2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
46 #define VERSION "0.325"
48 #include <linux/config.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/bitops.h>
52 #include <linux/types.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/errno.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_arp.h>
64 #include <linux/proc_fs.h>
65 #include <linux/skbuff.h>
66 #include <linux/netlink.h>
67 #include <linux/init.h>
68 #include <linux/list.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
74 #include <net/ip_fib.h>
75 #include "fib_lookup.h"
77 #undef CONFIG_IP_FIB_TRIE_STATS
78 #define MAX_CHILDS 16384
80 #define KEYLENGTH (8*sizeof(t_key))
81 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
82 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84 static DEFINE_RWLOCK(fib_lock
);
86 typedef unsigned int t_key
;
90 #define NODE_TYPE_MASK 0x1UL
91 #define NODE_PARENT(node) \
92 ((struct tnode *)((node)->parent & ~NODE_TYPE_MASK))
93 #define NODE_SET_PARENT(node, ptr) \
94 ((node)->parent = (((unsigned long)(ptr)) | \
95 ((node)->parent & NODE_TYPE_MASK)))
96 #define NODE_INIT_PARENT(node, type) \
97 ((node)->parent = (type))
98 #define NODE_TYPE(node) \
99 ((node)->parent & NODE_TYPE_MASK)
101 #define IS_TNODE(n) (!(n->parent & T_LEAF))
102 #define IS_LEAF(n) (n->parent & T_LEAF)
106 unsigned long parent
;
111 unsigned long parent
;
112 struct hlist_head list
;
116 struct hlist_node hlist
;
118 struct list_head falh
;
123 unsigned long parent
;
124 unsigned short pos
:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits
:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children
; /* KEYLENGTH bits needed */
127 unsigned short empty_children
; /* KEYLENGTH bits needed */
128 struct node
*child
[0];
131 #ifdef CONFIG_IP_FIB_TRIE_STATS
132 struct trie_use_stats
{
134 unsigned int backtrack
;
135 unsigned int semantic_match_passed
;
136 unsigned int semantic_match_miss
;
137 unsigned int null_node_hit
;
138 unsigned int resize_node_skipped
;
143 unsigned int totdepth
;
144 unsigned int maxdepth
;
147 unsigned int nullpointers
;
148 unsigned int nodesizes
[MAX_CHILDS
];
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats
;
157 unsigned int revision
;
160 static int trie_debug
= 0;
162 #define DBG(x...) do { if (trie_debug) printk(x); } while (0)
164 static void put_child(struct trie
*t
, struct tnode
*tn
, int i
, struct node
*n
);
165 static void tnode_put_child_reorg(struct tnode
*tn
, int i
, struct node
*n
, int wasfull
);
166 static struct node
*resize(struct trie
*t
, struct tnode
*tn
);
167 static struct tnode
*inflate(struct trie
*t
, struct tnode
*tn
);
168 static struct tnode
*halve(struct trie
*t
, struct tnode
*tn
);
169 static void tnode_free(struct tnode
*tn
);
170 static void trie_dump_seq(struct seq_file
*seq
, struct trie
*t
);
171 extern struct fib_alias
*fib_find_alias(struct list_head
*fah
, u8 tos
, u32 prio
);
172 extern int fib_detect_death(struct fib_info
*fi
, int order
,
173 struct fib_info
**last_resort
, int *last_idx
, int *dflt
);
175 extern void rtmsg_fib(int event
, u32 key
, struct fib_alias
*fa
, int z
, int tb_id
,
176 struct nlmsghdr
*n
, struct netlink_skb_parms
*req
);
178 static kmem_cache_t
*fn_alias_kmem
;
179 static struct trie
*trie_local
= NULL
, *trie_main
= NULL
;
181 static inline struct node
*tnode_get_child(struct tnode
*tn
, int i
)
183 BUG_ON(i
>= 1 << tn
->bits
);
188 static inline int tnode_child_length(const struct tnode
*tn
)
190 return 1 << tn
->bits
;
193 static inline t_key
tkey_extract_bits(t_key a
, int offset
, int bits
)
195 if (offset
< KEYLENGTH
)
196 return ((t_key
)(a
<< offset
)) >> (KEYLENGTH
- bits
);
201 static inline int tkey_equals(t_key a
, t_key b
)
206 static inline int tkey_sub_equals(t_key a
, int offset
, int bits
, t_key b
)
208 if (bits
== 0 || offset
>= KEYLENGTH
)
210 bits
= bits
> KEYLENGTH
? KEYLENGTH
: bits
;
211 return ((a
^ b
) << offset
) >> (KEYLENGTH
- bits
) == 0;
214 static inline int tkey_mismatch(t_key a
, int offset
, t_key b
)
221 while ((diff
<< i
) >> (KEYLENGTH
-1) == 0)
226 /* Candidate for fib_semantics */
228 static void fn_free_alias(struct fib_alias
*fa
)
230 fib_release_info(fa
->fa_info
);
231 kmem_cache_free(fn_alias_kmem
, fa
);
235 To understand this stuff, an understanding of keys and all their bits is
236 necessary. Every node in the trie has a key associated with it, but not
237 all of the bits in that key are significant.
239 Consider a node 'n' and its parent 'tp'.
241 If n is a leaf, every bit in its key is significant. Its presence is
242 necessitaded by path compression, since during a tree traversal (when
243 searching for a leaf - unless we are doing an insertion) we will completely
244 ignore all skipped bits we encounter. Thus we need to verify, at the end of
245 a potentially successful search, that we have indeed been walking the
248 Note that we can never "miss" the correct key in the tree if present by
249 following the wrong path. Path compression ensures that segments of the key
250 that are the same for all keys with a given prefix are skipped, but the
251 skipped part *is* identical for each node in the subtrie below the skipped
252 bit! trie_insert() in this implementation takes care of that - note the
253 call to tkey_sub_equals() in trie_insert().
255 if n is an internal node - a 'tnode' here, the various parts of its key
256 have many different meanings.
259 _________________________________________________________________
260 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
261 -----------------------------------------------------------------
262 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
264 _________________________________________________________________
265 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
266 -----------------------------------------------------------------
267 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
274 First, let's just ignore the bits that come before the parent tp, that is
275 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
276 not use them for anything.
278 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
279 index into the parent's child array. That is, they will be used to find
280 'n' among tp's children.
282 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
285 All the bits we have seen so far are significant to the node n. The rest
286 of the bits are really not needed or indeed known in n->key.
288 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
289 n's child array, and will of course be different for each child.
292 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
297 static void check_tnode(struct tnode
*tn
)
299 if (tn
&& tn
->pos
+tn
->bits
> 32) {
300 printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn
, tn
->pos
, tn
->bits
);
304 static int halve_threshold
= 25;
305 static int inflate_threshold
= 50;
307 static struct leaf
*leaf_new(void)
309 struct leaf
*l
= kmalloc(sizeof(struct leaf
), GFP_KERNEL
);
311 NODE_INIT_PARENT(l
, T_LEAF
);
312 INIT_HLIST_HEAD(&l
->list
);
317 static struct leaf_info
*leaf_info_new(int plen
)
319 struct leaf_info
*li
= kmalloc(sizeof(struct leaf_info
), GFP_KERNEL
);
325 INIT_LIST_HEAD(&li
->falh
);
330 static inline void free_leaf(struct leaf
*l
)
335 static inline void free_leaf_info(struct leaf_info
*li
)
340 static struct tnode
*tnode_alloc(unsigned int size
)
342 if (size
<= PAGE_SIZE
) {
343 return kmalloc(size
, GFP_KERNEL
);
345 return (struct tnode
*)
346 __get_free_pages(GFP_KERNEL
, get_order(size
));
350 static void __tnode_free(struct tnode
*tn
)
352 unsigned int size
= sizeof(struct tnode
) +
353 (1 << tn
->bits
) * sizeof(struct node
*);
355 if (size
<= PAGE_SIZE
)
358 free_pages((unsigned long)tn
, get_order(size
));
361 static struct tnode
* tnode_new(t_key key
, int pos
, int bits
)
363 int nchildren
= 1<<bits
;
364 int sz
= sizeof(struct tnode
) + nchildren
* sizeof(struct node
*);
365 struct tnode
*tn
= tnode_alloc(sz
);
369 NODE_INIT_PARENT(tn
, T_TNODE
);
373 tn
->full_children
= 0;
374 tn
->empty_children
= 1<<bits
;
377 DBG("AT %p s=%u %u\n", tn
, (unsigned int) sizeof(struct tnode
),
378 (unsigned int) (sizeof(struct node
) * 1<<bits
));
382 static void tnode_free(struct tnode
*tn
)
387 free_leaf((struct leaf
*)tn
);
396 * Check whether a tnode 'n' is "full", i.e. it is an internal node
397 * and no bits are skipped. See discussion in dyntree paper p. 6
400 static inline int tnode_full(const struct tnode
*tn
, const struct node
*n
)
402 if (n
== NULL
|| IS_LEAF(n
))
405 return ((struct tnode
*) n
)->pos
== tn
->pos
+ tn
->bits
;
408 static inline void put_child(struct trie
*t
, struct tnode
*tn
, int i
, struct node
*n
)
410 tnode_put_child_reorg(tn
, i
, n
, -1);
414 * Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
418 static void tnode_put_child_reorg(struct tnode
*tn
, int i
, struct node
*n
, int wasfull
)
423 if (i
>= 1<<tn
->bits
) {
424 printk("bits=%d, i=%d\n", tn
->bits
, i
);
427 write_lock_bh(&fib_lock
);
430 /* update emptyChildren */
431 if (n
== NULL
&& chi
!= NULL
)
432 tn
->empty_children
++;
433 else if (n
!= NULL
&& chi
== NULL
)
434 tn
->empty_children
--;
436 /* update fullChildren */
438 wasfull
= tnode_full(tn
, chi
);
440 isfull
= tnode_full(tn
, n
);
441 if (wasfull
&& !isfull
)
443 else if (!wasfull
&& isfull
)
447 NODE_SET_PARENT(n
, tn
);
450 write_unlock_bh(&fib_lock
);
453 static struct node
*resize(struct trie
*t
, struct tnode
*tn
)
457 struct tnode
*old_tn
;
462 DBG("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
463 tn
, inflate_threshold
, halve_threshold
);
466 if (tn
->empty_children
== tnode_child_length(tn
)) {
471 if (tn
->empty_children
== tnode_child_length(tn
) - 1)
472 for (i
= 0; i
< tnode_child_length(tn
); i
++) {
475 write_lock_bh(&fib_lock
);
478 write_unlock_bh(&fib_lock
);
482 /* compress one level */
483 NODE_INIT_PARENT(n
, NODE_TYPE(n
));
485 write_unlock_bh(&fib_lock
);
490 * Double as long as the resulting node has a number of
491 * nonempty nodes that are above the threshold.
495 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
496 * the Helsinki University of Technology and Matti Tikkanen of Nokia
497 * Telecommunications, page 6:
498 * "A node is doubled if the ratio of non-empty children to all
499 * children in the *doubled* node is at least 'high'."
501 * 'high' in this instance is the variable 'inflate_threshold'. It
502 * is expressed as a percentage, so we multiply it with
503 * tnode_child_length() and instead of multiplying by 2 (since the
504 * child array will be doubled by inflate()) and multiplying
505 * the left-hand side by 100 (to handle the percentage thing) we
506 * multiply the left-hand side by 50.
508 * The left-hand side may look a bit weird: tnode_child_length(tn)
509 * - tn->empty_children is of course the number of non-null children
510 * in the current node. tn->full_children is the number of "full"
511 * children, that is non-null tnodes with a skip value of 0.
512 * All of those will be doubled in the resulting inflated tnode, so
513 * we just count them one extra time here.
515 * A clearer way to write this would be:
517 * to_be_doubled = tn->full_children;
518 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
521 * new_child_length = tnode_child_length(tn) * 2;
523 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
525 * if (new_fill_factor >= inflate_threshold)
527 * ...and so on, tho it would mess up the while () loop.
530 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
534 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
535 * inflate_threshold * new_child_length
537 * expand not_to_be_doubled and to_be_doubled, and shorten:
538 * 100 * (tnode_child_length(tn) - tn->empty_children +
539 * tn->full_children) >= inflate_threshold * new_child_length
541 * expand new_child_length:
542 * 100 * (tnode_child_length(tn) - tn->empty_children +
543 * tn->full_children) >=
544 * inflate_threshold * tnode_child_length(tn) * 2
547 * 50 * (tn->full_children + tnode_child_length(tn) -
548 * tn->empty_children) >= inflate_threshold *
549 * tnode_child_length(tn)
556 while ((tn
->full_children
> 0 &&
557 50 * (tn
->full_children
+ tnode_child_length(tn
) - tn
->empty_children
) >=
558 inflate_threshold
* tnode_child_length(tn
))) {
564 #ifdef CONFIG_IP_FIB_TRIE_STATS
565 t
->stats
.resize_node_skipped
++;
574 * Halve as long as the number of empty children in this
575 * node is above threshold.
579 while (tn
->bits
> 1 &&
580 100 * (tnode_child_length(tn
) - tn
->empty_children
) <
581 halve_threshold
* tnode_child_length(tn
)) {
587 #ifdef CONFIG_IP_FIB_TRIE_STATS
588 t
->stats
.resize_node_skipped
++;
595 /* Only one child remains */
597 if (tn
->empty_children
== tnode_child_length(tn
) - 1)
598 for (i
= 0; i
< tnode_child_length(tn
); i
++) {
601 write_lock_bh(&fib_lock
);
605 write_unlock_bh(&fib_lock
);
609 /* compress one level */
611 NODE_INIT_PARENT(n
, NODE_TYPE(n
));
613 write_unlock_bh(&fib_lock
);
618 return (struct node
*) tn
;
621 static struct tnode
*inflate(struct trie
*t
, struct tnode
*tn
)
624 struct tnode
*oldtnode
= tn
;
625 int olen
= tnode_child_length(tn
);
630 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
, oldtnode
->bits
+ 1);
633 return ERR_PTR(-ENOMEM
);
636 * Preallocate and store tnodes before the actual work so we
637 * don't get into an inconsistent state if memory allocation
638 * fails. In case of failure we return the oldnode and inflate
639 * of tnode is ignored.
642 for (i
= 0; i
< olen
; i
++) {
643 struct tnode
*inode
= (struct tnode
*) tnode_get_child(oldtnode
, i
);
647 inode
->pos
== oldtnode
->pos
+ oldtnode
->bits
&&
649 struct tnode
*left
, *right
;
650 t_key m
= TKEY_GET_MASK(inode
->pos
, 1);
652 left
= tnode_new(inode
->key
&(~m
), inode
->pos
+ 1,
657 right
= tnode_new(inode
->key
|m
, inode
->pos
+ 1,
665 put_child(t
, tn
, 2*i
, (struct node
*) left
);
666 put_child(t
, tn
, 2*i
+1, (struct node
*) right
);
670 for (i
= 0; i
< olen
; i
++) {
671 struct node
*node
= tnode_get_child(oldtnode
, i
);
672 struct tnode
*left
, *right
;
679 /* A leaf or an internal node with skipped bits */
681 if (IS_LEAF(node
) || ((struct tnode
*) node
)->pos
>
682 tn
->pos
+ tn
->bits
- 1) {
683 if (tkey_extract_bits(node
->key
, oldtnode
->pos
+ oldtnode
->bits
,
685 put_child(t
, tn
, 2*i
, node
);
687 put_child(t
, tn
, 2*i
+1, node
);
691 /* An internal node with two children */
692 inode
= (struct tnode
*) node
;
694 if (inode
->bits
== 1) {
695 put_child(t
, tn
, 2*i
, inode
->child
[0]);
696 put_child(t
, tn
, 2*i
+1, inode
->child
[1]);
702 /* An internal node with more than two children */
704 /* We will replace this node 'inode' with two new
705 * ones, 'left' and 'right', each with half of the
706 * original children. The two new nodes will have
707 * a position one bit further down the key and this
708 * means that the "significant" part of their keys
709 * (see the discussion near the top of this file)
710 * will differ by one bit, which will be "0" in
711 * left's key and "1" in right's key. Since we are
712 * moving the key position by one step, the bit that
713 * we are moving away from - the bit at position
714 * (inode->pos) - is the one that will differ between
715 * left and right. So... we synthesize that bit in the
717 * The mask 'm' below will be a single "one" bit at
718 * the position (inode->pos)
721 /* Use the old key, but set the new significant
725 left
= (struct tnode
*) tnode_get_child(tn
, 2*i
);
726 put_child(t
, tn
, 2*i
, NULL
);
730 right
= (struct tnode
*) tnode_get_child(tn
, 2*i
+1);
731 put_child(t
, tn
, 2*i
+1, NULL
);
735 size
= tnode_child_length(left
);
736 for (j
= 0; j
< size
; j
++) {
737 put_child(t
, left
, j
, inode
->child
[j
]);
738 put_child(t
, right
, j
, inode
->child
[j
+ size
]);
740 put_child(t
, tn
, 2*i
, resize(t
, left
));
741 put_child(t
, tn
, 2*i
+1, resize(t
, right
));
745 tnode_free(oldtnode
);
749 int size
= tnode_child_length(tn
);
752 for(j
= 0; j
< size
; j
++)
754 tnode_free((struct tnode
*)tn
->child
[j
]);
758 return ERR_PTR(-ENOMEM
);
762 static struct tnode
*halve(struct trie
*t
, struct tnode
*tn
)
764 struct tnode
*oldtnode
= tn
;
765 struct node
*left
, *right
;
767 int olen
= tnode_child_length(tn
);
771 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
, oldtnode
->bits
- 1);
774 return ERR_PTR(-ENOMEM
);
777 * Preallocate and store tnodes before the actual work so we
778 * don't get into an inconsistent state if memory allocation
779 * fails. In case of failure we return the oldnode and halve
780 * of tnode is ignored.
783 for (i
= 0; i
< olen
; i
+= 2) {
784 left
= tnode_get_child(oldtnode
, i
);
785 right
= tnode_get_child(oldtnode
, i
+1);
787 /* Two nonempty children */
791 newn
= tnode_new(left
->key
, tn
->pos
+ tn
->bits
, 1);
796 put_child(t
, tn
, i
/2, (struct node
*)newn
);
801 for (i
= 0; i
< olen
; i
+= 2) {
802 struct tnode
*newBinNode
;
804 left
= tnode_get_child(oldtnode
, i
);
805 right
= tnode_get_child(oldtnode
, i
+1);
807 /* At least one of the children is empty */
809 if (right
== NULL
) /* Both are empty */
811 put_child(t
, tn
, i
/2, right
);
816 put_child(t
, tn
, i
/2, left
);
820 /* Two nonempty children */
821 newBinNode
= (struct tnode
*) tnode_get_child(tn
, i
/2);
822 put_child(t
, tn
, i
/2, NULL
);
826 put_child(t
, newBinNode
, 0, left
);
827 put_child(t
, newBinNode
, 1, right
);
828 put_child(t
, tn
, i
/2, resize(t
, newBinNode
));
830 tnode_free(oldtnode
);
834 int size
= tnode_child_length(tn
);
837 for(j
= 0; j
< size
; j
++)
839 tnode_free((struct tnode
*)tn
->child
[j
]);
843 return ERR_PTR(-ENOMEM
);
847 static void trie_init(struct trie
*t
)
855 #ifdef CONFIG_IP_FIB_TRIE_STATS
856 memset(&t
->stats
, 0, sizeof(struct trie_use_stats
));
860 static struct leaf_info
*find_leaf_info(struct hlist_head
*head
, int plen
)
862 struct hlist_node
*node
;
863 struct leaf_info
*li
;
865 hlist_for_each_entry(li
, node
, head
, hlist
)
866 if (li
->plen
== plen
)
872 static inline struct list_head
* get_fa_head(struct leaf
*l
, int plen
)
874 struct leaf_info
*li
= find_leaf_info(&l
->list
, plen
);
882 static void insert_leaf_info(struct hlist_head
*head
, struct leaf_info
*new)
884 struct leaf_info
*li
= NULL
, *last
= NULL
;
885 struct hlist_node
*node
;
887 write_lock_bh(&fib_lock
);
889 if (hlist_empty(head
)) {
890 hlist_add_head(&new->hlist
, head
);
892 hlist_for_each_entry(li
, node
, head
, hlist
) {
893 if (new->plen
> li
->plen
)
899 hlist_add_after(&last
->hlist
, &new->hlist
);
901 hlist_add_before(&new->hlist
, &li
->hlist
);
903 write_unlock_bh(&fib_lock
);
907 fib_find_node(struct trie
*t
, u32 key
)
916 while (n
!= NULL
&& NODE_TYPE(n
) == T_TNODE
) {
917 tn
= (struct tnode
*) n
;
921 if (tkey_sub_equals(tn
->key
, pos
, tn
->pos
-pos
, key
)) {
922 pos
= tn
->pos
+ tn
->bits
;
923 n
= tnode_get_child(tn
, tkey_extract_bits(key
, tn
->pos
, tn
->bits
));
927 /* Case we have found a leaf. Compare prefixes */
929 if (n
!= NULL
&& IS_LEAF(n
) && tkey_equals(key
, n
->key
))
930 return (struct leaf
*)n
;
935 static struct node
*trie_rebalance(struct trie
*t
, struct tnode
*tn
)
940 struct tnode
*tp
= NULL
;
947 while (tn
!= NULL
&& NODE_PARENT(tn
) != NULL
) {
949 printk("Rebalance tn=%p \n", tn
);
951 printk("tn->parent=%p \n", NODE_PARENT(tn
));
953 printk("Rebalance tp=%p \n", tp
);
955 printk("tp->parent=%p \n", NODE_PARENT(tp
));
958 BUG_ON(i
> 12); /* Why is this a bug? -ojn */
961 tp
= NODE_PARENT(tn
);
962 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
963 wasfull
= tnode_full(tp
, tnode_get_child(tp
, cindex
));
964 tn
= (struct tnode
*) resize (t
, (struct tnode
*)tn
);
965 tnode_put_child_reorg((struct tnode
*)tp
, cindex
,(struct node
*)tn
, wasfull
);
967 if (!NODE_PARENT(tn
))
970 tn
= NODE_PARENT(tn
);
972 /* Handle last (top) tnode */
974 tn
= (struct tnode
*) resize(t
, (struct tnode
*)tn
);
976 return (struct node
*) tn
;
979 static struct list_head
*
980 fib_insert_node(struct trie
*t
, int *err
, u32 key
, int plen
)
983 struct tnode
*tp
= NULL
, *tn
= NULL
;
987 struct list_head
*fa_head
= NULL
;
988 struct leaf_info
*li
;
994 /* If we point to NULL, stop. Either the tree is empty and we should
995 * just put a new leaf in if, or we have reached an empty child slot,
996 * and we should just put our new leaf in that.
997 * If we point to a T_TNODE, check if it matches our key. Note that
998 * a T_TNODE might be skipping any number of bits - its 'pos' need
999 * not be the parent's 'pos'+'bits'!
1001 * If it does match the current key, get pos/bits from it, extract
1002 * the index from our key, push the T_TNODE and walk the tree.
1004 * If it doesn't, we have to replace it with a new T_TNODE.
1006 * If we point to a T_LEAF, it might or might not have the same key
1007 * as we do. If it does, just change the value, update the T_LEAF's
1008 * value, and return it.
1009 * If it doesn't, we need to replace it with a T_TNODE.
1012 while (n
!= NULL
&& NODE_TYPE(n
) == T_TNODE
) {
1013 tn
= (struct tnode
*) n
;
1017 if (tkey_sub_equals(tn
->key
, pos
, tn
->pos
-pos
, key
)) {
1019 pos
= tn
->pos
+ tn
->bits
;
1020 n
= tnode_get_child(tn
, tkey_extract_bits(key
, tn
->pos
, tn
->bits
));
1022 if (n
&& NODE_PARENT(n
) != tn
) {
1023 printk("BUG tn=%p, n->parent=%p\n", tn
, NODE_PARENT(n
));
1031 * n ----> NULL, LEAF or TNODE
1033 * tp is n's (parent) ----> NULL or TNODE
1036 BUG_ON(tp
&& IS_LEAF(tp
));
1038 /* Case 1: n is a leaf. Compare prefixes */
1040 if (n
!= NULL
&& IS_LEAF(n
) && tkey_equals(key
, n
->key
)) {
1041 struct leaf
*l
= (struct leaf
*) n
;
1043 li
= leaf_info_new(plen
);
1050 fa_head
= &li
->falh
;
1051 insert_leaf_info(&l
->list
, li
);
1063 li
= leaf_info_new(plen
);
1066 tnode_free((struct tnode
*) l
);
1071 fa_head
= &li
->falh
;
1072 insert_leaf_info(&l
->list
, li
);
1074 if (t
->trie
&& n
== NULL
) {
1075 /* Case 2: n is NULL, and will just insert a new leaf */
1077 NODE_SET_PARENT(l
, tp
);
1081 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1082 put_child(t
, (struct tnode
*)tp
, cindex
, (struct node
*)l
);
1084 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1086 * Add a new tnode here
1087 * first tnode need some special handling
1091 pos
= tp
->pos
+tp
->bits
;
1096 newpos
= tkey_mismatch(key
, pos
, n
->key
);
1097 tn
= tnode_new(n
->key
, newpos
, 1);
1100 tn
= tnode_new(key
, newpos
, 1); /* First tnode */
1105 tnode_free((struct tnode
*) l
);
1110 NODE_SET_PARENT(tn
, tp
);
1112 missbit
= tkey_extract_bits(key
, newpos
, 1);
1113 put_child(t
, tn
, missbit
, (struct node
*)l
);
1114 put_child(t
, tn
, 1-missbit
, n
);
1117 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1118 put_child(t
, (struct tnode
*)tp
, cindex
, (struct node
*)tn
);
1120 t
->trie
= (struct node
*) tn
; /* First tnode */
1125 if (tp
&& tp
->pos
+ tp
->bits
> 32)
1126 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1127 tp
, tp
->pos
, tp
->bits
, key
, plen
);
1129 /* Rebalance the trie */
1130 t
->trie
= trie_rebalance(t
, tp
);
1138 fn_trie_insert(struct fib_table
*tb
, struct rtmsg
*r
, struct kern_rta
*rta
,
1139 struct nlmsghdr
*nlhdr
, struct netlink_skb_parms
*req
)
1141 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1142 struct fib_alias
*fa
, *new_fa
;
1143 struct list_head
*fa_head
= NULL
;
1144 struct fib_info
*fi
;
1145 int plen
= r
->rtm_dst_len
;
1146 int type
= r
->rtm_type
;
1147 u8 tos
= r
->rtm_tos
;
1157 memcpy(&key
, rta
->rta_dst
, 4);
1161 DBG("Insert table=%d %08x/%d\n", tb
->tb_id
, key
, plen
);
1163 mask
= ntohl(inet_make_mask(plen
));
1170 fi
= fib_create_info(r
, rta
, nlhdr
, &err
);
1175 l
= fib_find_node(t
, key
);
1179 fa_head
= get_fa_head(l
, plen
);
1180 fa
= fib_find_alias(fa_head
, tos
, fi
->fib_priority
);
1183 /* Now fa, if non-NULL, points to the first fib alias
1184 * with the same keys [prefix,tos,priority], if such key already
1185 * exists or to the node before which we will insert new one.
1187 * If fa is NULL, we will need to allocate a new one and
1188 * insert to the head of f.
1190 * If f is NULL, no fib node matched the destination key
1191 * and we need to allocate a new one of those as well.
1194 if (fa
&& fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1195 struct fib_alias
*fa_orig
;
1198 if (nlhdr
->nlmsg_flags
& NLM_F_EXCL
)
1201 if (nlhdr
->nlmsg_flags
& NLM_F_REPLACE
) {
1202 struct fib_info
*fi_drop
;
1205 write_lock_bh(&fib_lock
);
1207 fi_drop
= fa
->fa_info
;
1210 fa
->fa_scope
= r
->rtm_scope
;
1211 state
= fa
->fa_state
;
1212 fa
->fa_state
&= ~FA_S_ACCESSED
;
1214 write_unlock_bh(&fib_lock
);
1216 fib_release_info(fi_drop
);
1217 if (state
& FA_S_ACCESSED
)
1222 /* Error if we find a perfect match which
1223 * uses the same scope, type, and nexthop
1227 list_for_each_entry(fa
, fa_orig
->fa_list
.prev
, fa_list
) {
1228 if (fa
->fa_tos
!= tos
)
1230 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1232 if (fa
->fa_type
== type
&&
1233 fa
->fa_scope
== r
->rtm_scope
&&
1234 fa
->fa_info
== fi
) {
1238 if (!(nlhdr
->nlmsg_flags
& NLM_F_APPEND
))
1242 if (!(nlhdr
->nlmsg_flags
& NLM_F_CREATE
))
1246 new_fa
= kmem_cache_alloc(fn_alias_kmem
, SLAB_KERNEL
);
1250 new_fa
->fa_info
= fi
;
1251 new_fa
->fa_tos
= tos
;
1252 new_fa
->fa_type
= type
;
1253 new_fa
->fa_scope
= r
->rtm_scope
;
1254 new_fa
->fa_state
= 0;
1256 * Insert new entry to the list.
1260 fa_head
= fib_insert_node(t
, &err
, key
, plen
);
1263 goto out_free_new_fa
;
1266 write_lock_bh(&fib_lock
);
1268 list_add_tail(&new_fa
->fa_list
, (fa
? &fa
->fa_list
: fa_head
));
1270 write_unlock_bh(&fib_lock
);
1273 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, tb
->tb_id
, nlhdr
, req
);
1278 kmem_cache_free(fn_alias_kmem
, new_fa
);
1280 fib_release_info(fi
);
1285 static inline int check_leaf(struct trie
*t
, struct leaf
*l
, t_key key
, int *plen
, const struct flowi
*flp
,
1286 struct fib_result
*res
)
1290 struct leaf_info
*li
;
1291 struct hlist_head
*hhead
= &l
->list
;
1292 struct hlist_node
*node
;
1294 hlist_for_each_entry(li
, node
, hhead
, hlist
) {
1296 mask
= ntohl(inet_make_mask(i
));
1297 if (l
->key
!= (key
& mask
))
1300 if ((err
= fib_semantic_match(&li
->falh
, flp
, res
, l
->key
, mask
, i
)) <= 0) {
1302 #ifdef CONFIG_IP_FIB_TRIE_STATS
1303 t
->stats
.semantic_match_passed
++;
1307 #ifdef CONFIG_IP_FIB_TRIE_STATS
1308 t
->stats
.semantic_match_miss
++;
1315 fn_trie_lookup(struct fib_table
*tb
, const struct flowi
*flp
, struct fib_result
*res
)
1317 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1322 t_key key
= ntohl(flp
->fl4_dst
);
1325 int current_prefix_length
= KEYLENGTH
;
1327 t_key node_prefix
, key_prefix
, pref_mismatch
;
1332 read_lock(&fib_lock
);
1337 #ifdef CONFIG_IP_FIB_TRIE_STATS
1343 if ((ret
= check_leaf(t
, (struct leaf
*)n
, key
, &plen
, flp
, res
)) <= 0)
1347 pn
= (struct tnode
*) n
;
1355 cindex
= tkey_extract_bits(MASK_PFX(key
, current_prefix_length
), pos
, bits
);
1357 n
= tnode_get_child(pn
, cindex
);
1360 #ifdef CONFIG_IP_FIB_TRIE_STATS
1361 t
->stats
.null_node_hit
++;
1367 if ((ret
= check_leaf(t
, (struct leaf
*)n
, key
, &plen
, flp
, res
)) <= 0)
1375 cn
= (struct tnode
*)n
;
1378 * It's a tnode, and we can do some extra checks here if we
1379 * like, to avoid descending into a dead-end branch.
1380 * This tnode is in the parent's child array at index
1381 * key[p_pos..p_pos+p_bits] but potentially with some bits
1382 * chopped off, so in reality the index may be just a
1383 * subprefix, padded with zero at the end.
1384 * We can also take a look at any skipped bits in this
1385 * tnode - everything up to p_pos is supposed to be ok,
1386 * and the non-chopped bits of the index (se previous
1387 * paragraph) are also guaranteed ok, but the rest is
1388 * considered unknown.
1390 * The skipped bits are key[pos+bits..cn->pos].
1393 /* If current_prefix_length < pos+bits, we are already doing
1394 * actual prefix matching, which means everything from
1395 * pos+(bits-chopped_off) onward must be zero along some
1396 * branch of this subtree - otherwise there is *no* valid
1397 * prefix present. Here we can only check the skipped
1398 * bits. Remember, since we have already indexed into the
1399 * parent's child array, we know that the bits we chopped of
1403 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1405 if (current_prefix_length
< pos
+bits
) {
1406 if (tkey_extract_bits(cn
->key
, current_prefix_length
,
1407 cn
->pos
- current_prefix_length
) != 0 ||
1413 * If chopped_off=0, the index is fully validated and we
1414 * only need to look at the skipped bits for this, the new,
1415 * tnode. What we actually want to do is to find out if
1416 * these skipped bits match our key perfectly, or if we will
1417 * have to count on finding a matching prefix further down,
1418 * because if we do, we would like to have some way of
1419 * verifying the existence of such a prefix at this point.
1422 /* The only thing we can do at this point is to verify that
1423 * any such matching prefix can indeed be a prefix to our
1424 * key, and if the bits in the node we are inspecting that
1425 * do not match our key are not ZERO, this cannot be true.
1426 * Thus, find out where there is a mismatch (before cn->pos)
1427 * and verify that all the mismatching bits are zero in the
1431 /* Note: We aren't very concerned about the piece of the key
1432 * that precede pn->pos+pn->bits, since these have already been
1433 * checked. The bits after cn->pos aren't checked since these are
1434 * by definition "unknown" at this point. Thus, what we want to
1435 * see is if we are about to enter the "prefix matching" state,
1436 * and in that case verify that the skipped bits that will prevail
1437 * throughout this subtree are zero, as they have to be if we are
1438 * to find a matching prefix.
1441 node_prefix
= MASK_PFX(cn
->key
, cn
->pos
);
1442 key_prefix
= MASK_PFX(key
, cn
->pos
);
1443 pref_mismatch
= key_prefix
^node_prefix
;
1446 /* In short: If skipped bits in this node do not match the search
1447 * key, enter the "prefix matching" state.directly.
1449 if (pref_mismatch
) {
1450 while (!(pref_mismatch
& (1<<(KEYLENGTH
-1)))) {
1452 pref_mismatch
= pref_mismatch
<<1;
1454 key_prefix
= tkey_extract_bits(cn
->key
, mp
, cn
->pos
-mp
);
1456 if (key_prefix
!= 0)
1459 if (current_prefix_length
>= cn
->pos
)
1460 current_prefix_length
= mp
;
1463 pn
= (struct tnode
*)n
; /* Descend */
1470 /* As zero don't change the child key (cindex) */
1471 while ((chopped_off
<= pn
->bits
) && !(cindex
& (1<<(chopped_off
-1))))
1474 /* Decrease current_... with bits chopped off */
1475 if (current_prefix_length
> pn
->pos
+ pn
->bits
- chopped_off
)
1476 current_prefix_length
= pn
->pos
+ pn
->bits
- chopped_off
;
1479 * Either we do the actual chop off according or if we have
1480 * chopped off all bits in this tnode walk up to our parent.
1483 if (chopped_off
<= pn
->bits
) {
1484 cindex
&= ~(1 << (chopped_off
-1));
1486 if (NODE_PARENT(pn
) == NULL
)
1489 /* Get Child's index */
1490 cindex
= tkey_extract_bits(pn
->key
, NODE_PARENT(pn
)->pos
, NODE_PARENT(pn
)->bits
);
1491 pn
= NODE_PARENT(pn
);
1494 #ifdef CONFIG_IP_FIB_TRIE_STATS
1495 t
->stats
.backtrack
++;
1503 read_unlock(&fib_lock
);
1507 static int trie_leaf_remove(struct trie
*t
, t_key key
)
1510 struct tnode
*tp
= NULL
;
1511 struct node
*n
= t
->trie
;
1514 DBG("entering trie_leaf_remove(%p)\n", n
);
1516 /* Note that in the case skipped bits, those bits are *not* checked!
1517 * When we finish this, we will have NULL or a T_LEAF, and the
1518 * T_LEAF may or may not match our key.
1521 while (n
!= NULL
&& IS_TNODE(n
)) {
1522 struct tnode
*tn
= (struct tnode
*) n
;
1524 n
= tnode_get_child(tn
,tkey_extract_bits(key
, tn
->pos
, tn
->bits
));
1526 if (n
&& NODE_PARENT(n
) != tn
) {
1527 printk("BUG tn=%p, n->parent=%p\n", tn
, NODE_PARENT(n
));
1531 l
= (struct leaf
*) n
;
1533 if (!n
|| !tkey_equals(l
->key
, key
))
1538 * Remove the leaf and rebalance the tree
1544 tp
= NODE_PARENT(n
);
1545 tnode_free((struct tnode
*) n
);
1548 cindex
= tkey_extract_bits(key
, tp
->pos
, tp
->bits
);
1549 put_child(t
, (struct tnode
*)tp
, cindex
, NULL
);
1550 t
->trie
= trie_rebalance(t
, tp
);
1558 fn_trie_delete(struct fib_table
*tb
, struct rtmsg
*r
, struct kern_rta
*rta
,
1559 struct nlmsghdr
*nlhdr
, struct netlink_skb_parms
*req
)
1561 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1563 int plen
= r
->rtm_dst_len
;
1564 u8 tos
= r
->rtm_tos
;
1565 struct fib_alias
*fa
, *fa_to_delete
;
1566 struct list_head
*fa_head
;
1569 struct leaf_info
*li
;
1577 memcpy(&key
, rta
->rta_dst
, 4);
1580 mask
= ntohl(inet_make_mask(plen
));
1586 l
= fib_find_node(t
, key
);
1591 fa_head
= get_fa_head(l
, plen
);
1592 fa
= fib_find_alias(fa_head
, tos
, 0);
1597 DBG("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1599 fa_to_delete
= NULL
;
1600 fa_head
= fa
->fa_list
.prev
;
1601 list_for_each_entry(fa
, fa_head
, fa_list
) {
1602 struct fib_info
*fi
= fa
->fa_info
;
1604 if (fa
->fa_tos
!= tos
)
1607 if ((!r
->rtm_type
||
1608 fa
->fa_type
== r
->rtm_type
) &&
1609 (r
->rtm_scope
== RT_SCOPE_NOWHERE
||
1610 fa
->fa_scope
== r
->rtm_scope
) &&
1611 (!r
->rtm_protocol
||
1612 fi
->fib_protocol
== r
->rtm_protocol
) &&
1613 fib_nh_match(r
, nlhdr
, rta
, fi
) == 0) {
1623 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa
, plen
, tb
->tb_id
, nlhdr
, req
);
1625 l
= fib_find_node(t
, key
);
1626 li
= find_leaf_info(&l
->list
, plen
);
1628 write_lock_bh(&fib_lock
);
1630 list_del(&fa
->fa_list
);
1632 if (list_empty(fa_head
)) {
1633 hlist_del(&li
->hlist
);
1636 write_unlock_bh(&fib_lock
);
1641 if (hlist_empty(&l
->list
))
1642 trie_leaf_remove(t
, key
);
1644 if (fa
->fa_state
& FA_S_ACCESSED
)
1651 static int trie_flush_list(struct trie
*t
, struct list_head
*head
)
1653 struct fib_alias
*fa
, *fa_node
;
1656 list_for_each_entry_safe(fa
, fa_node
, head
, fa_list
) {
1657 struct fib_info
*fi
= fa
->fa_info
;
1659 if (fi
&& (fi
->fib_flags
&RTNH_F_DEAD
)) {
1660 write_lock_bh(&fib_lock
);
1661 list_del(&fa
->fa_list
);
1662 write_unlock_bh(&fib_lock
);
1671 static int trie_flush_leaf(struct trie
*t
, struct leaf
*l
)
1674 struct hlist_head
*lih
= &l
->list
;
1675 struct hlist_node
*node
, *tmp
;
1676 struct leaf_info
*li
= NULL
;
1678 hlist_for_each_entry_safe(li
, node
, tmp
, lih
, hlist
) {
1679 found
+= trie_flush_list(t
, &li
->falh
);
1681 if (list_empty(&li
->falh
)) {
1682 write_lock_bh(&fib_lock
);
1683 hlist_del(&li
->hlist
);
1684 write_unlock_bh(&fib_lock
);
1692 static struct leaf
*nextleaf(struct trie
*t
, struct leaf
*thisleaf
)
1694 struct node
*c
= (struct node
*) thisleaf
;
1699 if (t
->trie
== NULL
)
1702 if (IS_LEAF(t
->trie
)) /* trie w. just a leaf */
1703 return (struct leaf
*) t
->trie
;
1705 p
= (struct tnode
*) t
->trie
; /* Start */
1707 p
= (struct tnode
*) NODE_PARENT(c
);
1712 /* Find the next child of the parent */
1714 pos
= 1 + tkey_extract_bits(c
->key
, p
->pos
, p
->bits
);
1718 last
= 1 << p
->bits
;
1719 for (idx
= pos
; idx
< last
; idx
++) {
1723 /* Decend if tnode */
1724 while (IS_TNODE(p
->child
[idx
])) {
1725 p
= (struct tnode
*) p
->child
[idx
];
1728 /* Rightmost non-NULL branch */
1729 if (p
&& IS_TNODE(p
))
1730 while (p
->child
[idx
] == NULL
&& idx
< (1 << p
->bits
)) idx
++;
1732 /* Done with this tnode? */
1733 if (idx
>= (1 << p
->bits
) || p
->child
[idx
] == NULL
)
1736 return (struct leaf
*) p
->child
[idx
];
1739 /* No more children go up one step */
1740 c
= (struct node
*) p
;
1741 p
= (struct tnode
*) NODE_PARENT(p
);
1743 return NULL
; /* Ready. Root of trie */
1746 static int fn_trie_flush(struct fib_table
*tb
)
1748 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1749 struct leaf
*ll
= NULL
, *l
= NULL
;
1754 for (h
= 0; (l
= nextleaf(t
, l
)) != NULL
; h
++) {
1755 found
+= trie_flush_leaf(t
, l
);
1757 if (ll
&& hlist_empty(&ll
->list
))
1758 trie_leaf_remove(t
, ll
->key
);
1762 if (ll
&& hlist_empty(&ll
->list
))
1763 trie_leaf_remove(t
, ll
->key
);
1765 DBG("trie_flush found=%d\n", found
);
1769 static int trie_last_dflt
= -1;
1772 fn_trie_select_default(struct fib_table
*tb
, const struct flowi
*flp
, struct fib_result
*res
)
1774 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1775 int order
, last_idx
;
1776 struct fib_info
*fi
= NULL
;
1777 struct fib_info
*last_resort
;
1778 struct fib_alias
*fa
= NULL
;
1779 struct list_head
*fa_head
;
1786 read_lock(&fib_lock
);
1788 l
= fib_find_node(t
, 0);
1792 fa_head
= get_fa_head(l
, 0);
1796 if (list_empty(fa_head
))
1799 list_for_each_entry(fa
, fa_head
, fa_list
) {
1800 struct fib_info
*next_fi
= fa
->fa_info
;
1802 if (fa
->fa_scope
!= res
->scope
||
1803 fa
->fa_type
!= RTN_UNICAST
)
1806 if (next_fi
->fib_priority
> res
->fi
->fib_priority
)
1808 if (!next_fi
->fib_nh
[0].nh_gw
||
1809 next_fi
->fib_nh
[0].nh_scope
!= RT_SCOPE_LINK
)
1811 fa
->fa_state
|= FA_S_ACCESSED
;
1814 if (next_fi
!= res
->fi
)
1816 } else if (!fib_detect_death(fi
, order
, &last_resort
,
1817 &last_idx
, &trie_last_dflt
)) {
1819 fib_info_put(res
->fi
);
1821 atomic_inc(&fi
->fib_clntref
);
1822 trie_last_dflt
= order
;
1828 if (order
<= 0 || fi
== NULL
) {
1829 trie_last_dflt
= -1;
1833 if (!fib_detect_death(fi
, order
, &last_resort
, &last_idx
, &trie_last_dflt
)) {
1835 fib_info_put(res
->fi
);
1837 atomic_inc(&fi
->fib_clntref
);
1838 trie_last_dflt
= order
;
1841 if (last_idx
>= 0) {
1843 fib_info_put(res
->fi
);
1844 res
->fi
= last_resort
;
1846 atomic_inc(&last_resort
->fib_clntref
);
1848 trie_last_dflt
= last_idx
;
1850 read_unlock(&fib_lock
);
1853 static int fn_trie_dump_fa(t_key key
, int plen
, struct list_head
*fah
, struct fib_table
*tb
,
1854 struct sk_buff
*skb
, struct netlink_callback
*cb
)
1857 struct fib_alias
*fa
;
1859 u32 xkey
= htonl(key
);
1864 list_for_each_entry(fa
, fah
, fa_list
) {
1869 if (fa
->fa_info
->fib_nh
== NULL
) {
1870 printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i
, key
, plen
);
1874 if (fa
->fa_info
== NULL
) {
1875 printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i
, key
, plen
);
1880 if (fib_dump_info(skb
, NETLINK_CB(cb
->skb
).pid
,
1889 fa
->fa_info
, 0) < 0) {
1899 static int fn_trie_dump_plen(struct trie
*t
, int plen
, struct fib_table
*tb
, struct sk_buff
*skb
,
1900 struct netlink_callback
*cb
)
1903 struct list_head
*fa_head
;
1904 struct leaf
*l
= NULL
;
1908 for (h
= 0; (l
= nextleaf(t
, l
)) != NULL
; h
++) {
1912 memset(&cb
->args
[3], 0,
1913 sizeof(cb
->args
) - 3*sizeof(cb
->args
[0]));
1915 fa_head
= get_fa_head(l
, plen
);
1920 if (list_empty(fa_head
))
1923 if (fn_trie_dump_fa(l
->key
, plen
, fa_head
, tb
, skb
, cb
)<0) {
1932 static int fn_trie_dump(struct fib_table
*tb
, struct sk_buff
*skb
, struct netlink_callback
*cb
)
1935 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1939 read_lock(&fib_lock
);
1940 for (m
= 0; m
<= 32; m
++) {
1944 memset(&cb
->args
[2], 0,
1945 sizeof(cb
->args
) - 2*sizeof(cb
->args
[0]));
1947 if (fn_trie_dump_plen(t
, 32-m
, tb
, skb
, cb
)<0) {
1952 read_unlock(&fib_lock
);
1956 read_unlock(&fib_lock
);
1960 /* Fix more generic FIB names for init later */
1962 #ifdef CONFIG_IP_MULTIPLE_TABLES
1963 struct fib_table
* fib_hash_init(int id
)
1965 struct fib_table
* __init
fib_hash_init(int id
)
1968 struct fib_table
*tb
;
1971 if (fn_alias_kmem
== NULL
)
1972 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
1973 sizeof(struct fib_alias
),
1974 0, SLAB_HWCACHE_ALIGN
,
1977 tb
= kmalloc(sizeof(struct fib_table
) + sizeof(struct trie
),
1983 tb
->tb_lookup
= fn_trie_lookup
;
1984 tb
->tb_insert
= fn_trie_insert
;
1985 tb
->tb_delete
= fn_trie_delete
;
1986 tb
->tb_flush
= fn_trie_flush
;
1987 tb
->tb_select_default
= fn_trie_select_default
;
1988 tb
->tb_dump
= fn_trie_dump
;
1989 memset(tb
->tb_data
, 0, sizeof(struct trie
));
1991 t
= (struct trie
*) tb
->tb_data
;
1995 if (id
== RT_TABLE_LOCAL
)
1997 else if (id
== RT_TABLE_MAIN
)
2000 if (id
== RT_TABLE_LOCAL
)
2001 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION
);
2006 /* Trie dump functions */
2008 static void putspace_seq(struct seq_file
*seq
, int n
)
2011 seq_printf(seq
, " ");
2014 static void printbin_seq(struct seq_file
*seq
, unsigned int v
, int bits
)
2017 seq_printf(seq
, "%s", (v
& (1<<bits
))?"1":"0");
2020 static void printnode_seq(struct seq_file
*seq
, int indent
, struct node
*n
,
2021 int pend
, int cindex
, int bits
)
2023 putspace_seq(seq
, indent
);
2025 seq_printf(seq
, "|");
2027 seq_printf(seq
, "+");
2029 seq_printf(seq
, "%d/", cindex
);
2030 printbin_seq(seq
, cindex
, bits
);
2031 seq_printf(seq
, ": ");
2033 seq_printf(seq
, "<root>: ");
2034 seq_printf(seq
, "%s:%p ", IS_LEAF(n
)?"Leaf":"Internal node", n
);
2037 struct leaf
*l
= (struct leaf
*)n
;
2038 struct fib_alias
*fa
;
2041 seq_printf(seq
, "key=%d.%d.%d.%d\n",
2042 n
->key
>> 24, (n
->key
>> 16) % 256, (n
->key
>> 8) % 256, n
->key
% 256);
2044 for (i
= 32; i
>= 0; i
--)
2045 if (find_leaf_info(&l
->list
, i
)) {
2046 struct list_head
*fa_head
= get_fa_head(l
, i
);
2051 if (list_empty(fa_head
))
2054 putspace_seq(seq
, indent
+2);
2055 seq_printf(seq
, "{/%d...dumping}\n", i
);
2057 list_for_each_entry(fa
, fa_head
, fa_list
) {
2058 putspace_seq(seq
, indent
+2);
2059 if (fa
->fa_info
== NULL
) {
2060 seq_printf(seq
, "Error fa_info=NULL\n");
2063 if (fa
->fa_info
->fib_nh
== NULL
) {
2064 seq_printf(seq
, "Error _fib_nh=NULL\n");
2068 seq_printf(seq
, "{type=%d scope=%d TOS=%d}\n",
2075 struct tnode
*tn
= (struct tnode
*)n
;
2076 int plen
= ((struct tnode
*)n
)->pos
;
2077 t_key prf
= MASK_PFX(n
->key
, plen
);
2079 seq_printf(seq
, "key=%d.%d.%d.%d/%d\n",
2080 prf
>> 24, (prf
>> 16) % 256, (prf
>> 8) % 256, prf
% 256, plen
);
2082 putspace_seq(seq
, indent
); seq_printf(seq
, "| ");
2083 seq_printf(seq
, "{key prefix=%08x/", tn
->key
& TKEY_GET_MASK(0, tn
->pos
));
2084 printbin_seq(seq
, tkey_extract_bits(tn
->key
, 0, tn
->pos
), tn
->pos
);
2085 seq_printf(seq
, "}\n");
2086 putspace_seq(seq
, indent
); seq_printf(seq
, "| ");
2087 seq_printf(seq
, "{pos=%d", tn
->pos
);
2088 seq_printf(seq
, " (skip=%d bits)", tn
->pos
- pend
);
2089 seq_printf(seq
, " bits=%d (%u children)}\n", tn
->bits
, (1 << tn
->bits
));
2090 putspace_seq(seq
, indent
); seq_printf(seq
, "| ");
2091 seq_printf(seq
, "{empty=%d full=%d}\n", tn
->empty_children
, tn
->full_children
);
2095 static void trie_dump_seq(struct seq_file
*seq
, struct trie
*t
)
2097 struct node
*n
= t
->trie
;
2104 read_lock(&fib_lock
);
2106 seq_printf(seq
, "------ trie_dump of t=%p ------\n", t
);
2109 seq_printf(seq
, "------ trie is empty\n");
2111 read_unlock(&fib_lock
);
2115 printnode_seq(seq
, indent
, n
, pend
, cindex
, 0);
2118 read_unlock(&fib_lock
);
2122 tn
= (struct tnode
*)n
;
2123 pend
= tn
->pos
+tn
->bits
;
2124 putspace_seq(seq
, indent
); seq_printf(seq
, "\\--\n");
2128 while (tn
&& cindex
< (1 << tn
->bits
)) {
2129 if (tn
->child
[cindex
]) {
2132 printnode_seq(seq
, indent
, tn
->child
[cindex
], pend
, cindex
, tn
->bits
);
2133 if (IS_LEAF(tn
->child
[cindex
])) {
2137 * New tnode. Decend one level
2141 tn
= (struct tnode
*)tn
->child
[cindex
];
2142 pend
= tn
->pos
+ tn
->bits
;
2143 putspace_seq(seq
, indent
); seq_printf(seq
, "\\--\n");
2151 * Test if we are done
2154 while (cindex
>= (1 << tn
->bits
)) {
2156 * Move upwards and test for root
2157 * pop off all traversed nodes
2160 if (NODE_PARENT(tn
) == NULL
) {
2165 cindex
= tkey_extract_bits(tn
->key
, NODE_PARENT(tn
)->pos
, NODE_PARENT(tn
)->bits
);
2167 tn
= NODE_PARENT(tn
);
2168 pend
= tn
->pos
+ tn
->bits
;
2174 read_unlock(&fib_lock
);
2177 static struct trie_stat
*trie_stat_new(void)
2179 struct trie_stat
*s
;
2182 s
= kmalloc(sizeof(struct trie_stat
), GFP_KERNEL
);
2190 s
->nullpointers
= 0;
2192 for (i
= 0; i
< MAX_CHILDS
; i
++)
2193 s
->nodesizes
[i
] = 0;
2198 static struct trie_stat
*trie_collect_stats(struct trie
*t
)
2200 struct node
*n
= t
->trie
;
2201 struct trie_stat
*s
= trie_stat_new();
2211 read_lock(&fib_lock
);
2214 struct tnode
*tn
= (struct tnode
*)n
;
2215 pend
= tn
->pos
+tn
->bits
;
2216 s
->nodesizes
[tn
->bits
]++;
2219 while (tn
&& cindex
< (1 << tn
->bits
)) {
2220 if (tn
->child
[cindex
]) {
2223 if (IS_LEAF(tn
->child
[cindex
])) {
2227 if (depth
> s
->maxdepth
)
2228 s
->maxdepth
= depth
;
2229 s
->totdepth
+= depth
;
2233 * New tnode. Decend one level
2237 s
->nodesizes
[tn
->bits
]++;
2240 n
= tn
->child
[cindex
];
2241 tn
= (struct tnode
*)n
;
2242 pend
= tn
->pos
+tn
->bits
;
2252 * Test if we are done
2255 while (cindex
>= (1 << tn
->bits
)) {
2257 * Move upwards and test for root
2258 * pop off all traversed nodes
2261 if (NODE_PARENT(tn
) == NULL
) {
2267 cindex
= tkey_extract_bits(tn
->key
, NODE_PARENT(tn
)->pos
, NODE_PARENT(tn
)->bits
);
2268 tn
= NODE_PARENT(tn
);
2270 n
= (struct node
*)tn
;
2271 pend
= tn
->pos
+tn
->bits
;
2277 read_unlock(&fib_lock
);
2281 #ifdef CONFIG_PROC_FS
2283 static struct fib_alias
*fib_triestat_get_first(struct seq_file
*seq
)
2288 static struct fib_alias
*fib_triestat_get_next(struct seq_file
*seq
)
2293 static void *fib_triestat_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2295 if (!ip_fib_main_table
)
2299 return fib_triestat_get_next(seq
);
2301 return SEQ_START_TOKEN
;
2304 static void *fib_triestat_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2307 if (v
== SEQ_START_TOKEN
)
2308 return fib_triestat_get_first(seq
);
2310 return fib_triestat_get_next(seq
);
2313 static void fib_triestat_seq_stop(struct seq_file
*seq
, void *v
)
2319 * This outputs /proc/net/fib_triestats
2321 * It always works in backward compatibility mode.
2322 * The format of the file is not supposed to be changed.
2325 static void collect_and_show(struct trie
*t
, struct seq_file
*seq
)
2327 int bytes
= 0; /* How many bytes are used, a ref is 4 bytes */
2328 int i
, max
, pointers
;
2329 struct trie_stat
*stat
;
2332 stat
= trie_collect_stats(t
);
2335 seq_printf(seq
, "trie=%p\n", t
);
2339 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2342 seq_printf(seq
, "Aver depth: %d.%02d\n", avdepth
/ 100, avdepth
% 100);
2343 seq_printf(seq
, "Max depth: %4d\n", stat
->maxdepth
);
2345 seq_printf(seq
, "Leaves: %d\n", stat
->leaves
);
2346 bytes
+= sizeof(struct leaf
) * stat
->leaves
;
2347 seq_printf(seq
, "Internal nodes: %d\n", stat
->tnodes
);
2348 bytes
+= sizeof(struct tnode
) * stat
->tnodes
;
2352 while (max
>= 0 && stat
->nodesizes
[max
] == 0)
2356 for (i
= 1; i
<= max
; i
++)
2357 if (stat
->nodesizes
[i
] != 0) {
2358 seq_printf(seq
, " %d: %d", i
, stat
->nodesizes
[i
]);
2359 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2361 seq_printf(seq
, "\n");
2362 seq_printf(seq
, "Pointers: %d\n", pointers
);
2363 bytes
+= sizeof(struct node
*) * pointers
;
2364 seq_printf(seq
, "Null ptrs: %d\n", stat
->nullpointers
);
2365 seq_printf(seq
, "Total size: %d kB\n", bytes
/ 1024);
2370 #ifdef CONFIG_IP_FIB_TRIE_STATS
2371 seq_printf(seq
, "Counters:\n---------\n");
2372 seq_printf(seq
,"gets = %d\n", t
->stats
.gets
);
2373 seq_printf(seq
,"backtracks = %d\n", t
->stats
.backtrack
);
2374 seq_printf(seq
,"semantic match passed = %d\n", t
->stats
.semantic_match_passed
);
2375 seq_printf(seq
,"semantic match miss = %d\n", t
->stats
.semantic_match_miss
);
2376 seq_printf(seq
,"null node hit= %d\n", t
->stats
.null_node_hit
);
2377 seq_printf(seq
,"skipped node resize = %d\n", t
->stats
.resize_node_skipped
);
2379 memset(&(t
->stats
), 0, sizeof(t
->stats
));
2381 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2384 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2388 if (v
== SEQ_START_TOKEN
) {
2389 seq_printf(seq
, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2390 sizeof(struct leaf
), sizeof(struct tnode
));
2392 collect_and_show(trie_local
, seq
);
2395 collect_and_show(trie_main
, seq
);
2397 snprintf(bf
, sizeof(bf
), "*\t%08X\t%08X", 200, 400);
2399 seq_printf(seq
, "%-127s\n", bf
);
2404 static struct seq_operations fib_triestat_seq_ops
= {
2405 .start
= fib_triestat_seq_start
,
2406 .next
= fib_triestat_seq_next
,
2407 .stop
= fib_triestat_seq_stop
,
2408 .show
= fib_triestat_seq_show
,
2411 static int fib_triestat_seq_open(struct inode
*inode
, struct file
*file
)
2413 struct seq_file
*seq
;
2416 rc
= seq_open(file
, &fib_triestat_seq_ops
);
2420 seq
= file
->private_data
;
2427 static struct file_operations fib_triestat_seq_fops
= {
2428 .owner
= THIS_MODULE
,
2429 .open
= fib_triestat_seq_open
,
2431 .llseek
= seq_lseek
,
2432 .release
= seq_release_private
,
2435 int __init
fib_stat_proc_init(void)
2437 if (!proc_net_fops_create("fib_triestat", S_IRUGO
, &fib_triestat_seq_fops
))
2442 void __init
fib_stat_proc_exit(void)
2444 proc_net_remove("fib_triestat");
2447 static struct fib_alias
*fib_trie_get_first(struct seq_file
*seq
)
2452 static struct fib_alias
*fib_trie_get_next(struct seq_file
*seq
)
2457 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2459 if (!ip_fib_main_table
)
2463 return fib_trie_get_next(seq
);
2465 return SEQ_START_TOKEN
;
2468 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2471 if (v
== SEQ_START_TOKEN
)
2472 return fib_trie_get_first(seq
);
2474 return fib_trie_get_next(seq
);
2478 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2483 * This outputs /proc/net/fib_trie.
2485 * It always works in backward compatibility mode.
2486 * The format of the file is not supposed to be changed.
2489 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2493 if (v
== SEQ_START_TOKEN
) {
2495 trie_dump_seq(seq
, trie_local
);
2498 trie_dump_seq(seq
, trie_main
);
2500 snprintf(bf
, sizeof(bf
),
2501 "*\t%08X\t%08X", 200, 400);
2502 seq_printf(seq
, "%-127s\n", bf
);
2508 static struct seq_operations fib_trie_seq_ops
= {
2509 .start
= fib_trie_seq_start
,
2510 .next
= fib_trie_seq_next
,
2511 .stop
= fib_trie_seq_stop
,
2512 .show
= fib_trie_seq_show
,
2515 static int fib_trie_seq_open(struct inode
*inode
, struct file
*file
)
2517 struct seq_file
*seq
;
2520 rc
= seq_open(file
, &fib_trie_seq_ops
);
2524 seq
= file
->private_data
;
2531 static struct file_operations fib_trie_seq_fops
= {
2532 .owner
= THIS_MODULE
,
2533 .open
= fib_trie_seq_open
,
2535 .llseek
= seq_lseek
,
2536 .release
= seq_release_private
,
2539 int __init
fib_proc_init(void)
2541 if (!proc_net_fops_create("fib_trie", S_IRUGO
, &fib_trie_seq_fops
))
2546 void __init
fib_proc_exit(void)
2548 proc_net_remove("fib_trie");
2551 #endif /* CONFIG_PROC_FS */