rtm_type;
1147 u8 tos = r->rtm_tos;
1148 u32 key, mask;
1149 int err;
1150 struct leaf *l;
1152 if (plen > 32)
1153 return -EINVAL;
1155 key = 0;
1156 if (rta->rta_dst)
1157 memcpy(&key, rta->rta_dst, 4);
1159 key = ntohl(key);
1161 DBG("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1163 mask = ntohl(inet_make_mask(plen));
1165 if (key & ~mask)
1166 return -EINVAL;
1168 key = key & mask;
1170 fi = fib_create_info(r, rta, nlhdr, &err);
1172 if (!fi)
1173 goto err;
1175 l = fib_find_node(t, key);
1176 fa = NULL;
1178 if (l) {
1179 fa_head = get_fa_head(l, plen);
1180 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1183 /* Now fa, if non-NULL, points to the first fib alias
1184 * with the same keys [prefix,tos,priority], if such key already
1185 * exists or to the node before which we will insert new one.
1187 * If fa is NULL, we will need to allocate a new one and
1188 * insert to the head of f.
1190 * If f is NULL, no fib node matched the destination key
1191 * and we need to allocate a new one of those as well.
1194 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1195 struct fib_alias *fa_orig;
1197 err = -EEXIST;
1198 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1199 goto out;
1201 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1202 struct fib_info *fi_drop;
1203 u8 state;
1205 write_lock_bh(&fib_lock);
1207 fi_drop = fa->fa_info;
1208 fa->fa_info = fi;
1209 fa->fa_type = type;
1210 fa->fa_scope = r->rtm_scope;
1211 state = fa->fa_state;
1212 fa->fa_state &= ~FA_S_ACCESSED;
1214 write_unlock_bh(&fib_lock);
1216 fib_release_info(fi_drop);
1217 if (state & FA_S_ACCESSED)
1218 rt_cache_flush(-1);
1220 goto succeeded;
1222 /* Error if we find a perfect match which
1223 * uses the same scope, type, and nexthop
1224 * information.
1226 fa_orig = fa;
1227 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1228 if (fa->fa_tos != tos)
1229 break;
1230 if (fa->fa_info->fib_priority != fi->fib_priority)
1231 break;
1232 if (fa->fa_type == type &&
1233 fa->fa_scope == r->rtm_scope &&
1234 fa->fa_info == fi) {
1235 goto out;
1238 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1239 fa = fa_orig;
1241 err = -ENOENT;
1242 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
1243 goto out;
1245 err = -ENOBUFS;
1246 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1247 if (new_fa == NULL)
1248 goto out;
1250 new_fa->fa_info = fi;
1251 new_fa->fa_tos = tos;
1252 new_fa->fa_type = type;
1253 new_fa->fa_scope = r->rtm_scope;
1254 new_fa->fa_state = 0;
1256 * Insert new entry to the list.
1259 if (!fa_head) {
1260 fa_head = fib_insert_node(t, &err, key, plen);
1261 err = 0;
1262 if (err)
1263 goto out_free_new_fa;
1266 write_lock_bh(&fib_lock);
1268 list_add_tail(&new_fa->fa_list, (fa ? &fa->fa_list : fa_head));
1270 write_unlock_bh(&fib_lock);
1272 rt_cache_flush(-1);
1273 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1274 succeeded:
1275 return 0;
1277 out_free_new_fa:
1278 kmem_cache_free(fn_alias_kmem, new_fa);
1279 out:
1280 fib_release_info(fi);
1281 err:
1282 return err;
1285 static inline int check_leaf(struct trie *t, struct leaf *l, t_key key, int *plen, const struct flowi *flp,
1286 struct fib_result *res)
1288 int err, i;
1289 t_key mask;
1290 struct leaf_info *li;
1291 struct hlist_head *hhead = &l->list;
1292 struct hlist_node *node;
1294 hlist_for_each_entry(li, node, hhead, hlist) {
1295 i = li->plen;
1296 mask = ntohl(inet_make_mask(i));
1297 if (l->key != (key & mask))
1298 continue;
1300 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
1301 *plen = i;
1302 #ifdef CONFIG_IP_FIB_TRIE_STATS
1303 t->stats.semantic_match_passed++;
1304 #endif
1305 return err;
1307 #ifdef CONFIG_IP_FIB_TRIE_STATS
1308 t->stats.semantic_match_miss++;
1309 #endif
1311 return 1;
1314 static int
1315 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1317 struct trie *t = (struct trie *) tb->tb_data;
1318 int plen, ret = 0;
1319 struct node *n;
1320 struct tnode *pn;
1321 int pos, bits;
1322 t_key key = ntohl(flp->fl4_dst);
1323 int chopped_off;
1324 t_key cindex = 0;
1325 int current_prefix_length = KEYLENGTH;
1326 struct tnode *cn;
1327 t_key node_prefix, key_prefix, pref_mismatch;
1328 int mp;
1330 n = t->trie;
1332 read_lock(&fib_lock);
1334 if (!n)
1335 goto failed;
1337 #ifdef CONFIG_IP_FIB_TRIE_STATS
1338 t->stats.gets++;
1339 #endif
1341 /* Just a leaf? */
1342 if (IS_LEAF(n)) {
1343 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1344 goto found;
1345 goto failed;
1347 pn = (struct tnode *) n;
1348 chopped_off = 0;
1350 while (pn) {
1351 pos = pn->pos;
1352 bits = pn->bits;
1354 if (!chopped_off)
1355 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1357 n = tnode_get_child(pn, cindex);
1359 if (n == NULL) {
1360 #ifdef CONFIG_IP_FIB_TRIE_STATS
1361 t->stats.null_node_hit++;
1362 #endif
1363 goto backtrace;
1366 if (IS_LEAF(n)) {
1367 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1368 goto found;
1369 else
1370 goto backtrace;
1373 #define HL_OPTIMIZE
1374 #ifdef HL_OPTIMIZE
1375 cn = (struct tnode *)n;
1378 * It's a tnode, and we can do some extra checks here if we
1379 * like, to avoid descending into a dead-end branch.
1380 * This tnode is in the parent's child array at index
1381 * key[p_pos..p_pos+p_bits] but potentially with some bits
1382 * chopped off, so in reality the index may be just a
1383 * subprefix, padded with zero at the end.
1384 * We can also take a look at any skipped bits in this
1385 * tnode - everything up to p_pos is supposed to be ok,
1386 * and the non-chopped bits of the index (se previous
1387 * paragraph) are also guaranteed ok, but the rest is
1388 * considered unknown.
1390 * The skipped bits are key[pos+bits..cn->pos].
1393 /* If current_prefix_length < pos+bits, we are already doing
1394 * actual prefix matching, which means everything from
1395 * pos+(bits-chopped_off) onward must be zero along some
1396 * branch of this subtree - otherwise there is *no* valid
1397 * prefix present. Here we can only check the skipped
1398 * bits. Remember, since we have already indexed into the
1399 * parent's child array, we know that the bits we chopped of
1400 * *are* zero.
1403 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1405 if (current_prefix_length < pos+bits) {
1406 if (tkey_extract_bits(cn->key, current_prefix_length,
1407 cn->pos - current_prefix_length) != 0 ||
1408 !(cn->child[0]))
1409 goto backtrace;
1413 * If chopped_off=0, the index is fully validated and we
1414 * only need to look at the skipped bits for this, the new,
1415 * tnode. What we actually want to do is to find out if
1416 * these skipped bits match our key perfectly, or if we will
1417 * have to count on finding a matching prefix further down,
1418 * because if we do, we would like to have some way of
1419 * verifying the existence of such a prefix at this point.
1422 /* The only thing we can do at this point is to verify that
1423 * any such matching prefix can indeed be a prefix to our
1424 * key, and if the bits in the node we are inspecting that
1425 * do not match our key are not ZERO, this cannot be true.
1426 * Thus, find out where there is a mismatch (before cn->pos)
1427 * and verify that all the mismatching bits are zero in the
1428 * new tnode's key.
1431 /* Note: We aren't very concerned about the piece of the key
1432 * that precede pn->pos+pn->bits, since these have already been
1433 * checked. The bits after cn->pos aren't checked since these are
1434 * by definition "unknown" at this point. Thus, what we want to
1435 * see is if we are about to enter the "prefix matching" state,
1436 * and in that case verify that the skipped bits that will prevail
1437 * throughout this subtree are zero, as they have to be if we are
1438 * to find a matching prefix.
1441 node_prefix = MASK_PFX(cn->key, cn->pos);
1442 key_prefix = MASK_PFX(key, cn->pos);
1443 pref_mismatch = key_prefix^node_prefix;
1444 mp = 0;
1446 /* In short: If skipped bits in this node do not match the search
1447 * key, enter the "prefix matching" state.directly.
1449 if (pref_mismatch) {
1450 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1451 mp++;
1452 pref_mismatch = pref_mismatch <<1;
1454 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1456 if (key_prefix != 0)
1457 goto backtrace;
1459 if (current_prefix_length >= cn->pos)
1460 current_prefix_length = mp;
1462 #endif
1463 pn = (struct tnode *)n; /* Descend */
1464 chopped_off = 0;
1465 continue;
1467 backtrace:
1468 chopped_off++;
1470 /* As zero don't change the child key (cindex) */
1471 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1472 chopped_off++;
1474 /* Decrease current_... with bits chopped off */
1475 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1476 current_prefix_length = pn->pos + pn->bits - chopped_off;
1479 * Either we do the actual chop off according or if we have
1480 * chopped off all bits in this tnode walk up to our parent.
1483 if (chopped_off <= pn->bits) {
1484 cindex &= ~(1 << (chopped_off-1));
1485 } else {
1486 if (NODE_PARENT(pn) == NULL)
1487 goto failed;
1489 /* Get Child's index */
1490 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1491 pn = NODE_PARENT(pn);
1492 chopped_off = 0;
1494 #ifdef CONFIG_IP_FIB_TRIE_STATS
1495 t->stats.backtrack++;
1496 #endif
1497 goto backtrace;
1500 failed:
1501 ret = 1;
1502 found:
1503 read_unlock(&fib_lock);
1504 return ret;
1507 static int trie_leaf_remove(struct trie *t, t_key key)
1509 t_key cindex;
1510 struct tnode *tp = NULL;
1511 struct node *n = t->trie;
1512 struct leaf *l;
1514 DBG("entering trie_leaf_remove(%p)\n", n);
1516 /* Note that in the case skipped bits, those bits are *not* checked!
1517 * When we finish this, we will have NULL or a T_LEAF, and the
1518 * T_LEAF may or may not match our key.
1521 while (n != NULL && IS_TNODE(n)) {
1522 struct tnode *tn = (struct tnode *) n;
1523 check_tnode(tn);
1524 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1526 if (n && NODE_PARENT(n) != tn) {
1527 printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n));
1528 BUG();
1531 l = (struct leaf *) n;
1533 if (!n || !tkey_equals(l->key, key))
1534 return 0;
1537 * Key found.
1538 * Remove the leaf and rebalance the tree
1541 t->revision++;
1542 t->size--;
1544 tp = NODE_PARENT(n);
1545 tnode_free((struct tnode *) n);
1547 if (tp) {
1548 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1549 put_child(t, (struct tnode *)tp, cindex, NULL);
1550 t->trie = trie_rebalance(t, tp);
1551 } else
1552 t->trie = NULL;
1554 return 1;
1557 static int
1558 fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1559 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1561 struct trie *t = (struct trie *) tb->tb_data;
1562 u32 key, mask;
1563 int plen = r->rtm_dst_len;
1564 u8 tos = r->rtm_tos;
1565 struct fib_alias *fa, *fa_to_delete;
1566 struct list_head *fa_head;
1567 struct leaf *l;
1568 int kill_li = 0;
1569 struct leaf_info *li;
1572 if (plen > 32)
1573 return -EINVAL;
1575 key = 0;
1576 if (rta->rta_dst)
1577 memcpy(&key, rta->rta_dst, 4);
1579 key = ntohl(key);
1580 mask = ntohl(inet_make_mask(plen));
1582 if (key & ~mask)
1583 return -EINVAL;
1585 key = key & mask;
1586 l = fib_find_node(t, key);
1588 if (!l)
1589 return -ESRCH;
1591 fa_head = get_fa_head(l, plen);
1592 fa = fib_find_alias(fa_head, tos, 0);
1594 if (!fa)
1595 return -ESRCH;
1597 DBG("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1599 fa_to_delete = NULL;
1600 fa_head = fa->fa_list.prev;
1601 list_for_each_entry(fa, fa_head, fa_list) {
1602 struct fib_info *fi = fa->fa_info;
1604 if (fa->fa_tos != tos)
1605 break;
1607 if ((!r->rtm_type ||
1608 fa->fa_type == r->rtm_type) &&
1609 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1610 fa->fa_scope == r->rtm_scope) &&
1611 (!r->rtm_protocol ||
1612 fi->fib_protocol == r->rtm_protocol) &&
1613 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1614 fa_to_delete = fa;
1615 break;
1619 if (!fa_to_delete)
1620 return -ESRCH;
1622 fa = fa_to_delete;
1623 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1625 l = fib_find_node(t, key);
1626 li = find_leaf_info(&l->list, plen);
1628 write_lock_bh(&fib_lock);
1630 list_del(&fa->fa_list);
1632 if (list_empty(fa_head)) {
1633 hlist_del(&li->hlist);
1634 kill_li = 1;
1636 write_unlock_bh(&fib_lock);
1638 if (kill_li)
1639 free_leaf_info(li);
1641 if (hlist_empty(&l->list))
1642 trie_leaf_remove(t, key);
1644 if (fa->fa_state & FA_S_ACCESSED)
1645 rt_cache_flush(-1);
1647 fn_free_alias(fa);
1648 return 0;
1651 static int trie_flush_list(struct trie *t, struct list_head *head)
1653 struct fib_alias *fa, *fa_node;
1654 int found = 0;
1656 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1657 struct fib_info *fi = fa->fa_info;
1659 if (fi && (fi->fib_flags&RTNH_F_DEAD)) {
1660 write_lock_bh(&fib_lock);
1661 list_del(&fa->fa_list);
1662 write_unlock_bh(&fib_lock);
1664 fn_free_alias(fa);
1665 found++;
1668 return found;
1671 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1673 int found = 0;
1674 struct hlist_head *lih = &l->list;
1675 struct hlist_node *node, *tmp;
1676 struct leaf_info *li = NULL;
1678 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1679 found += trie_flush_list(t, &li->falh);
1681 if (list_empty(&li->falh)) {
1682 write_lock_bh(&fib_lock);
1683 hlist_del(&li->hlist);
1684 write_unlock_bh(&fib_lock);
1686 free_leaf_info(li);
1689 return found;
1692 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1694 struct node *c = (struct node *) thisleaf;
1695 struct tnode *p;
1696 int idx;
1698 if (c == NULL) {
1699 if (t->trie == NULL)
1700 return NULL;
1702 if (IS_LEAF(t->trie)) /* trie w. just a leaf */
1703 return (struct leaf *) t->trie;
1705 p = (struct tnode*) t->trie; /* Start */
1706 } else
1707 p = (struct tnode *) NODE_PARENT(c);
1709 while (p) {
1710 int pos, last;
1712 /* Find the next child of the parent */
1713 if (c)
1714 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1715 else
1716 pos = 0;
1718 last = 1 << p->bits;
1719 for (idx = pos; idx < last ; idx++) {
1720 if (!p->child[idx])
1721 continue;
1723 /* Decend if tnode */
1724 while (IS_TNODE(p->child[idx])) {
1725 p = (struct tnode*) p->child[idx];
1726 idx = 0;
1728 /* Rightmost non-NULL branch */
1729 if (p && IS_TNODE(p))
1730 while (p->child[idx] == NULL && idx < (1 << p->bits)) idx++;
1732 /* Done with this tnode? */
1733 if (idx >= (1 << p->bits) || p->child[idx] == NULL)
1734 goto up;
1736 return (struct leaf*) p->child[idx];
1739 /* No more children go up one step */
1740 c = (struct node *) p;
1741 p = (struct tnode *) NODE_PARENT(p);
1743 return NULL; /* Ready. Root of trie */
1746 static int fn_trie_flush(struct fib_table *tb)
1748 struct trie *t = (struct trie *) tb->tb_data;
1749 struct leaf *ll = NULL, *l = NULL;
1750 int found = 0, h;
1752 t->revision++;
1754 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1755 found += trie_flush_leaf(t, l);
1757 if (ll && hlist_empty(&ll->list))
1758 trie_leaf_remove(t, ll->key);
1759 ll = l;
1762 if (ll && hlist_empty(&ll->list))
1763 trie_leaf_remove(t, ll->key);
1765 DBG("trie_flush found=%d\n", found);
1766 return found;
1769 static int trie_last_dflt = -1;
1771 static void
1772 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1774 struct trie *t = (struct trie *) tb->tb_data;
1775 int order, last_idx;
1776 struct fib_info *fi = NULL;
1777 struct fib_info *last_resort;
1778 struct fib_alias *fa = NULL;
1779 struct list_head *fa_head;
1780 struct leaf *l;
1782 last_idx = -1;
1783 last_resort = NULL;
1784 order = -1;
1786 read_lock(&fib_lock);
1788 l = fib_find_node(t, 0);
1789 if (!l)
1790 goto out;
1792 fa_head = get_fa_head(l, 0);
1793 if (!fa_head)
1794 goto out;
1796 if (list_empty(fa_head))
1797 goto out;
1799 list_for_each_entry(fa, fa_head, fa_list) {
1800 struct fib_info *next_fi = fa->fa_info;
1802 if (fa->fa_scope != res->scope ||
1803 fa->fa_type != RTN_UNICAST)
1804 continue;
1806 if (next_fi->fib_priority > res->fi->fib_priority)
1807 break;
1808 if (!next_fi->fib_nh[0].nh_gw ||
1809 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1810 continue;
1811 fa->fa_state |= FA_S_ACCESSED;
1813 if (fi == NULL) {
1814 if (next_fi != res->fi)
1815 break;
1816 } else if (!fib_detect_death(fi, order, &last_resort,
1817 &last_idx, &trie_last_dflt)) {
1818 if (res->fi)
1819 fib_info_put(res->fi);
1820 res->fi = fi;
1821 atomic_inc(&fi->fib_clntref);
1822 trie_last_dflt = order;
1823 goto out;
1825 fi = next_fi;
1826 order++;
1828 if (order <= 0 || fi == NULL) {
1829 trie_last_dflt = -1;
1830 goto out;
1833 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1834 if (res->fi)
1835 fib_info_put(res->fi);
1836 res->fi = fi;
1837 atomic_inc(&fi->fib_clntref);
1838 trie_last_dflt = order;
1839 goto out;
1841 if (last_idx >= 0) {
1842 if (res->fi)
1843 fib_info_put(res->fi);
1844 res->fi = last_resort;
1845 if (last_resort)
1846 atomic_inc(&last_resort->fib_clntref);
1848 trie_last_dflt = last_idx;
1849 out:;
1850 read_unlock(&fib_lock);
1853 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1854 struct sk_buff *skb, struct netlink_callback *cb)
1856 int i, s_i;
1857 struct fib_alias *fa;
1859 u32 xkey = htonl(key);
1861 s_i = cb->args[3];
1862 i = 0;
1864 list_for_each_entry(fa, fah, fa_list) {
1865 if (i < s_i) {
1866 i++;
1867 continue;
1869 if (fa->fa_info->fib_nh == NULL) {
1870 printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1871 i++;
1872 continue;
1874 if (fa->fa_info == NULL) {
1875 printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1876 i++;
1877 continue;
1880 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1881 cb->nlh->nlmsg_seq,
1882 RTM_NEWROUTE,
1883 tb->tb_id,
1884 fa->fa_type,
1885 fa->fa_scope,
1886 &xkey,
1887 plen,
1888 fa->fa_tos,
1889 fa->fa_info, 0) < 0) {
1890 cb->args[3] = i;
1891 return -1;
1893 i++;
1895 cb->args[3] = i;
1896 return skb->len;
1899 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1900 struct netlink_callback *cb)
1902 int h, s_h;
1903 struct list_head *fa_head;
1904 struct leaf *l = NULL;
1906 s_h = cb->args[2];
1908 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1909 if (h < s_h)
1910 continue;
1911 if (h > s_h)
1912 memset(&cb->args[3], 0,
1913 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1915 fa_head = get_fa_head(l, plen);
1917 if (!fa_head)
1918 continue;
1920 if (list_empty(fa_head))
1921 continue;
1923 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1924 cb->args[2] = h;
1925 return -1;
1928 cb->args[2] = h;
1929 return skb->len;
1932 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1934 int m, s_m;
1935 struct trie *t = (struct trie *) tb->tb_data;
1937 s_m = cb->args[1];
1939 read_lock(&fib_lock);
1940 for (m = 0; m <= 32; m++) {
1941 if (m < s_m)
1942 continue;
1943 if (m > s_m)
1944 memset(&cb->args[2], 0,
1945 sizeof(cb->args) - 2*sizeof(cb->args[0]));
1947 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1948 cb->args[1] = m;
1949 goto out;
1952 read_unlock(&fib_lock);
1953 cb->args[1] = m;
1954 return skb->len;
1955 out:
1956 read_unlock(&fib_lock);
1957 return -1;
1960 /* Fix more generic FIB names for init later */
1962 #ifdef CONFIG_IP_MULTIPLE_TABLES
1963 struct fib_table * fib_hash_init(int id)
1964 #else
1965 struct fib_table * __init fib_hash_init(int id)
1966 #endif
1968 struct fib_table *tb;
1969 struct trie *t;
1971 if (fn_alias_kmem == NULL)
1972 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1973 sizeof(struct fib_alias),
1974 0, SLAB_HWCACHE_ALIGN,
1975 NULL, NULL);
1977 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1978 GFP_KERNEL);
1979 if (tb == NULL)
1980 return NULL;
1982 tb->tb_id = id;
1983 tb->tb_lookup = fn_trie_lookup;
1984 tb->tb_insert = fn_trie_insert;
1985 tb->tb_delete = fn_trie_delete;
1986 tb->tb_flush = fn_trie_flush;
1987 tb->tb_select_default = fn_trie_select_default;
1988 tb->tb_dump = fn_trie_dump;
1989 memset(tb->tb_data, 0, sizeof(struct trie));
1991 t = (struct trie *) tb->tb_data;
1993 trie_init(t);
1995 if (id == RT_TABLE_LOCAL)
1996 trie_local = t;
1997 else if (id == RT_TABLE_MAIN)
1998 trie_main = t;
2000 if (id == RT_TABLE_LOCAL)
2001 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2003 return tb;
2006 /* Trie dump functions */
2008 static void putspace_seq(struct seq_file *seq, int n)
2010 while (n--)
2011 seq_printf(seq, " ");
2014 static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
2016 while (bits--)
2017 seq_printf(seq, "%s", (v & (1<<bits))?"1":"0");
2020 static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
2021 int pend, int cindex, int bits)
2023 putspace_seq(seq, indent);
2024 if (IS_LEAF(n))
2025 seq_printf(seq, "|");
2026 else
2027 seq_printf(seq, "+");
2028 if (bits) {
2029 seq_printf(seq, "%d/", cindex);
2030 printbin_seq(seq, cindex, bits);
2031 seq_printf(seq, ": ");
2032 } else
2033 seq_printf(seq, "<root>: ");
2034 seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);
2036 if (IS_LEAF(n)) {
2037 struct leaf *l = (struct leaf *)n;
2038 struct fib_alias *fa;
2039 int i;
2041 seq_printf(seq, "key=%d.%d.%d.%d\n",
2042 n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
2044 for (i = 32; i >= 0; i--)
2045 if (find_leaf_info(&l->list, i)) {
2046 struct list_head *fa_head = get_fa_head(l, i);
2048 if (!fa_head)
2049 continue;
2051 if (list_empty(fa_head))
2052 continue;
2054 putspace_seq(seq, indent+2);
2055 seq_printf(seq, "{/%d...dumping}\n", i);
2057 list_for_each_entry(fa, fa_head, fa_list) {
2058 putspace_seq(seq, indent+2);
2059 if (fa->fa_info == NULL) {
2060 seq_printf(seq, "Error fa_info=NULL\n");
2061 continue;
2063 if (fa->fa_info->fib_nh == NULL) {
2064 seq_printf(seq, "Error _fib_nh=NULL\n");
2065 continue;
2068 seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
2069 fa->fa_type,
2070 fa->fa_scope,
2071 fa->fa_tos);
2074 } else {
2075 struct tnode *tn = (struct tnode *)n;
2076 int plen = ((struct tnode *)n)->pos;
2077 t_key prf = MASK_PFX(n->key, plen);
2079 seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
2080 prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
2082 putspace_seq(seq, indent); seq_printf(seq, "| ");
2083 seq_printf(seq, "{key prefix=%08x/", tn->key & TKEY_GET_MASK(0, tn->pos));
2084 printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
2085 seq_printf(seq, "}\n");
2086 putspace_seq(seq, indent); seq_printf(seq, "| ");
2087 seq_printf(seq, "{pos=%d", tn->pos);
2088 seq_printf(seq, " (skip=%d bits)", tn->pos - pend);
2089 seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits));
2090 putspace_seq(seq, indent); seq_printf(seq, "| ");
2091 seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children);
2095 static void trie_dump_seq(struct seq_file *seq, struct trie *t)
2097 struct node *n = t->trie;
2098 int cindex = 0;
2099 int indent = 1;
2100 int pend = 0;
2101 int depth = 0;
2102 struct tnode *tn;
2104 read_lock(&fib_lock);
2106 seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
2108 if (!n) {
2109 seq_printf(seq, "------ trie is empty\n");
2111 read_unlock(&fib_lock);
2112 return;
2115 printnode_seq(seq, indent, n, pend, cindex, 0);
2117 if (!IS_TNODE(n)) {
2118 read_unlock(&fib_lock);
2119 return;
2122 tn = (struct tnode *)n;
2123 pend = tn->pos+tn->bits;
2124 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2125 indent += 3;
2126 depth++;
2128 while (tn && cindex < (1 << tn->bits)) {
2129 if (tn->child[cindex]) {
2130 /* Got a child */
2132 printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits);
2133 if (IS_LEAF(tn->child[cindex])) {
2134 cindex++;
2135 } else {
2137 * New tnode. Decend one level
2140 depth++;
2141 tn = (struct tnode *)tn->child[cindex];
2142 pend = tn->pos + tn->bits;
2143 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2144 indent += 3;
2145 cindex = 0;
2147 } else
2148 cindex++;
2151 * Test if we are done
2154 while (cindex >= (1 << tn->bits)) {
2156 * Move upwards and test for root
2157 * pop off all traversed nodes
2160 if (NODE_PARENT(tn) == NULL) {
2161 tn = NULL;
2162 break;
2165 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2166 cindex++;
2167 tn = NODE_PARENT(tn);
2168 pend = tn->pos + tn->bits;
2169 indent -= 3;
2170 depth--;
2174 read_unlock(&fib_lock);
2177 static struct trie_stat *trie_stat_new(void)
2179 struct trie_stat *s;
2180 int i;
2182 s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
2183 if (!s)
2184 return NULL;
2186 s->totdepth = 0;
2187 s->maxdepth = 0;
2188 s->tnodes = 0;
2189 s->leaves = 0;
2190 s->nullpointers = 0;
2192 for (i = 0; i < MAX_CHILDS; i++)
2193 s->nodesizes[i] = 0;
2195 return s;
2198 static struct trie_stat *trie_collect_stats(struct trie *t)
2200 struct node *n = t->trie;
2201 struct trie_stat *s = trie_stat_new();
2202 int cindex = 0;
2203 int pend = 0;
2204 int depth = 0;
2206 if (!s)
2207 return NULL;
2208 if (!n)
2209 return s;
2211 read_lock(&fib_lock);
2213 if (IS_TNODE(n)) {
2214 struct tnode *tn = (struct tnode *)n;
2215 pend = tn->pos+tn->bits;
2216 s->nodesizes[tn->bits]++;
2217 depth++;
2219 while (tn && cindex < (1 << tn->bits)) {
2220 if (tn->child[cindex]) {
2221 /* Got a child */
2223 if (IS_LEAF(tn->child[cindex])) {
2224 cindex++;
2226 /* stats */
2227 if (depth > s->maxdepth)
2228 s->maxdepth = depth;
2229 s->totdepth += depth;
2230 s->leaves++;
2231 } else {
2233 * New tnode. Decend one level
2236 s->tnodes++;
2237 s->nodesizes[tn->bits]++;
2238 depth++;
2240 n = tn->child[cindex];
2241 tn = (struct tnode *)n;
2242 pend = tn->pos+tn->bits;
2244 cindex = 0;
2246 } else {
2247 cindex++;
2248 s->nullpointers++;
2252 * Test if we are done
2255 while (cindex >= (1 << tn->bits)) {
2257 * Move upwards and test for root
2258 * pop off all traversed nodes
2261 if (NODE_PARENT(tn) == NULL) {
2262 tn = NULL;
2263 n = NULL;
2264 break;
2267 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2268 tn = NODE_PARENT(tn);
2269 cindex++;
2270 n = (struct node *)tn;
2271 pend = tn->pos+tn->bits;
2272 depth--;
2277 read_unlock(&fib_lock);
2278 return s;
2281 #ifdef CONFIG_PROC_FS
2283 static struct fib_alias *fib_triestat_get_first(struct seq_file *seq)
2285 return NULL;
2288 static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
2290 return NULL;
2293 static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
2295 if (!ip_fib_main_table)
2296 return NULL;
2298 if (*pos)
2299 return fib_triestat_get_next(seq);
2300 else
2301 return SEQ_START_TOKEN;
2304 static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2306 ++*pos;
2307 if (v == SEQ_START_TOKEN)
2308 return fib_triestat_get_first(seq);
2309 else
2310 return fib_triestat_get_next(seq);
2313 static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
2319 * This outputs /proc/net/fib_triestats
2321 * It always works in backward compatibility mode.
2322 * The format of the file is not supposed to be changed.
2325 static void collect_and_show(struct trie *t, struct seq_file *seq)
2327 int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
2328 int i, max, pointers;
2329 struct trie_stat *stat;
2330 int avdepth;
2332 stat = trie_collect_stats(t);
2334 bytes = 0;
2335 seq_printf(seq, "trie=%p\n", t);
2337 if (stat) {
2338 if (stat->leaves)
2339 avdepth = stat->totdepth*100 / stat->leaves;
2340 else
2341 avdepth = 0;
2342 seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100);
2343 seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
2345 seq_printf(seq, "Leaves: %d\n", stat->leaves);
2346 bytes += sizeof(struct leaf) * stat->leaves;
2347 seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
2348 bytes += sizeof(struct tnode) * stat->tnodes;
2350 max = MAX_CHILDS-1;
2352 while (max >= 0 && stat->nodesizes[max] == 0)
2353 max--;
2354 pointers = 0;
2356 for (i = 1; i <= max; i++)
2357 if (stat->nodesizes[i] != 0) {
2358 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2359 pointers += (1<<i) * stat->nodesizes[i];
2361 seq_printf(seq, "\n");
2362 seq_printf(seq, "Pointers: %d\n", pointers);
2363 bytes += sizeof(struct node *) * pointers;
2364 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2365 seq_printf(seq, "Total size: %d kB\n", bytes / 1024);
2367 kfree(stat);
2370 #ifdef CONFIG_IP_FIB_TRIE_STATS
2371 seq_printf(seq, "Counters:\n---------\n");
2372 seq_printf(seq,"gets = %d\n", t->stats.gets);
2373 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2374 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2375 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2376 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2377 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2378 #ifdef CLEAR_STATS
2379 memset(&(t->stats), 0, sizeof(t->stats));
2380 #endif
2381 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2384 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2386 char bf[128];
2388 if (v == SEQ_START_TOKEN) {
2389 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2390 sizeof(struct leaf), sizeof(struct tnode));
2391 if (trie_local)
2392 collect_and_show(trie_local, seq);
2394 if (trie_main)
2395 collect_and_show(trie_main, seq);
2396 } else {
2397 snprintf(bf, sizeof(bf), "*\t%08X\t%08X", 200, 400);
2399 seq_printf(seq, "%-127s\n", bf);
2401 return 0;
2404 static struct seq_operations fib_triestat_seq_ops = {
2405 .start = fib_triestat_seq_start,
2406 .next = fib_triestat_seq_next,
2407 .stop = fib_triestat_seq_stop,
2408 .show = fib_triestat_seq_show,
2411 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2413 struct seq_file *seq;
2414 int rc = -ENOMEM;
2416 rc = seq_open(file, &fib_triestat_seq_ops);
2417 if (rc)
2418 goto out_kfree;
2420 seq = file->private_data;
2421 out:
2422 return rc;
2423 out_kfree:
2424 goto out;
2427 static struct file_operations fib_triestat_seq_fops = {
2428 .owner = THIS_MODULE,
2429 .open = fib_triestat_seq_open,
2430 .read = seq_read,
2431 .llseek = seq_lseek,
2432 .release = seq_release_private,
2435 int __init fib_stat_proc_init(void)
2437 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops))
2438 return -ENOMEM;
2439 return 0;
2442 void __init fib_stat_proc_exit(void)
2444 proc_net_remove("fib_triestat");
2447 static struct fib_alias *fib_trie_get_first(struct seq_file *seq)
2449 return NULL;
2452 static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
2454 return NULL;
2457 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2459 if (!ip_fib_main_table)
2460 return NULL;
2462 if (*pos)
2463 return fib_trie_get_next(seq);
2464 else
2465 return SEQ_START_TOKEN;
2468 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2470 ++*pos;
2471 if (v == SEQ_START_TOKEN)
2472 return fib_trie_get_first(seq);
2473 else
2474 return fib_trie_get_next(seq);
2478 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2483 * This outputs /proc/net/fib_trie.
2485 * It always works in backward compatibility mode.
2486 * The format of the file is not supposed to be changed.
2489 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2491 char bf[128];
2493 if (v == SEQ_START_TOKEN) {
2494 if (trie_local)
2495 trie_dump_seq(seq, trie_local);
2497 if (trie_main)
2498 trie_dump_seq(seq, trie_main);
2499 } else {
2500 snprintf(bf, sizeof(bf),
2501 "*\t%08X\t%08X", 200, 400);
2502 seq_printf(seq, "%-127s\n", bf);
2505 return 0;
2508 static struct seq_operations fib_trie_seq_ops = {
2509 .start = fib_trie_seq_start,
2510 .next = fib_trie_seq_next,
2511 .stop = fib_trie_seq_stop,
2512 .show = fib_trie_seq_show,
2515 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2517 struct seq_file *seq;
2518 int rc = -ENOMEM;
2520 rc = seq_open(file, &fib_trie_seq_ops);
2521 if (rc)
2522 goto out_kfree;
2524 seq = file->private_data;
2525 out:
2526 return rc;
2527 out_kfree:
2528 goto out;
2531 static struct file_operations fib_trie_seq_fops = {
2532 .owner = THIS_MODULE,
2533 .open = fib_trie_seq_open,
2534 .read = seq_read,
2535 .llseek = seq_lseek,
2536 .release= seq_release_private,
2539 int __init fib_proc_init(void)
2541 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops))
2542 return -ENOMEM;
2543 return 0;
2546 void __init fib_proc_exit(void)
2548 proc_net_remove("fib_trie");
2551 #endif /* CONFIG_PROC_FS */