2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
33 * The data to be stored is divided into chunks using chunksize.
34 * Each device is divided into far_copies sections.
35 * In each section, chunks are laid out in a style similar to raid0, but
36 * near_copies copies of each chunk is stored (each on a different drive).
37 * The starting device for each section is offset near_copies from the starting
38 * device of the previous section.
39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
41 * near_copies and far_copies must be at least one, and their product is at most
46 * Number of guaranteed r10bios in case of extreme VM load:
48 #define NR_RAID10_BIOS 256
50 static void unplug_slaves(mddev_t
*mddev
);
52 static void allow_barrier(conf_t
*conf
);
53 static void lower_barrier(conf_t
*conf
);
55 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
59 int size
= offsetof(struct r10bio_s
, devs
[conf
->copies
]);
61 /* allocate a r10bio with room for raid_disks entries in the bios array */
62 r10_bio
= kzalloc(size
, gfp_flags
);
64 unplug_slaves(conf
->mddev
);
69 static void r10bio_pool_free(void *r10_bio
, void *data
)
74 #define RESYNC_BLOCK_SIZE (64*1024)
75 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
76 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
77 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
78 #define RESYNC_WINDOW (2048*1024)
81 * When performing a resync, we need to read and compare, so
82 * we need as many pages are there are copies.
83 * When performing a recovery, we need 2 bios, one for read,
84 * one for write (we recover only one drive per r10buf)
87 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
96 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
98 unplug_slaves(conf
->mddev
);
102 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
103 nalloc
= conf
->copies
; /* resync */
105 nalloc
= 2; /* recovery */
110 for (j
= nalloc
; j
-- ; ) {
111 bio
= bio_alloc(gfp_flags
, RESYNC_PAGES
);
114 r10_bio
->devs
[j
].bio
= bio
;
117 * Allocate RESYNC_PAGES data pages and attach them
120 for (j
= 0 ; j
< nalloc
; j
++) {
121 bio
= r10_bio
->devs
[j
].bio
;
122 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
123 page
= alloc_page(gfp_flags
);
127 bio
->bi_io_vec
[i
].bv_page
= page
;
135 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
137 for (i
= 0; i
< RESYNC_PAGES
; i
++)
138 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
141 while ( ++j
< nalloc
)
142 bio_put(r10_bio
->devs
[j
].bio
);
143 r10bio_pool_free(r10_bio
, conf
);
147 static void r10buf_pool_free(void *__r10_bio
, void *data
)
151 r10bio_t
*r10bio
= __r10_bio
;
154 for (j
=0; j
< conf
->copies
; j
++) {
155 struct bio
*bio
= r10bio
->devs
[j
].bio
;
157 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
158 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
159 bio
->bi_io_vec
[i
].bv_page
= NULL
;
164 r10bio_pool_free(r10bio
, conf
);
167 static void put_all_bios(conf_t
*conf
, r10bio_t
*r10_bio
)
171 for (i
= 0; i
< conf
->copies
; i
++) {
172 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
173 if (*bio
&& *bio
!= IO_BLOCKED
)
179 static void free_r10bio(r10bio_t
*r10_bio
)
181 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
184 * Wake up any possible resync thread that waits for the device
189 put_all_bios(conf
, r10_bio
);
190 mempool_free(r10_bio
, conf
->r10bio_pool
);
193 static void put_buf(r10bio_t
*r10_bio
)
195 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
197 mempool_free(r10_bio
, conf
->r10buf_pool
);
202 static void reschedule_retry(r10bio_t
*r10_bio
)
205 mddev_t
*mddev
= r10_bio
->mddev
;
206 conf_t
*conf
= mddev_to_conf(mddev
);
208 spin_lock_irqsave(&conf
->device_lock
, flags
);
209 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
211 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
213 md_wakeup_thread(mddev
->thread
);
217 * raid_end_bio_io() is called when we have finished servicing a mirrored
218 * operation and are ready to return a success/failure code to the buffer
221 static void raid_end_bio_io(r10bio_t
*r10_bio
)
223 struct bio
*bio
= r10_bio
->master_bio
;
225 bio_endio(bio
, bio
->bi_size
,
226 test_bit(R10BIO_Uptodate
, &r10_bio
->state
) ? 0 : -EIO
);
227 free_r10bio(r10_bio
);
231 * Update disk head position estimator based on IRQ completion info.
233 static inline void update_head_pos(int slot
, r10bio_t
*r10_bio
)
235 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
237 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
238 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
241 static int raid10_end_read_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
243 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
244 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
246 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
251 slot
= r10_bio
->read_slot
;
252 dev
= r10_bio
->devs
[slot
].devnum
;
254 * this branch is our 'one mirror IO has finished' event handler:
256 update_head_pos(slot
, r10_bio
);
260 * Set R10BIO_Uptodate in our master bio, so that
261 * we will return a good error code to the higher
262 * levels even if IO on some other mirrored buffer fails.
264 * The 'master' represents the composite IO operation to
265 * user-side. So if something waits for IO, then it will
266 * wait for the 'master' bio.
268 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
269 raid_end_bio_io(r10_bio
);
274 char b
[BDEVNAME_SIZE
];
275 if (printk_ratelimit())
276 printk(KERN_ERR
"raid10: %s: rescheduling sector %llu\n",
277 bdevname(conf
->mirrors
[dev
].rdev
->bdev
,b
), (unsigned long long)r10_bio
->sector
);
278 reschedule_retry(r10_bio
);
281 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
285 static int raid10_end_write_request(struct bio
*bio
, unsigned int bytes_done
, int error
)
287 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
288 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
290 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
295 for (slot
= 0; slot
< conf
->copies
; slot
++)
296 if (r10_bio
->devs
[slot
].bio
== bio
)
298 dev
= r10_bio
->devs
[slot
].devnum
;
301 * this branch is our 'one mirror IO has finished' event handler:
304 md_error(r10_bio
->mddev
, conf
->mirrors
[dev
].rdev
);
305 /* an I/O failed, we can't clear the bitmap */
306 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
309 * Set R10BIO_Uptodate in our master bio, so that
310 * we will return a good error code for to the higher
311 * levels even if IO on some other mirrored buffer fails.
313 * The 'master' represents the composite IO operation to
314 * user-side. So if something waits for IO, then it will
315 * wait for the 'master' bio.
317 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
319 update_head_pos(slot
, r10_bio
);
323 * Let's see if all mirrored write operations have finished
326 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
327 /* clear the bitmap if all writes complete successfully */
328 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
330 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
332 md_write_end(r10_bio
->mddev
);
333 raid_end_bio_io(r10_bio
);
336 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
342 * RAID10 layout manager
343 * Aswell as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
350 * Chunks are layed out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on. If a block isn't on a device,
361 * that entry in the array is set to MaxSector.
363 * raid10_find_virt does the reverse mapping, from a device and a
364 * sector offset to a virtual address
367 static void raid10_find_phys(conf_t
*conf
, r10bio_t
*r10bio
)
377 /* now calculate first sector/dev */
378 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
379 sector
= r10bio
->sector
& conf
->chunk_mask
;
381 chunk
*= conf
->near_copies
;
383 dev
= sector_div(stripe
, conf
->raid_disks
);
385 sector
+= stripe
<< conf
->chunk_shift
;
387 /* and calculate all the others */
388 for (n
=0; n
< conf
->near_copies
; n
++) {
391 r10bio
->devs
[slot
].addr
= sector
;
392 r10bio
->devs
[slot
].devnum
= d
;
395 for (f
= 1; f
< conf
->far_copies
; f
++) {
396 d
+= conf
->near_copies
;
397 if (d
>= conf
->raid_disks
)
398 d
-= conf
->raid_disks
;
400 r10bio
->devs
[slot
].devnum
= d
;
401 r10bio
->devs
[slot
].addr
= s
;
405 if (dev
>= conf
->raid_disks
) {
407 sector
+= (conf
->chunk_mask
+ 1);
410 BUG_ON(slot
!= conf
->copies
);
413 static sector_t
raid10_find_virt(conf_t
*conf
, sector_t sector
, int dev
)
415 sector_t offset
, chunk
, vchunk
;
417 while (sector
> conf
->stride
) {
418 sector
-= conf
->stride
;
419 if (dev
< conf
->near_copies
)
420 dev
+= conf
->raid_disks
- conf
->near_copies
;
422 dev
-= conf
->near_copies
;
425 offset
= sector
& conf
->chunk_mask
;
426 chunk
= sector
>> conf
->chunk_shift
;
427 vchunk
= chunk
* conf
->raid_disks
+ dev
;
428 sector_div(vchunk
, conf
->near_copies
);
429 return (vchunk
<< conf
->chunk_shift
) + offset
;
433 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
435 * @bio: the buffer head that's been built up so far
436 * @biovec: the request that could be merged to it.
438 * Return amount of bytes we can accept at this offset
439 * If near_copies == raid_disk, there are no striping issues,
440 * but in that case, the function isn't called at all.
442 static int raid10_mergeable_bvec(request_queue_t
*q
, struct bio
*bio
,
443 struct bio_vec
*bio_vec
)
445 mddev_t
*mddev
= q
->queuedata
;
446 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
448 unsigned int chunk_sectors
= mddev
->chunk_size
>> 9;
449 unsigned int bio_sectors
= bio
->bi_size
>> 9;
451 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
452 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
453 if (max
<= bio_vec
->bv_len
&& bio_sectors
== 0)
454 return bio_vec
->bv_len
;
460 * This routine returns the disk from which the requested read should
461 * be done. There is a per-array 'next expected sequential IO' sector
462 * number - if this matches on the next IO then we use the last disk.
463 * There is also a per-disk 'last know head position' sector that is
464 * maintained from IRQ contexts, both the normal and the resync IO
465 * completion handlers update this position correctly. If there is no
466 * perfect sequential match then we pick the disk whose head is closest.
468 * If there are 2 mirrors in the same 2 devices, performance degrades
469 * because position is mirror, not device based.
471 * The rdev for the device selected will have nr_pending incremented.
475 * FIXME: possibly should rethink readbalancing and do it differently
476 * depending on near_copies / far_copies geometry.
478 static int read_balance(conf_t
*conf
, r10bio_t
*r10_bio
)
480 const unsigned long this_sector
= r10_bio
->sector
;
481 int disk
, slot
, nslot
;
482 const int sectors
= r10_bio
->sectors
;
483 sector_t new_distance
, current_distance
;
486 raid10_find_phys(conf
, r10_bio
);
489 * Check if we can balance. We can balance on the whole
490 * device if no resync is going on (recovery is ok), or below
491 * the resync window. We take the first readable disk when
492 * above the resync window.
494 if (conf
->mddev
->recovery_cp
< MaxSector
495 && (this_sector
+ sectors
>= conf
->next_resync
)) {
496 /* make sure that disk is operational */
498 disk
= r10_bio
->devs
[slot
].devnum
;
500 while ((rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
501 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
502 !test_bit(In_sync
, &rdev
->flags
)) {
504 if (slot
== conf
->copies
) {
509 disk
= r10_bio
->devs
[slot
].devnum
;
515 /* make sure the disk is operational */
517 disk
= r10_bio
->devs
[slot
].devnum
;
518 while ((rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
)) == NULL
||
519 r10_bio
->devs
[slot
].bio
== IO_BLOCKED
||
520 !test_bit(In_sync
, &rdev
->flags
)) {
522 if (slot
== conf
->copies
) {
526 disk
= r10_bio
->devs
[slot
].devnum
;
530 current_distance
= abs(r10_bio
->devs
[slot
].addr
-
531 conf
->mirrors
[disk
].head_position
);
533 /* Find the disk whose head is closest */
535 for (nslot
= slot
; nslot
< conf
->copies
; nslot
++) {
536 int ndisk
= r10_bio
->devs
[nslot
].devnum
;
539 if ((rdev
=rcu_dereference(conf
->mirrors
[ndisk
].rdev
)) == NULL
||
540 r10_bio
->devs
[nslot
].bio
== IO_BLOCKED
||
541 !test_bit(In_sync
, &rdev
->flags
))
544 /* This optimisation is debatable, and completely destroys
545 * sequential read speed for 'far copies' arrays. So only
546 * keep it for 'near' arrays, and review those later.
548 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
)) {
553 new_distance
= abs(r10_bio
->devs
[nslot
].addr
-
554 conf
->mirrors
[ndisk
].head_position
);
555 if (new_distance
< current_distance
) {
556 current_distance
= new_distance
;
563 r10_bio
->read_slot
= slot
;
564 /* conf->next_seq_sect = this_sector + sectors;*/
566 if (disk
>= 0 && (rdev
=rcu_dereference(conf
->mirrors
[disk
].rdev
))!= NULL
)
567 atomic_inc(&conf
->mirrors
[disk
].rdev
->nr_pending
);
575 static void unplug_slaves(mddev_t
*mddev
)
577 conf_t
*conf
= mddev_to_conf(mddev
);
581 for (i
=0; i
<mddev
->raid_disks
; i
++) {
582 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
583 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
584 request_queue_t
*r_queue
= bdev_get_queue(rdev
->bdev
);
586 atomic_inc(&rdev
->nr_pending
);
589 if (r_queue
->unplug_fn
)
590 r_queue
->unplug_fn(r_queue
);
592 rdev_dec_pending(rdev
, mddev
);
599 static void raid10_unplug(request_queue_t
*q
)
601 mddev_t
*mddev
= q
->queuedata
;
603 unplug_slaves(q
->queuedata
);
604 md_wakeup_thread(mddev
->thread
);
607 static int raid10_issue_flush(request_queue_t
*q
, struct gendisk
*disk
,
608 sector_t
*error_sector
)
610 mddev_t
*mddev
= q
->queuedata
;
611 conf_t
*conf
= mddev_to_conf(mddev
);
615 for (i
=0; i
<mddev
->raid_disks
&& ret
== 0; i
++) {
616 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
617 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
618 struct block_device
*bdev
= rdev
->bdev
;
619 request_queue_t
*r_queue
= bdev_get_queue(bdev
);
621 if (!r_queue
->issue_flush_fn
)
624 atomic_inc(&rdev
->nr_pending
);
626 ret
= r_queue
->issue_flush_fn(r_queue
, bdev
->bd_disk
,
628 rdev_dec_pending(rdev
, mddev
);
638 * Sometimes we need to suspend IO while we do something else,
639 * either some resync/recovery, or reconfigure the array.
640 * To do this we raise a 'barrier'.
641 * The 'barrier' is a counter that can be raised multiple times
642 * to count how many activities are happening which preclude
644 * We can only raise the barrier if there is no pending IO.
645 * i.e. if nr_pending == 0.
646 * We choose only to raise the barrier if no-one is waiting for the
647 * barrier to go down. This means that as soon as an IO request
648 * is ready, no other operations which require a barrier will start
649 * until the IO request has had a chance.
651 * So: regular IO calls 'wait_barrier'. When that returns there
652 * is no backgroup IO happening, It must arrange to call
653 * allow_barrier when it has finished its IO.
654 * backgroup IO calls must call raise_barrier. Once that returns
655 * there is no normal IO happeing. It must arrange to call
656 * lower_barrier when the particular background IO completes.
658 #define RESYNC_DEPTH 32
660 static void raise_barrier(conf_t
*conf
, int force
)
662 BUG_ON(force
&& !conf
->barrier
);
663 spin_lock_irq(&conf
->resync_lock
);
665 /* Wait until no block IO is waiting (unless 'force') */
666 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
668 raid10_unplug(conf
->mddev
->queue
));
670 /* block any new IO from starting */
673 /* No wait for all pending IO to complete */
674 wait_event_lock_irq(conf
->wait_barrier
,
675 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
677 raid10_unplug(conf
->mddev
->queue
));
679 spin_unlock_irq(&conf
->resync_lock
);
682 static void lower_barrier(conf_t
*conf
)
685 spin_lock_irqsave(&conf
->resync_lock
, flags
);
687 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
688 wake_up(&conf
->wait_barrier
);
691 static void wait_barrier(conf_t
*conf
)
693 spin_lock_irq(&conf
->resync_lock
);
696 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
698 raid10_unplug(conf
->mddev
->queue
));
702 spin_unlock_irq(&conf
->resync_lock
);
705 static void allow_barrier(conf_t
*conf
)
708 spin_lock_irqsave(&conf
->resync_lock
, flags
);
710 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
711 wake_up(&conf
->wait_barrier
);
714 static void freeze_array(conf_t
*conf
)
716 /* stop syncio and normal IO and wait for everything to
718 * We increment barrier and nr_waiting, and then
719 * wait until barrier+nr_pending match nr_queued+2
721 spin_lock_irq(&conf
->resync_lock
);
724 wait_event_lock_irq(conf
->wait_barrier
,
725 conf
->barrier
+conf
->nr_pending
== conf
->nr_queued
+2,
727 raid10_unplug(conf
->mddev
->queue
));
728 spin_unlock_irq(&conf
->resync_lock
);
731 static void unfreeze_array(conf_t
*conf
)
733 /* reverse the effect of the freeze */
734 spin_lock_irq(&conf
->resync_lock
);
737 wake_up(&conf
->wait_barrier
);
738 spin_unlock_irq(&conf
->resync_lock
);
741 static int make_request(request_queue_t
*q
, struct bio
* bio
)
743 mddev_t
*mddev
= q
->queuedata
;
744 conf_t
*conf
= mddev_to_conf(mddev
);
745 mirror_info_t
*mirror
;
747 struct bio
*read_bio
;
749 int chunk_sects
= conf
->chunk_mask
+ 1;
750 const int rw
= bio_data_dir(bio
);
754 if (unlikely(bio_barrier(bio
))) {
755 bio_endio(bio
, bio
->bi_size
, -EOPNOTSUPP
);
759 /* If this request crosses a chunk boundary, we need to
760 * split it. This will only happen for 1 PAGE (or less) requests.
762 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
764 conf
->near_copies
< conf
->raid_disks
)) {
766 /* Sanity check -- queue functions should prevent this happening */
767 if (bio
->bi_vcnt
!= 1 ||
770 /* This is a one page bio that upper layers
771 * refuse to split for us, so we need to split it.
773 bp
= bio_split(bio
, bio_split_pool
,
774 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
775 if (make_request(q
, &bp
->bio1
))
776 generic_make_request(&bp
->bio1
);
777 if (make_request(q
, &bp
->bio2
))
778 generic_make_request(&bp
->bio2
);
780 bio_pair_release(bp
);
783 printk("raid10_make_request bug: can't convert block across chunks"
784 " or bigger than %dk %llu %d\n", chunk_sects
/2,
785 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
787 bio_io_error(bio
, bio
->bi_size
);
791 md_write_start(mddev
, bio
);
794 * Register the new request and wait if the reconstruction
795 * thread has put up a bar for new requests.
796 * Continue immediately if no resync is active currently.
800 disk_stat_inc(mddev
->gendisk
, ios
[rw
]);
801 disk_stat_add(mddev
->gendisk
, sectors
[rw
], bio_sectors(bio
));
803 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
805 r10_bio
->master_bio
= bio
;
806 r10_bio
->sectors
= bio
->bi_size
>> 9;
808 r10_bio
->mddev
= mddev
;
809 r10_bio
->sector
= bio
->bi_sector
;
814 * read balancing logic:
816 int disk
= read_balance(conf
, r10_bio
);
817 int slot
= r10_bio
->read_slot
;
819 raid_end_bio_io(r10_bio
);
822 mirror
= conf
->mirrors
+ disk
;
824 read_bio
= bio_clone(bio
, GFP_NOIO
);
826 r10_bio
->devs
[slot
].bio
= read_bio
;
828 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
829 mirror
->rdev
->data_offset
;
830 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
831 read_bio
->bi_end_io
= raid10_end_read_request
;
832 read_bio
->bi_rw
= READ
;
833 read_bio
->bi_private
= r10_bio
;
835 generic_make_request(read_bio
);
842 /* first select target devices under spinlock and
843 * inc refcount on their rdev. Record them by setting
846 raid10_find_phys(conf
, r10_bio
);
848 for (i
= 0; i
< conf
->copies
; i
++) {
849 int d
= r10_bio
->devs
[i
].devnum
;
850 mdk_rdev_t
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
852 !test_bit(Faulty
, &rdev
->flags
)) {
853 atomic_inc(&rdev
->nr_pending
);
854 r10_bio
->devs
[i
].bio
= bio
;
856 r10_bio
->devs
[i
].bio
= NULL
;
857 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
862 atomic_set(&r10_bio
->remaining
, 0);
865 for (i
= 0; i
< conf
->copies
; i
++) {
867 int d
= r10_bio
->devs
[i
].devnum
;
868 if (!r10_bio
->devs
[i
].bio
)
871 mbio
= bio_clone(bio
, GFP_NOIO
);
872 r10_bio
->devs
[i
].bio
= mbio
;
874 mbio
->bi_sector
= r10_bio
->devs
[i
].addr
+
875 conf
->mirrors
[d
].rdev
->data_offset
;
876 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
877 mbio
->bi_end_io
= raid10_end_write_request
;
879 mbio
->bi_private
= r10_bio
;
881 atomic_inc(&r10_bio
->remaining
);
882 bio_list_add(&bl
, mbio
);
885 bitmap_startwrite(mddev
->bitmap
, bio
->bi_sector
, r10_bio
->sectors
, 0);
886 spin_lock_irqsave(&conf
->device_lock
, flags
);
887 bio_list_merge(&conf
->pending_bio_list
, &bl
);
888 blk_plug_device(mddev
->queue
);
889 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
894 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
896 conf_t
*conf
= mddev_to_conf(mddev
);
899 if (conf
->near_copies
< conf
->raid_disks
)
900 seq_printf(seq
, " %dK chunks", mddev
->chunk_size
/1024);
901 if (conf
->near_copies
> 1)
902 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
903 if (conf
->far_copies
> 1)
904 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
906 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
907 conf
->working_disks
);
908 for (i
= 0; i
< conf
->raid_disks
; i
++)
909 seq_printf(seq
, "%s",
910 conf
->mirrors
[i
].rdev
&&
911 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
912 seq_printf(seq
, "]");
915 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
917 char b
[BDEVNAME_SIZE
];
918 conf_t
*conf
= mddev_to_conf(mddev
);
921 * If it is not operational, then we have already marked it as dead
922 * else if it is the last working disks, ignore the error, let the
923 * next level up know.
924 * else mark the drive as failed
926 if (test_bit(In_sync
, &rdev
->flags
)
927 && conf
->working_disks
== 1)
929 * Don't fail the drive, just return an IO error.
930 * The test should really be more sophisticated than
931 * "working_disks == 1", but it isn't critical, and
932 * can wait until we do more sophisticated "is the drive
933 * really dead" tests...
936 if (test_bit(In_sync
, &rdev
->flags
)) {
938 conf
->working_disks
--;
940 * if recovery is running, make sure it aborts.
942 set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
);
944 clear_bit(In_sync
, &rdev
->flags
);
945 set_bit(Faulty
, &rdev
->flags
);
947 printk(KERN_ALERT
"raid10: Disk failure on %s, disabling device. \n"
948 " Operation continuing on %d devices\n",
949 bdevname(rdev
->bdev
,b
), conf
->working_disks
);
952 static void print_conf(conf_t
*conf
)
957 printk("RAID10 conf printout:\n");
962 printk(" --- wd:%d rd:%d\n", conf
->working_disks
,
965 for (i
= 0; i
< conf
->raid_disks
; i
++) {
966 char b
[BDEVNAME_SIZE
];
967 tmp
= conf
->mirrors
+ i
;
969 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
970 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
971 !test_bit(Faulty
, &tmp
->rdev
->flags
),
972 bdevname(tmp
->rdev
->bdev
,b
));
976 static void close_sync(conf_t
*conf
)
981 mempool_destroy(conf
->r10buf_pool
);
982 conf
->r10buf_pool
= NULL
;
985 /* check if there are enough drives for
986 * every block to appear on atleast one
988 static int enough(conf_t
*conf
)
993 int n
= conf
->copies
;
996 if (conf
->mirrors
[first
].rdev
)
998 first
= (first
+1) % conf
->raid_disks
;
1002 } while (first
!= 0);
1006 static int raid10_spare_active(mddev_t
*mddev
)
1009 conf_t
*conf
= mddev
->private;
1013 * Find all non-in_sync disks within the RAID10 configuration
1014 * and mark them in_sync
1016 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1017 tmp
= conf
->mirrors
+ i
;
1019 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1020 && !test_bit(In_sync
, &tmp
->rdev
->flags
)) {
1021 conf
->working_disks
++;
1023 set_bit(In_sync
, &tmp
->rdev
->flags
);
1032 static int raid10_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1034 conf_t
*conf
= mddev
->private;
1039 if (mddev
->recovery_cp
< MaxSector
)
1040 /* only hot-add to in-sync arrays, as recovery is
1041 * very different from resync
1047 if (rdev
->saved_raid_disk
>= 0 &&
1048 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1049 mirror
= rdev
->saved_raid_disk
;
1052 for ( ; mirror
< mddev
->raid_disks
; mirror
++)
1053 if ( !(p
=conf
->mirrors
+mirror
)->rdev
) {
1055 blk_queue_stack_limits(mddev
->queue
,
1056 rdev
->bdev
->bd_disk
->queue
);
1057 /* as we don't honour merge_bvec_fn, we must never risk
1058 * violating it, so limit ->max_sector to one PAGE, as
1059 * a one page request is never in violation.
1061 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1062 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1063 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1065 p
->head_position
= 0;
1066 rdev
->raid_disk
= mirror
;
1068 if (rdev
->saved_raid_disk
!= mirror
)
1070 rcu_assign_pointer(p
->rdev
, rdev
);
1078 static int raid10_remove_disk(mddev_t
*mddev
, int number
)
1080 conf_t
*conf
= mddev
->private;
1083 mirror_info_t
*p
= conf
->mirrors
+ number
;
1088 if (test_bit(In_sync
, &rdev
->flags
) ||
1089 atomic_read(&rdev
->nr_pending
)) {
1095 if (atomic_read(&rdev
->nr_pending
)) {
1096 /* lost the race, try later */
1108 static int end_sync_read(struct bio
*bio
, unsigned int bytes_done
, int error
)
1110 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1111 conf_t
*conf
= mddev_to_conf(r10_bio
->mddev
);
1117 for (i
=0; i
<conf
->copies
; i
++)
1118 if (r10_bio
->devs
[i
].bio
== bio
)
1120 BUG_ON(i
== conf
->copies
);
1121 update_head_pos(i
, r10_bio
);
1122 d
= r10_bio
->devs
[i
].devnum
;
1124 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1125 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1127 atomic_add(r10_bio
->sectors
,
1128 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1129 if (!test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
1130 md_error(r10_bio
->mddev
,
1131 conf
->mirrors
[d
].rdev
);
1134 /* for reconstruct, we always reschedule after a read.
1135 * for resync, only after all reads
1137 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1138 atomic_dec_and_test(&r10_bio
->remaining
)) {
1139 /* we have read all the blocks,
1140 * do the comparison in process context in raid10d
1142 reschedule_retry(r10_bio
);
1144 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1148 static int end_sync_write(struct bio
*bio
, unsigned int bytes_done
, int error
)
1150 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1151 r10bio_t
* r10_bio
= (r10bio_t
*)(bio
->bi_private
);
1152 mddev_t
*mddev
= r10_bio
->mddev
;
1153 conf_t
*conf
= mddev_to_conf(mddev
);
1159 for (i
= 0; i
< conf
->copies
; i
++)
1160 if (r10_bio
->devs
[i
].bio
== bio
)
1162 d
= r10_bio
->devs
[i
].devnum
;
1165 md_error(mddev
, conf
->mirrors
[d
].rdev
);
1166 update_head_pos(i
, r10_bio
);
1168 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1169 if (r10_bio
->master_bio
== NULL
) {
1170 /* the primary of several recovery bios */
1171 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1175 r10bio_t
*r10_bio2
= (r10bio_t
*)r10_bio
->master_bio
;
1180 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1185 * Note: sync and recover and handled very differently for raid10
1186 * This code is for resync.
1187 * For resync, we read through virtual addresses and read all blocks.
1188 * If there is any error, we schedule a write. The lowest numbered
1189 * drive is authoritative.
1190 * However requests come for physical address, so we need to map.
1191 * For every physical address there are raid_disks/copies virtual addresses,
1192 * which is always are least one, but is not necessarly an integer.
1193 * This means that a physical address can span multiple chunks, so we may
1194 * have to submit multiple io requests for a single sync request.
1197 * We check if all blocks are in-sync and only write to blocks that
1200 static void sync_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1202 conf_t
*conf
= mddev_to_conf(mddev
);
1204 struct bio
*tbio
, *fbio
;
1206 atomic_set(&r10_bio
->remaining
, 1);
1208 /* find the first device with a block */
1209 for (i
=0; i
<conf
->copies
; i
++)
1210 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1213 if (i
== conf
->copies
)
1217 fbio
= r10_bio
->devs
[i
].bio
;
1219 /* now find blocks with errors */
1220 for (i
=0 ; i
< conf
->copies
; i
++) {
1222 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1224 tbio
= r10_bio
->devs
[i
].bio
;
1226 if (tbio
->bi_end_io
!= end_sync_read
)
1230 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1231 /* We know that the bi_io_vec layout is the same for
1232 * both 'first' and 'i', so we just compare them.
1233 * All vec entries are PAGE_SIZE;
1235 for (j
= 0; j
< vcnt
; j
++)
1236 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1237 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1242 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1244 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1245 /* Don't fix anything. */
1247 /* Ok, we need to write this bio
1248 * First we need to fixup bv_offset, bv_len and
1249 * bi_vecs, as the read request might have corrupted these
1251 tbio
->bi_vcnt
= vcnt
;
1252 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1254 tbio
->bi_phys_segments
= 0;
1255 tbio
->bi_hw_segments
= 0;
1256 tbio
->bi_hw_front_size
= 0;
1257 tbio
->bi_hw_back_size
= 0;
1258 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1259 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1260 tbio
->bi_next
= NULL
;
1261 tbio
->bi_rw
= WRITE
;
1262 tbio
->bi_private
= r10_bio
;
1263 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1265 for (j
=0; j
< vcnt
; j
++) {
1266 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1267 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1269 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1270 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1273 tbio
->bi_end_io
= end_sync_write
;
1275 d
= r10_bio
->devs
[i
].devnum
;
1276 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1277 atomic_inc(&r10_bio
->remaining
);
1278 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1280 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1281 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1282 generic_make_request(tbio
);
1286 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1287 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1293 * Now for the recovery code.
1294 * Recovery happens across physical sectors.
1295 * We recover all non-is_sync drives by finding the virtual address of
1296 * each, and then choose a working drive that also has that virt address.
1297 * There is a separate r10_bio for each non-in_sync drive.
1298 * Only the first two slots are in use. The first for reading,
1299 * The second for writing.
1303 static void recovery_request_write(mddev_t
*mddev
, r10bio_t
*r10_bio
)
1305 conf_t
*conf
= mddev_to_conf(mddev
);
1307 struct bio
*bio
, *wbio
;
1310 /* move the pages across to the second bio
1311 * and submit the write request
1313 bio
= r10_bio
->devs
[0].bio
;
1314 wbio
= r10_bio
->devs
[1].bio
;
1315 for (i
=0; i
< wbio
->bi_vcnt
; i
++) {
1316 struct page
*p
= bio
->bi_io_vec
[i
].bv_page
;
1317 bio
->bi_io_vec
[i
].bv_page
= wbio
->bi_io_vec
[i
].bv_page
;
1318 wbio
->bi_io_vec
[i
].bv_page
= p
;
1320 d
= r10_bio
->devs
[1].devnum
;
1322 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1323 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1324 if (test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
1325 generic_make_request(wbio
);
1327 bio_endio(wbio
, wbio
->bi_size
, -EIO
);
1332 * This is a kernel thread which:
1334 * 1. Retries failed read operations on working mirrors.
1335 * 2. Updates the raid superblock when problems encounter.
1336 * 3. Performs writes following reads for array syncronising.
1339 static void raid10d(mddev_t
*mddev
)
1343 unsigned long flags
;
1344 conf_t
*conf
= mddev_to_conf(mddev
);
1345 struct list_head
*head
= &conf
->retry_list
;
1349 md_check_recovery(mddev
);
1352 char b
[BDEVNAME_SIZE
];
1353 spin_lock_irqsave(&conf
->device_lock
, flags
);
1355 if (conf
->pending_bio_list
.head
) {
1356 bio
= bio_list_get(&conf
->pending_bio_list
);
1357 blk_remove_plug(mddev
->queue
);
1358 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1359 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1360 if (bitmap_unplug(mddev
->bitmap
) != 0)
1361 printk("%s: bitmap file write failed!\n", mdname(mddev
));
1363 while (bio
) { /* submit pending writes */
1364 struct bio
*next
= bio
->bi_next
;
1365 bio
->bi_next
= NULL
;
1366 generic_make_request(bio
);
1374 if (list_empty(head
))
1376 r10_bio
= list_entry(head
->prev
, r10bio_t
, retry_list
);
1377 list_del(head
->prev
);
1379 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1381 mddev
= r10_bio
->mddev
;
1382 conf
= mddev_to_conf(mddev
);
1383 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
)) {
1384 sync_request_write(mddev
, r10_bio
);
1386 } else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
1387 recovery_request_write(mddev
, r10_bio
);
1391 /* we got a read error. Maybe the drive is bad. Maybe just
1392 * the block and we can fix it.
1393 * We freeze all other IO, and try reading the block from
1394 * other devices. When we find one, we re-write
1395 * and check it that fixes the read error.
1396 * This is all done synchronously while the array is
1399 int sect
= 0; /* Offset from r10_bio->sector */
1400 int sectors
= r10_bio
->sectors
;
1402 if (mddev
->ro
== 0) while(sectors
) {
1404 int sl
= r10_bio
->read_slot
;
1407 if (s
> (PAGE_SIZE
>>9))
1412 int d
= r10_bio
->devs
[sl
].devnum
;
1413 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1415 test_bit(In_sync
, &rdev
->flags
)) {
1416 atomic_inc(&rdev
->nr_pending
);
1418 success
= sync_page_io(rdev
->bdev
,
1419 r10_bio
->devs
[sl
].addr
+
1420 sect
+ rdev
->data_offset
,
1422 conf
->tmppage
, READ
);
1423 rdev_dec_pending(rdev
, mddev
);
1429 if (sl
== conf
->copies
)
1431 } while (!success
&& sl
!= r10_bio
->read_slot
);
1436 /* write it back and re-read */
1438 while (sl
!= r10_bio
->read_slot
) {
1443 d
= r10_bio
->devs
[sl
].devnum
;
1444 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1446 test_bit(In_sync
, &rdev
->flags
)) {
1447 atomic_inc(&rdev
->nr_pending
);
1449 atomic_add(s
, &rdev
->corrected_errors
);
1450 if (sync_page_io(rdev
->bdev
,
1451 r10_bio
->devs
[sl
].addr
+
1452 sect
+ rdev
->data_offset
,
1453 s
<<9, conf
->tmppage
, WRITE
) == 0)
1454 /* Well, this device is dead */
1455 md_error(mddev
, rdev
);
1456 rdev_dec_pending(rdev
, mddev
);
1461 while (sl
!= r10_bio
->read_slot
) {
1466 d
= r10_bio
->devs
[sl
].devnum
;
1467 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1469 test_bit(In_sync
, &rdev
->flags
)) {
1470 atomic_inc(&rdev
->nr_pending
);
1472 if (sync_page_io(rdev
->bdev
,
1473 r10_bio
->devs
[sl
].addr
+
1474 sect
+ rdev
->data_offset
,
1475 s
<<9, conf
->tmppage
, READ
) == 0)
1476 /* Well, this device is dead */
1477 md_error(mddev
, rdev
);
1478 rdev_dec_pending(rdev
, mddev
);
1484 /* Cannot read from anywhere -- bye bye array */
1485 md_error(mddev
, conf
->mirrors
[r10_bio
->devs
[r10_bio
->read_slot
].devnum
].rdev
);
1492 unfreeze_array(conf
);
1494 bio
= r10_bio
->devs
[r10_bio
->read_slot
].bio
;
1495 r10_bio
->devs
[r10_bio
->read_slot
].bio
=
1496 mddev
->ro
? IO_BLOCKED
: NULL
;
1498 mirror
= read_balance(conf
, r10_bio
);
1500 printk(KERN_ALERT
"raid10: %s: unrecoverable I/O"
1501 " read error for block %llu\n",
1502 bdevname(bio
->bi_bdev
,b
),
1503 (unsigned long long)r10_bio
->sector
);
1504 raid_end_bio_io(r10_bio
);
1506 rdev
= conf
->mirrors
[mirror
].rdev
;
1507 if (printk_ratelimit())
1508 printk(KERN_ERR
"raid10: %s: redirecting sector %llu to"
1509 " another mirror\n",
1510 bdevname(rdev
->bdev
,b
),
1511 (unsigned long long)r10_bio
->sector
);
1512 bio
= bio_clone(r10_bio
->master_bio
, GFP_NOIO
);
1513 r10_bio
->devs
[r10_bio
->read_slot
].bio
= bio
;
1514 bio
->bi_sector
= r10_bio
->devs
[r10_bio
->read_slot
].addr
1515 + rdev
->data_offset
;
1516 bio
->bi_bdev
= rdev
->bdev
;
1518 bio
->bi_private
= r10_bio
;
1519 bio
->bi_end_io
= raid10_end_read_request
;
1521 generic_make_request(bio
);
1525 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1527 unplug_slaves(mddev
);
1531 static int init_resync(conf_t
*conf
)
1535 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
1536 BUG_ON(conf
->r10buf_pool
);
1537 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
1538 if (!conf
->r10buf_pool
)
1540 conf
->next_resync
= 0;
1545 * perform a "sync" on one "block"
1547 * We need to make sure that no normal I/O request - particularly write
1548 * requests - conflict with active sync requests.
1550 * This is achieved by tracking pending requests and a 'barrier' concept
1551 * that can be installed to exclude normal IO requests.
1553 * Resync and recovery are handled very differently.
1554 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1556 * For resync, we iterate over virtual addresses, read all copies,
1557 * and update if there are differences. If only one copy is live,
1559 * For recovery, we iterate over physical addresses, read a good
1560 * value for each non-in_sync drive, and over-write.
1562 * So, for recovery we may have several outstanding complex requests for a
1563 * given address, one for each out-of-sync device. We model this by allocating
1564 * a number of r10_bio structures, one for each out-of-sync device.
1565 * As we setup these structures, we collect all bio's together into a list
1566 * which we then process collectively to add pages, and then process again
1567 * to pass to generic_make_request.
1569 * The r10_bio structures are linked using a borrowed master_bio pointer.
1570 * This link is counted in ->remaining. When the r10_bio that points to NULL
1571 * has its remaining count decremented to 0, the whole complex operation
1576 static sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
1578 conf_t
*conf
= mddev_to_conf(mddev
);
1580 struct bio
*biolist
= NULL
, *bio
;
1581 sector_t max_sector
, nr_sectors
;
1587 sector_t sectors_skipped
= 0;
1588 int chunks_skipped
= 0;
1590 if (!conf
->r10buf_pool
)
1591 if (init_resync(conf
))
1595 max_sector
= mddev
->size
<< 1;
1596 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1597 max_sector
= mddev
->resync_max_sectors
;
1598 if (sector_nr
>= max_sector
) {
1599 /* If we aborted, we need to abort the
1600 * sync on the 'current' bitmap chucks (there can
1601 * be several when recovering multiple devices).
1602 * as we may have started syncing it but not finished.
1603 * We can find the current address in
1604 * mddev->curr_resync, but for recovery,
1605 * we need to convert that to several
1606 * virtual addresses.
1608 if (mddev
->curr_resync
< max_sector
) { /* aborted */
1609 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
1610 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
1612 else for (i
=0; i
<conf
->raid_disks
; i
++) {
1614 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
1615 bitmap_end_sync(mddev
->bitmap
, sect
,
1618 } else /* completed sync */
1621 bitmap_close_sync(mddev
->bitmap
);
1624 return sectors_skipped
;
1626 if (chunks_skipped
>= conf
->raid_disks
) {
1627 /* if there has been nothing to do on any drive,
1628 * then there is nothing to do at all..
1631 return (max_sector
- sector_nr
) + sectors_skipped
;
1634 /* make sure whole request will fit in a chunk - if chunks
1637 if (conf
->near_copies
< conf
->raid_disks
&&
1638 max_sector
> (sector_nr
| conf
->chunk_mask
))
1639 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
1641 * If there is non-resync activity waiting for us then
1642 * put in a delay to throttle resync.
1644 if (!go_faster
&& conf
->nr_waiting
)
1645 msleep_interruptible(1000);
1647 /* Again, very different code for resync and recovery.
1648 * Both must result in an r10bio with a list of bios that
1649 * have bi_end_io, bi_sector, bi_bdev set,
1650 * and bi_private set to the r10bio.
1651 * For recovery, we may actually create several r10bios
1652 * with 2 bios in each, that correspond to the bios in the main one.
1653 * In this case, the subordinate r10bios link back through a
1654 * borrowed master_bio pointer, and the counter in the master
1655 * includes a ref from each subordinate.
1657 /* First, we decide what to do and set ->bi_end_io
1658 * To end_sync_read if we want to read, and
1659 * end_sync_write if we will want to write.
1662 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
1663 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
1664 /* recovery... the complicated one */
1668 for (i
=0 ; i
<conf
->raid_disks
; i
++)
1669 if (conf
->mirrors
[i
].rdev
&&
1670 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
)) {
1671 int still_degraded
= 0;
1672 /* want to reconstruct this device */
1673 r10bio_t
*rb2
= r10_bio
;
1674 sector_t sect
= raid10_find_virt(conf
, sector_nr
, i
);
1676 /* Unless we are doing a full sync, we only need
1677 * to recover the block if it is set in the bitmap
1679 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1681 if (sync_blocks
< max_sync
)
1682 max_sync
= sync_blocks
;
1685 /* yep, skip the sync_blocks here, but don't assume
1686 * that there will never be anything to do here
1688 chunks_skipped
= -1;
1692 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1693 raise_barrier(conf
, rb2
!= NULL
);
1694 atomic_set(&r10_bio
->remaining
, 0);
1696 r10_bio
->master_bio
= (struct bio
*)rb2
;
1698 atomic_inc(&rb2
->remaining
);
1699 r10_bio
->mddev
= mddev
;
1700 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
1701 r10_bio
->sector
= sect
;
1703 raid10_find_phys(conf
, r10_bio
);
1704 /* Need to check if this section will still be
1707 for (j
=0; j
<conf
->copies
;j
++) {
1708 int d
= r10_bio
->devs
[j
].devnum
;
1709 if (conf
->mirrors
[d
].rdev
== NULL
||
1710 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
)) {
1715 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
1716 &sync_blocks
, still_degraded
);
1718 for (j
=0; j
<conf
->copies
;j
++) {
1719 int d
= r10_bio
->devs
[j
].devnum
;
1720 if (conf
->mirrors
[d
].rdev
&&
1721 test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
)) {
1722 /* This is where we read from */
1723 bio
= r10_bio
->devs
[0].bio
;
1724 bio
->bi_next
= biolist
;
1726 bio
->bi_private
= r10_bio
;
1727 bio
->bi_end_io
= end_sync_read
;
1729 bio
->bi_sector
= r10_bio
->devs
[j
].addr
+
1730 conf
->mirrors
[d
].rdev
->data_offset
;
1731 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1732 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1733 atomic_inc(&r10_bio
->remaining
);
1734 /* and we write to 'i' */
1736 for (k
=0; k
<conf
->copies
; k
++)
1737 if (r10_bio
->devs
[k
].devnum
== i
)
1739 bio
= r10_bio
->devs
[1].bio
;
1740 bio
->bi_next
= biolist
;
1742 bio
->bi_private
= r10_bio
;
1743 bio
->bi_end_io
= end_sync_write
;
1745 bio
->bi_sector
= r10_bio
->devs
[k
].addr
+
1746 conf
->mirrors
[i
].rdev
->data_offset
;
1747 bio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1749 r10_bio
->devs
[0].devnum
= d
;
1750 r10_bio
->devs
[1].devnum
= i
;
1755 if (j
== conf
->copies
) {
1756 /* Cannot recover, so abort the recovery */
1759 if (!test_and_set_bit(MD_RECOVERY_ERR
, &mddev
->recovery
))
1760 printk(KERN_INFO
"raid10: %s: insufficient working devices for recovery.\n",
1765 if (biolist
== NULL
) {
1767 r10bio_t
*rb2
= r10_bio
;
1768 r10_bio
= (r10bio_t
*) rb2
->master_bio
;
1769 rb2
->master_bio
= NULL
;
1775 /* resync. Schedule a read for every block at this virt offset */
1778 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
1779 &sync_blocks
, mddev
->degraded
) &&
1780 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
1781 /* We can skip this block */
1783 return sync_blocks
+ sectors_skipped
;
1785 if (sync_blocks
< max_sync
)
1786 max_sync
= sync_blocks
;
1787 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
1789 r10_bio
->mddev
= mddev
;
1790 atomic_set(&r10_bio
->remaining
, 0);
1791 raise_barrier(conf
, 0);
1792 conf
->next_resync
= sector_nr
;
1794 r10_bio
->master_bio
= NULL
;
1795 r10_bio
->sector
= sector_nr
;
1796 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
1797 raid10_find_phys(conf
, r10_bio
);
1798 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
1800 for (i
=0; i
<conf
->copies
; i
++) {
1801 int d
= r10_bio
->devs
[i
].devnum
;
1802 bio
= r10_bio
->devs
[i
].bio
;
1803 bio
->bi_end_io
= NULL
;
1804 if (conf
->mirrors
[d
].rdev
== NULL
||
1805 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
1807 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1808 atomic_inc(&r10_bio
->remaining
);
1809 bio
->bi_next
= biolist
;
1811 bio
->bi_private
= r10_bio
;
1812 bio
->bi_end_io
= end_sync_read
;
1814 bio
->bi_sector
= r10_bio
->devs
[i
].addr
+
1815 conf
->mirrors
[d
].rdev
->data_offset
;
1816 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1821 for (i
=0; i
<conf
->copies
; i
++) {
1822 int d
= r10_bio
->devs
[i
].devnum
;
1823 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
1824 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1832 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1834 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1836 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1839 bio
->bi_phys_segments
= 0;
1840 bio
->bi_hw_segments
= 0;
1845 if (sector_nr
+ max_sync
< max_sector
)
1846 max_sector
= sector_nr
+ max_sync
;
1849 int len
= PAGE_SIZE
;
1851 if (sector_nr
+ (len
>>9) > max_sector
)
1852 len
= (max_sector
- sector_nr
) << 9;
1855 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
1856 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
1857 if (bio_add_page(bio
, page
, len
, 0) == 0) {
1860 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
1861 for (bio2
= biolist
; bio2
&& bio2
!= bio
; bio2
= bio2
->bi_next
) {
1862 /* remove last page from this bio */
1864 bio2
->bi_size
-= len
;
1865 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
1871 nr_sectors
+= len
>>9;
1872 sector_nr
+= len
>>9;
1873 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
1875 r10_bio
->sectors
= nr_sectors
;
1879 biolist
= biolist
->bi_next
;
1881 bio
->bi_next
= NULL
;
1882 r10_bio
= bio
->bi_private
;
1883 r10_bio
->sectors
= nr_sectors
;
1885 if (bio
->bi_end_io
== end_sync_read
) {
1886 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
1887 generic_make_request(bio
);
1891 if (sectors_skipped
)
1892 /* pretend they weren't skipped, it makes
1893 * no important difference in this case
1895 md_done_sync(mddev
, sectors_skipped
, 1);
1897 return sectors_skipped
+ nr_sectors
;
1899 /* There is nowhere to write, so all non-sync
1900 * drives must be failed, so try the next chunk...
1903 sector_t sec
= max_sector
- sector_nr
;
1904 sectors_skipped
+= sec
;
1906 sector_nr
= max_sector
;
1911 static int run(mddev_t
*mddev
)
1915 mirror_info_t
*disk
;
1917 struct list_head
*tmp
;
1919 sector_t stride
, size
;
1921 if (mddev
->chunk_size
== 0) {
1922 printk(KERN_ERR
"md/raid10: non-zero chunk size required.\n");
1926 nc
= mddev
->layout
& 255;
1927 fc
= (mddev
->layout
>> 8) & 255;
1928 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
1929 (mddev
->layout
>> 16)) {
1930 printk(KERN_ERR
"raid10: %s: unsupported raid10 layout: 0x%8x\n",
1931 mdname(mddev
), mddev
->layout
);
1935 * copy the already verified devices into our private RAID10
1936 * bookkeeping area. [whatever we allocate in run(),
1937 * should be freed in stop()]
1939 conf
= kzalloc(sizeof(conf_t
), GFP_KERNEL
);
1940 mddev
->private = conf
;
1942 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1946 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
1948 if (!conf
->mirrors
) {
1949 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1954 conf
->tmppage
= alloc_page(GFP_KERNEL
);
1958 conf
->near_copies
= nc
;
1959 conf
->far_copies
= fc
;
1960 conf
->copies
= nc
*fc
;
1961 conf
->chunk_mask
= (sector_t
)(mddev
->chunk_size
>>9)-1;
1962 conf
->chunk_shift
= ffz(~mddev
->chunk_size
) - 9;
1963 stride
= mddev
->size
>> (conf
->chunk_shift
-1);
1964 sector_div(stride
, fc
);
1965 conf
->stride
= stride
<< conf
->chunk_shift
;
1967 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
1968 r10bio_pool_free
, conf
);
1969 if (!conf
->r10bio_pool
) {
1970 printk(KERN_ERR
"raid10: couldn't allocate memory for %s\n",
1975 ITERATE_RDEV(mddev
, rdev
, tmp
) {
1976 disk_idx
= rdev
->raid_disk
;
1977 if (disk_idx
>= mddev
->raid_disks
1980 disk
= conf
->mirrors
+ disk_idx
;
1984 blk_queue_stack_limits(mddev
->queue
,
1985 rdev
->bdev
->bd_disk
->queue
);
1986 /* as we don't honour merge_bvec_fn, we must never risk
1987 * violating it, so limit ->max_sector to one PAGE, as
1988 * a one page request is never in violation.
1990 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
&&
1991 mddev
->queue
->max_sectors
> (PAGE_SIZE
>>9))
1992 mddev
->queue
->max_sectors
= (PAGE_SIZE
>>9);
1994 disk
->head_position
= 0;
1995 if (!test_bit(Faulty
, &rdev
->flags
) && test_bit(In_sync
, &rdev
->flags
))
1996 conf
->working_disks
++;
1998 conf
->raid_disks
= mddev
->raid_disks
;
1999 conf
->mddev
= mddev
;
2000 spin_lock_init(&conf
->device_lock
);
2001 INIT_LIST_HEAD(&conf
->retry_list
);
2003 spin_lock_init(&conf
->resync_lock
);
2004 init_waitqueue_head(&conf
->wait_barrier
);
2006 /* need to check that every block has at least one working mirror */
2007 if (!enough(conf
)) {
2008 printk(KERN_ERR
"raid10: not enough operational mirrors for %s\n",
2013 mddev
->degraded
= 0;
2014 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2016 disk
= conf
->mirrors
+ i
;
2019 disk
->head_position
= 0;
2025 mddev
->thread
= md_register_thread(raid10d
, mddev
, "%s_raid10");
2026 if (!mddev
->thread
) {
2028 "raid10: couldn't allocate thread for %s\n",
2034 "raid10: raid set %s active with %d out of %d devices\n",
2035 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2038 * Ok, everything is just fine now
2040 size
= conf
->stride
* conf
->raid_disks
;
2041 sector_div(size
, conf
->near_copies
);
2042 mddev
->array_size
= size
/2;
2043 mddev
->resync_max_sectors
= size
;
2045 mddev
->queue
->unplug_fn
= raid10_unplug
;
2046 mddev
->queue
->issue_flush_fn
= raid10_issue_flush
;
2048 /* Calculate max read-ahead size.
2049 * We need to readahead at least twice a whole stripe....
2053 int stripe
= conf
->raid_disks
* mddev
->chunk_size
/ PAGE_SIZE
;
2054 stripe
/= conf
->near_copies
;
2055 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
2056 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
2059 if (conf
->near_copies
< mddev
->raid_disks
)
2060 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
2064 if (conf
->r10bio_pool
)
2065 mempool_destroy(conf
->r10bio_pool
);
2066 safe_put_page(conf
->tmppage
);
2067 kfree(conf
->mirrors
);
2069 mddev
->private = NULL
;
2074 static int stop(mddev_t
*mddev
)
2076 conf_t
*conf
= mddev_to_conf(mddev
);
2078 md_unregister_thread(mddev
->thread
);
2079 mddev
->thread
= NULL
;
2080 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
2081 if (conf
->r10bio_pool
)
2082 mempool_destroy(conf
->r10bio_pool
);
2083 kfree(conf
->mirrors
);
2085 mddev
->private = NULL
;
2089 static void raid10_quiesce(mddev_t
*mddev
, int state
)
2091 conf_t
*conf
= mddev_to_conf(mddev
);
2095 raise_barrier(conf
, 0);
2098 lower_barrier(conf
);
2101 if (mddev
->thread
) {
2103 mddev
->thread
->timeout
= mddev
->bitmap
->daemon_sleep
* HZ
;
2105 mddev
->thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
2106 md_wakeup_thread(mddev
->thread
);
2110 static struct mdk_personality raid10_personality
=
2114 .owner
= THIS_MODULE
,
2115 .make_request
= make_request
,
2119 .error_handler
= error
,
2120 .hot_add_disk
= raid10_add_disk
,
2121 .hot_remove_disk
= raid10_remove_disk
,
2122 .spare_active
= raid10_spare_active
,
2123 .sync_request
= sync_request
,
2124 .quiesce
= raid10_quiesce
,
2127 static int __init
raid_init(void)
2129 return register_md_personality(&raid10_personality
);
2132 static void raid_exit(void)
2134 unregister_md_personality(&raid10_personality
);
2137 module_init(raid_init
);
2138 module_exit(raid_exit
);
2139 MODULE_LICENSE("GPL");
2140 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2141 MODULE_ALIAS("md-raid10");
2142 MODULE_ALIAS("md-level-10");