[PATCH] dm: fix mapped device ref counting
[linux-2.6/verdex.git] / drivers / md / raid10.c
blob1440935414e63825adfb5278d2aad8d0be6e1822
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
33 * The data to be stored is divided into chunks using chunksize.
34 * Each device is divided into far_copies sections.
35 * In each section, chunks are laid out in a style similar to raid0, but
36 * near_copies copies of each chunk is stored (each on a different drive).
37 * The starting device for each section is offset near_copies from the starting
38 * device of the previous section.
39 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
40 * drive.
41 * near_copies and far_copies must be at least one, and their product is at most
42 * raid_disks.
46 * Number of guaranteed r10bios in case of extreme VM load:
48 #define NR_RAID10_BIOS 256
50 static void unplug_slaves(mddev_t *mddev);
52 static void allow_barrier(conf_t *conf);
53 static void lower_barrier(conf_t *conf);
55 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
57 conf_t *conf = data;
58 r10bio_t *r10_bio;
59 int size = offsetof(struct r10bio_s, devs[conf->copies]);
61 /* allocate a r10bio with room for raid_disks entries in the bios array */
62 r10_bio = kzalloc(size, gfp_flags);
63 if (!r10_bio)
64 unplug_slaves(conf->mddev);
66 return r10_bio;
69 static void r10bio_pool_free(void *r10_bio, void *data)
71 kfree(r10_bio);
74 #define RESYNC_BLOCK_SIZE (64*1024)
75 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
76 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
77 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
78 #define RESYNC_WINDOW (2048*1024)
81 * When performing a resync, we need to read and compare, so
82 * we need as many pages are there are copies.
83 * When performing a recovery, we need 2 bios, one for read,
84 * one for write (we recover only one drive per r10buf)
87 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
89 conf_t *conf = data;
90 struct page *page;
91 r10bio_t *r10_bio;
92 struct bio *bio;
93 int i, j;
94 int nalloc;
96 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
97 if (!r10_bio) {
98 unplug_slaves(conf->mddev);
99 return NULL;
102 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
103 nalloc = conf->copies; /* resync */
104 else
105 nalloc = 2; /* recovery */
108 * Allocate bios.
110 for (j = nalloc ; j-- ; ) {
111 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r10_bio->devs[j].bio = bio;
117 * Allocate RESYNC_PAGES data pages and attach them
118 * where needed.
120 for (j = 0 ; j < nalloc; j++) {
121 bio = r10_bio->devs[j].bio;
122 for (i = 0; i < RESYNC_PAGES; i++) {
123 page = alloc_page(gfp_flags);
124 if (unlikely(!page))
125 goto out_free_pages;
127 bio->bi_io_vec[i].bv_page = page;
131 return r10_bio;
133 out_free_pages:
134 for ( ; i > 0 ; i--)
135 safe_put_page(bio->bi_io_vec[i-1].bv_page);
136 while (j--)
137 for (i = 0; i < RESYNC_PAGES ; i++)
138 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
139 j = -1;
140 out_free_bio:
141 while ( ++j < nalloc )
142 bio_put(r10_bio->devs[j].bio);
143 r10bio_pool_free(r10_bio, conf);
144 return NULL;
147 static void r10buf_pool_free(void *__r10_bio, void *data)
149 int i;
150 conf_t *conf = data;
151 r10bio_t *r10bio = __r10_bio;
152 int j;
154 for (j=0; j < conf->copies; j++) {
155 struct bio *bio = r10bio->devs[j].bio;
156 if (bio) {
157 for (i = 0; i < RESYNC_PAGES; i++) {
158 safe_put_page(bio->bi_io_vec[i].bv_page);
159 bio->bi_io_vec[i].bv_page = NULL;
161 bio_put(bio);
164 r10bio_pool_free(r10bio, conf);
167 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
169 int i;
171 for (i = 0; i < conf->copies; i++) {
172 struct bio **bio = & r10_bio->devs[i].bio;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r10bio(r10bio_t *r10_bio)
181 conf_t *conf = mddev_to_conf(r10_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r10_bio);
190 mempool_free(r10_bio, conf->r10bio_pool);
193 static void put_buf(r10bio_t *r10_bio)
195 conf_t *conf = mddev_to_conf(r10_bio->mddev);
197 mempool_free(r10_bio, conf->r10buf_pool);
199 lower_barrier(conf);
202 static void reschedule_retry(r10bio_t *r10_bio)
204 unsigned long flags;
205 mddev_t *mddev = r10_bio->mddev;
206 conf_t *conf = mddev_to_conf(mddev);
208 spin_lock_irqsave(&conf->device_lock, flags);
209 list_add(&r10_bio->retry_list, &conf->retry_list);
210 conf->nr_queued ++;
211 spin_unlock_irqrestore(&conf->device_lock, flags);
213 md_wakeup_thread(mddev->thread);
217 * raid_end_bio_io() is called when we have finished servicing a mirrored
218 * operation and are ready to return a success/failure code to the buffer
219 * cache layer.
221 static void raid_end_bio_io(r10bio_t *r10_bio)
223 struct bio *bio = r10_bio->master_bio;
225 bio_endio(bio, bio->bi_size,
226 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
227 free_r10bio(r10_bio);
231 * Update disk head position estimator based on IRQ completion info.
233 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
235 conf_t *conf = mddev_to_conf(r10_bio->mddev);
237 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
238 r10_bio->devs[slot].addr + (r10_bio->sectors);
241 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
244 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
245 int slot, dev;
246 conf_t *conf = mddev_to_conf(r10_bio->mddev);
248 if (bio->bi_size)
249 return 1;
251 slot = r10_bio->read_slot;
252 dev = r10_bio->devs[slot].devnum;
254 * this branch is our 'one mirror IO has finished' event handler:
256 update_head_pos(slot, r10_bio);
258 if (uptodate) {
260 * Set R10BIO_Uptodate in our master bio, so that
261 * we will return a good error code to the higher
262 * levels even if IO on some other mirrored buffer fails.
264 * The 'master' represents the composite IO operation to
265 * user-side. So if something waits for IO, then it will
266 * wait for the 'master' bio.
268 set_bit(R10BIO_Uptodate, &r10_bio->state);
269 raid_end_bio_io(r10_bio);
270 } else {
272 * oops, read error:
274 char b[BDEVNAME_SIZE];
275 if (printk_ratelimit())
276 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
277 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
278 reschedule_retry(r10_bio);
281 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
282 return 0;
285 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
287 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
288 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
289 int slot, dev;
290 conf_t *conf = mddev_to_conf(r10_bio->mddev);
292 if (bio->bi_size)
293 return 1;
295 for (slot = 0; slot < conf->copies; slot++)
296 if (r10_bio->devs[slot].bio == bio)
297 break;
298 dev = r10_bio->devs[slot].devnum;
301 * this branch is our 'one mirror IO has finished' event handler:
303 if (!uptodate) {
304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
305 /* an I/O failed, we can't clear the bitmap */
306 set_bit(R10BIO_Degraded, &r10_bio->state);
307 } else
309 * Set R10BIO_Uptodate in our master bio, so that
310 * we will return a good error code for to the higher
311 * levels even if IO on some other mirrored buffer fails.
313 * The 'master' represents the composite IO operation to
314 * user-side. So if something waits for IO, then it will
315 * wait for the 'master' bio.
317 set_bit(R10BIO_Uptodate, &r10_bio->state);
319 update_head_pos(slot, r10_bio);
323 * Let's see if all mirrored write operations have finished
324 * already.
326 if (atomic_dec_and_test(&r10_bio->remaining)) {
327 /* clear the bitmap if all writes complete successfully */
328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 r10_bio->sectors,
330 !test_bit(R10BIO_Degraded, &r10_bio->state),
332 md_write_end(r10_bio->mddev);
333 raid_end_bio_io(r10_bio);
336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
337 return 0;
342 * RAID10 layout manager
343 * Aswell as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
350 * Chunks are layed out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
352 * so on.
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on. If a block isn't on a device,
361 * that entry in the array is set to MaxSector.
363 * raid10_find_virt does the reverse mapping, from a device and a
364 * sector offset to a virtual address
367 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
369 int n,f;
370 sector_t sector;
371 sector_t chunk;
372 sector_t stripe;
373 int dev;
375 int slot = 0;
377 /* now calculate first sector/dev */
378 chunk = r10bio->sector >> conf->chunk_shift;
379 sector = r10bio->sector & conf->chunk_mask;
381 chunk *= conf->near_copies;
382 stripe = chunk;
383 dev = sector_div(stripe, conf->raid_disks);
385 sector += stripe << conf->chunk_shift;
387 /* and calculate all the others */
388 for (n=0; n < conf->near_copies; n++) {
389 int d = dev;
390 sector_t s = sector;
391 r10bio->devs[slot].addr = sector;
392 r10bio->devs[slot].devnum = d;
393 slot++;
395 for (f = 1; f < conf->far_copies; f++) {
396 d += conf->near_copies;
397 if (d >= conf->raid_disks)
398 d -= conf->raid_disks;
399 s += conf->stride;
400 r10bio->devs[slot].devnum = d;
401 r10bio->devs[slot].addr = s;
402 slot++;
404 dev++;
405 if (dev >= conf->raid_disks) {
406 dev = 0;
407 sector += (conf->chunk_mask + 1);
410 BUG_ON(slot != conf->copies);
413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
415 sector_t offset, chunk, vchunk;
417 while (sector > conf->stride) {
418 sector -= conf->stride;
419 if (dev < conf->near_copies)
420 dev += conf->raid_disks - conf->near_copies;
421 else
422 dev -= conf->near_copies;
425 offset = sector & conf->chunk_mask;
426 chunk = sector >> conf->chunk_shift;
427 vchunk = chunk * conf->raid_disks + dev;
428 sector_div(vchunk, conf->near_copies);
429 return (vchunk << conf->chunk_shift) + offset;
433 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
434 * @q: request queue
435 * @bio: the buffer head that's been built up so far
436 * @biovec: the request that could be merged to it.
438 * Return amount of bytes we can accept at this offset
439 * If near_copies == raid_disk, there are no striping issues,
440 * but in that case, the function isn't called at all.
442 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
443 struct bio_vec *bio_vec)
445 mddev_t *mddev = q->queuedata;
446 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
447 int max;
448 unsigned int chunk_sectors = mddev->chunk_size >> 9;
449 unsigned int bio_sectors = bio->bi_size >> 9;
451 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
452 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
453 if (max <= bio_vec->bv_len && bio_sectors == 0)
454 return bio_vec->bv_len;
455 else
456 return max;
460 * This routine returns the disk from which the requested read should
461 * be done. There is a per-array 'next expected sequential IO' sector
462 * number - if this matches on the next IO then we use the last disk.
463 * There is also a per-disk 'last know head position' sector that is
464 * maintained from IRQ contexts, both the normal and the resync IO
465 * completion handlers update this position correctly. If there is no
466 * perfect sequential match then we pick the disk whose head is closest.
468 * If there are 2 mirrors in the same 2 devices, performance degrades
469 * because position is mirror, not device based.
471 * The rdev for the device selected will have nr_pending incremented.
475 * FIXME: possibly should rethink readbalancing and do it differently
476 * depending on near_copies / far_copies geometry.
478 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
480 const unsigned long this_sector = r10_bio->sector;
481 int disk, slot, nslot;
482 const int sectors = r10_bio->sectors;
483 sector_t new_distance, current_distance;
484 mdk_rdev_t *rdev;
486 raid10_find_phys(conf, r10_bio);
487 rcu_read_lock();
489 * Check if we can balance. We can balance on the whole
490 * device if no resync is going on (recovery is ok), or below
491 * the resync window. We take the first readable disk when
492 * above the resync window.
494 if (conf->mddev->recovery_cp < MaxSector
495 && (this_sector + sectors >= conf->next_resync)) {
496 /* make sure that disk is operational */
497 slot = 0;
498 disk = r10_bio->devs[slot].devnum;
500 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
501 r10_bio->devs[slot].bio == IO_BLOCKED ||
502 !test_bit(In_sync, &rdev->flags)) {
503 slot++;
504 if (slot == conf->copies) {
505 slot = 0;
506 disk = -1;
507 break;
509 disk = r10_bio->devs[slot].devnum;
511 goto rb_out;
515 /* make sure the disk is operational */
516 slot = 0;
517 disk = r10_bio->devs[slot].devnum;
518 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
519 r10_bio->devs[slot].bio == IO_BLOCKED ||
520 !test_bit(In_sync, &rdev->flags)) {
521 slot ++;
522 if (slot == conf->copies) {
523 disk = -1;
524 goto rb_out;
526 disk = r10_bio->devs[slot].devnum;
530 current_distance = abs(r10_bio->devs[slot].addr -
531 conf->mirrors[disk].head_position);
533 /* Find the disk whose head is closest */
535 for (nslot = slot; nslot < conf->copies; nslot++) {
536 int ndisk = r10_bio->devs[nslot].devnum;
539 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
540 r10_bio->devs[nslot].bio == IO_BLOCKED ||
541 !test_bit(In_sync, &rdev->flags))
542 continue;
544 /* This optimisation is debatable, and completely destroys
545 * sequential read speed for 'far copies' arrays. So only
546 * keep it for 'near' arrays, and review those later.
548 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
549 disk = ndisk;
550 slot = nslot;
551 break;
553 new_distance = abs(r10_bio->devs[nslot].addr -
554 conf->mirrors[ndisk].head_position);
555 if (new_distance < current_distance) {
556 current_distance = new_distance;
557 disk = ndisk;
558 slot = nslot;
562 rb_out:
563 r10_bio->read_slot = slot;
564 /* conf->next_seq_sect = this_sector + sectors;*/
566 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
567 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
568 else
569 disk = -1;
570 rcu_read_unlock();
572 return disk;
575 static void unplug_slaves(mddev_t *mddev)
577 conf_t *conf = mddev_to_conf(mddev);
578 int i;
580 rcu_read_lock();
581 for (i=0; i<mddev->raid_disks; i++) {
582 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
583 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
584 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
586 atomic_inc(&rdev->nr_pending);
587 rcu_read_unlock();
589 if (r_queue->unplug_fn)
590 r_queue->unplug_fn(r_queue);
592 rdev_dec_pending(rdev, mddev);
593 rcu_read_lock();
596 rcu_read_unlock();
599 static void raid10_unplug(request_queue_t *q)
601 mddev_t *mddev = q->queuedata;
603 unplug_slaves(q->queuedata);
604 md_wakeup_thread(mddev->thread);
607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
608 sector_t *error_sector)
610 mddev_t *mddev = q->queuedata;
611 conf_t *conf = mddev_to_conf(mddev);
612 int i, ret = 0;
614 rcu_read_lock();
615 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
616 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
617 if (rdev && !test_bit(Faulty, &rdev->flags)) {
618 struct block_device *bdev = rdev->bdev;
619 request_queue_t *r_queue = bdev_get_queue(bdev);
621 if (!r_queue->issue_flush_fn)
622 ret = -EOPNOTSUPP;
623 else {
624 atomic_inc(&rdev->nr_pending);
625 rcu_read_unlock();
626 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
627 error_sector);
628 rdev_dec_pending(rdev, mddev);
629 rcu_read_lock();
633 rcu_read_unlock();
634 return ret;
637 /* Barriers....
638 * Sometimes we need to suspend IO while we do something else,
639 * either some resync/recovery, or reconfigure the array.
640 * To do this we raise a 'barrier'.
641 * The 'barrier' is a counter that can be raised multiple times
642 * to count how many activities are happening which preclude
643 * normal IO.
644 * We can only raise the barrier if there is no pending IO.
645 * i.e. if nr_pending == 0.
646 * We choose only to raise the barrier if no-one is waiting for the
647 * barrier to go down. This means that as soon as an IO request
648 * is ready, no other operations which require a barrier will start
649 * until the IO request has had a chance.
651 * So: regular IO calls 'wait_barrier'. When that returns there
652 * is no backgroup IO happening, It must arrange to call
653 * allow_barrier when it has finished its IO.
654 * backgroup IO calls must call raise_barrier. Once that returns
655 * there is no normal IO happeing. It must arrange to call
656 * lower_barrier when the particular background IO completes.
658 #define RESYNC_DEPTH 32
660 static void raise_barrier(conf_t *conf, int force)
662 BUG_ON(force && !conf->barrier);
663 spin_lock_irq(&conf->resync_lock);
665 /* Wait until no block IO is waiting (unless 'force') */
666 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
667 conf->resync_lock,
668 raid10_unplug(conf->mddev->queue));
670 /* block any new IO from starting */
671 conf->barrier++;
673 /* No wait for all pending IO to complete */
674 wait_event_lock_irq(conf->wait_barrier,
675 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
676 conf->resync_lock,
677 raid10_unplug(conf->mddev->queue));
679 spin_unlock_irq(&conf->resync_lock);
682 static void lower_barrier(conf_t *conf)
684 unsigned long flags;
685 spin_lock_irqsave(&conf->resync_lock, flags);
686 conf->barrier--;
687 spin_unlock_irqrestore(&conf->resync_lock, flags);
688 wake_up(&conf->wait_barrier);
691 static void wait_barrier(conf_t *conf)
693 spin_lock_irq(&conf->resync_lock);
694 if (conf->barrier) {
695 conf->nr_waiting++;
696 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
697 conf->resync_lock,
698 raid10_unplug(conf->mddev->queue));
699 conf->nr_waiting--;
701 conf->nr_pending++;
702 spin_unlock_irq(&conf->resync_lock);
705 static void allow_barrier(conf_t *conf)
707 unsigned long flags;
708 spin_lock_irqsave(&conf->resync_lock, flags);
709 conf->nr_pending--;
710 spin_unlock_irqrestore(&conf->resync_lock, flags);
711 wake_up(&conf->wait_barrier);
714 static void freeze_array(conf_t *conf)
716 /* stop syncio and normal IO and wait for everything to
717 * go quiet.
718 * We increment barrier and nr_waiting, and then
719 * wait until barrier+nr_pending match nr_queued+2
721 spin_lock_irq(&conf->resync_lock);
722 conf->barrier++;
723 conf->nr_waiting++;
724 wait_event_lock_irq(conf->wait_barrier,
725 conf->barrier+conf->nr_pending == conf->nr_queued+2,
726 conf->resync_lock,
727 raid10_unplug(conf->mddev->queue));
728 spin_unlock_irq(&conf->resync_lock);
731 static void unfreeze_array(conf_t *conf)
733 /* reverse the effect of the freeze */
734 spin_lock_irq(&conf->resync_lock);
735 conf->barrier--;
736 conf->nr_waiting--;
737 wake_up(&conf->wait_barrier);
738 spin_unlock_irq(&conf->resync_lock);
741 static int make_request(request_queue_t *q, struct bio * bio)
743 mddev_t *mddev = q->queuedata;
744 conf_t *conf = mddev_to_conf(mddev);
745 mirror_info_t *mirror;
746 r10bio_t *r10_bio;
747 struct bio *read_bio;
748 int i;
749 int chunk_sects = conf->chunk_mask + 1;
750 const int rw = bio_data_dir(bio);
751 struct bio_list bl;
752 unsigned long flags;
754 if (unlikely(bio_barrier(bio))) {
755 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
756 return 0;
759 /* If this request crosses a chunk boundary, we need to
760 * split it. This will only happen for 1 PAGE (or less) requests.
762 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
763 > chunk_sects &&
764 conf->near_copies < conf->raid_disks)) {
765 struct bio_pair *bp;
766 /* Sanity check -- queue functions should prevent this happening */
767 if (bio->bi_vcnt != 1 ||
768 bio->bi_idx != 0)
769 goto bad_map;
770 /* This is a one page bio that upper layers
771 * refuse to split for us, so we need to split it.
773 bp = bio_split(bio, bio_split_pool,
774 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
775 if (make_request(q, &bp->bio1))
776 generic_make_request(&bp->bio1);
777 if (make_request(q, &bp->bio2))
778 generic_make_request(&bp->bio2);
780 bio_pair_release(bp);
781 return 0;
782 bad_map:
783 printk("raid10_make_request bug: can't convert block across chunks"
784 " or bigger than %dk %llu %d\n", chunk_sects/2,
785 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
787 bio_io_error(bio, bio->bi_size);
788 return 0;
791 md_write_start(mddev, bio);
794 * Register the new request and wait if the reconstruction
795 * thread has put up a bar for new requests.
796 * Continue immediately if no resync is active currently.
798 wait_barrier(conf);
800 disk_stat_inc(mddev->gendisk, ios[rw]);
801 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
803 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
805 r10_bio->master_bio = bio;
806 r10_bio->sectors = bio->bi_size >> 9;
808 r10_bio->mddev = mddev;
809 r10_bio->sector = bio->bi_sector;
810 r10_bio->state = 0;
812 if (rw == READ) {
814 * read balancing logic:
816 int disk = read_balance(conf, r10_bio);
817 int slot = r10_bio->read_slot;
818 if (disk < 0) {
819 raid_end_bio_io(r10_bio);
820 return 0;
822 mirror = conf->mirrors + disk;
824 read_bio = bio_clone(bio, GFP_NOIO);
826 r10_bio->devs[slot].bio = read_bio;
828 read_bio->bi_sector = r10_bio->devs[slot].addr +
829 mirror->rdev->data_offset;
830 read_bio->bi_bdev = mirror->rdev->bdev;
831 read_bio->bi_end_io = raid10_end_read_request;
832 read_bio->bi_rw = READ;
833 read_bio->bi_private = r10_bio;
835 generic_make_request(read_bio);
836 return 0;
840 * WRITE:
842 /* first select target devices under spinlock and
843 * inc refcount on their rdev. Record them by setting
844 * bios[x] to bio
846 raid10_find_phys(conf, r10_bio);
847 rcu_read_lock();
848 for (i = 0; i < conf->copies; i++) {
849 int d = r10_bio->devs[i].devnum;
850 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
851 if (rdev &&
852 !test_bit(Faulty, &rdev->flags)) {
853 atomic_inc(&rdev->nr_pending);
854 r10_bio->devs[i].bio = bio;
855 } else {
856 r10_bio->devs[i].bio = NULL;
857 set_bit(R10BIO_Degraded, &r10_bio->state);
860 rcu_read_unlock();
862 atomic_set(&r10_bio->remaining, 0);
864 bio_list_init(&bl);
865 for (i = 0; i < conf->copies; i++) {
866 struct bio *mbio;
867 int d = r10_bio->devs[i].devnum;
868 if (!r10_bio->devs[i].bio)
869 continue;
871 mbio = bio_clone(bio, GFP_NOIO);
872 r10_bio->devs[i].bio = mbio;
874 mbio->bi_sector = r10_bio->devs[i].addr+
875 conf->mirrors[d].rdev->data_offset;
876 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
877 mbio->bi_end_io = raid10_end_write_request;
878 mbio->bi_rw = WRITE;
879 mbio->bi_private = r10_bio;
881 atomic_inc(&r10_bio->remaining);
882 bio_list_add(&bl, mbio);
885 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
886 spin_lock_irqsave(&conf->device_lock, flags);
887 bio_list_merge(&conf->pending_bio_list, &bl);
888 blk_plug_device(mddev->queue);
889 spin_unlock_irqrestore(&conf->device_lock, flags);
891 return 0;
894 static void status(struct seq_file *seq, mddev_t *mddev)
896 conf_t *conf = mddev_to_conf(mddev);
897 int i;
899 if (conf->near_copies < conf->raid_disks)
900 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
901 if (conf->near_copies > 1)
902 seq_printf(seq, " %d near-copies", conf->near_copies);
903 if (conf->far_copies > 1)
904 seq_printf(seq, " %d far-copies", conf->far_copies);
906 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
907 conf->working_disks);
908 for (i = 0; i < conf->raid_disks; i++)
909 seq_printf(seq, "%s",
910 conf->mirrors[i].rdev &&
911 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
912 seq_printf(seq, "]");
915 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
917 char b[BDEVNAME_SIZE];
918 conf_t *conf = mddev_to_conf(mddev);
921 * If it is not operational, then we have already marked it as dead
922 * else if it is the last working disks, ignore the error, let the
923 * next level up know.
924 * else mark the drive as failed
926 if (test_bit(In_sync, &rdev->flags)
927 && conf->working_disks == 1)
929 * Don't fail the drive, just return an IO error.
930 * The test should really be more sophisticated than
931 * "working_disks == 1", but it isn't critical, and
932 * can wait until we do more sophisticated "is the drive
933 * really dead" tests...
935 return;
936 if (test_bit(In_sync, &rdev->flags)) {
937 mddev->degraded++;
938 conf->working_disks--;
940 * if recovery is running, make sure it aborts.
942 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
944 clear_bit(In_sync, &rdev->flags);
945 set_bit(Faulty, &rdev->flags);
946 mddev->sb_dirty = 1;
947 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
948 " Operation continuing on %d devices\n",
949 bdevname(rdev->bdev,b), conf->working_disks);
952 static void print_conf(conf_t *conf)
954 int i;
955 mirror_info_t *tmp;
957 printk("RAID10 conf printout:\n");
958 if (!conf) {
959 printk("(!conf)\n");
960 return;
962 printk(" --- wd:%d rd:%d\n", conf->working_disks,
963 conf->raid_disks);
965 for (i = 0; i < conf->raid_disks; i++) {
966 char b[BDEVNAME_SIZE];
967 tmp = conf->mirrors + i;
968 if (tmp->rdev)
969 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
970 i, !test_bit(In_sync, &tmp->rdev->flags),
971 !test_bit(Faulty, &tmp->rdev->flags),
972 bdevname(tmp->rdev->bdev,b));
976 static void close_sync(conf_t *conf)
978 wait_barrier(conf);
979 allow_barrier(conf);
981 mempool_destroy(conf->r10buf_pool);
982 conf->r10buf_pool = NULL;
985 /* check if there are enough drives for
986 * every block to appear on atleast one
988 static int enough(conf_t *conf)
990 int first = 0;
992 do {
993 int n = conf->copies;
994 int cnt = 0;
995 while (n--) {
996 if (conf->mirrors[first].rdev)
997 cnt++;
998 first = (first+1) % conf->raid_disks;
1000 if (cnt == 0)
1001 return 0;
1002 } while (first != 0);
1003 return 1;
1006 static int raid10_spare_active(mddev_t *mddev)
1008 int i;
1009 conf_t *conf = mddev->private;
1010 mirror_info_t *tmp;
1013 * Find all non-in_sync disks within the RAID10 configuration
1014 * and mark them in_sync
1016 for (i = 0; i < conf->raid_disks; i++) {
1017 tmp = conf->mirrors + i;
1018 if (tmp->rdev
1019 && !test_bit(Faulty, &tmp->rdev->flags)
1020 && !test_bit(In_sync, &tmp->rdev->flags)) {
1021 conf->working_disks++;
1022 mddev->degraded--;
1023 set_bit(In_sync, &tmp->rdev->flags);
1027 print_conf(conf);
1028 return 0;
1032 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1034 conf_t *conf = mddev->private;
1035 int found = 0;
1036 int mirror;
1037 mirror_info_t *p;
1039 if (mddev->recovery_cp < MaxSector)
1040 /* only hot-add to in-sync arrays, as recovery is
1041 * very different from resync
1043 return 0;
1044 if (!enough(conf))
1045 return 0;
1047 if (rdev->saved_raid_disk >= 0 &&
1048 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1049 mirror = rdev->saved_raid_disk;
1050 else
1051 mirror = 0;
1052 for ( ; mirror < mddev->raid_disks; mirror++)
1053 if ( !(p=conf->mirrors+mirror)->rdev) {
1055 blk_queue_stack_limits(mddev->queue,
1056 rdev->bdev->bd_disk->queue);
1057 /* as we don't honour merge_bvec_fn, we must never risk
1058 * violating it, so limit ->max_sector to one PAGE, as
1059 * a one page request is never in violation.
1061 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1062 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1063 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1065 p->head_position = 0;
1066 rdev->raid_disk = mirror;
1067 found = 1;
1068 if (rdev->saved_raid_disk != mirror)
1069 conf->fullsync = 1;
1070 rcu_assign_pointer(p->rdev, rdev);
1071 break;
1074 print_conf(conf);
1075 return found;
1078 static int raid10_remove_disk(mddev_t *mddev, int number)
1080 conf_t *conf = mddev->private;
1081 int err = 0;
1082 mdk_rdev_t *rdev;
1083 mirror_info_t *p = conf->mirrors+ number;
1085 print_conf(conf);
1086 rdev = p->rdev;
1087 if (rdev) {
1088 if (test_bit(In_sync, &rdev->flags) ||
1089 atomic_read(&rdev->nr_pending)) {
1090 err = -EBUSY;
1091 goto abort;
1093 p->rdev = NULL;
1094 synchronize_rcu();
1095 if (atomic_read(&rdev->nr_pending)) {
1096 /* lost the race, try later */
1097 err = -EBUSY;
1098 p->rdev = rdev;
1101 abort:
1103 print_conf(conf);
1104 return err;
1108 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1110 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1111 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1112 int i,d;
1114 if (bio->bi_size)
1115 return 1;
1117 for (i=0; i<conf->copies; i++)
1118 if (r10_bio->devs[i].bio == bio)
1119 break;
1120 BUG_ON(i == conf->copies);
1121 update_head_pos(i, r10_bio);
1122 d = r10_bio->devs[i].devnum;
1124 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1125 set_bit(R10BIO_Uptodate, &r10_bio->state);
1126 else {
1127 atomic_add(r10_bio->sectors,
1128 &conf->mirrors[d].rdev->corrected_errors);
1129 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1130 md_error(r10_bio->mddev,
1131 conf->mirrors[d].rdev);
1134 /* for reconstruct, we always reschedule after a read.
1135 * for resync, only after all reads
1137 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1138 atomic_dec_and_test(&r10_bio->remaining)) {
1139 /* we have read all the blocks,
1140 * do the comparison in process context in raid10d
1142 reschedule_retry(r10_bio);
1144 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1145 return 0;
1148 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1150 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1151 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1152 mddev_t *mddev = r10_bio->mddev;
1153 conf_t *conf = mddev_to_conf(mddev);
1154 int i,d;
1156 if (bio->bi_size)
1157 return 1;
1159 for (i = 0; i < conf->copies; i++)
1160 if (r10_bio->devs[i].bio == bio)
1161 break;
1162 d = r10_bio->devs[i].devnum;
1164 if (!uptodate)
1165 md_error(mddev, conf->mirrors[d].rdev);
1166 update_head_pos(i, r10_bio);
1168 while (atomic_dec_and_test(&r10_bio->remaining)) {
1169 if (r10_bio->master_bio == NULL) {
1170 /* the primary of several recovery bios */
1171 md_done_sync(mddev, r10_bio->sectors, 1);
1172 put_buf(r10_bio);
1173 break;
1174 } else {
1175 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1176 put_buf(r10_bio);
1177 r10_bio = r10_bio2;
1180 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1181 return 0;
1185 * Note: sync and recover and handled very differently for raid10
1186 * This code is for resync.
1187 * For resync, we read through virtual addresses and read all blocks.
1188 * If there is any error, we schedule a write. The lowest numbered
1189 * drive is authoritative.
1190 * However requests come for physical address, so we need to map.
1191 * For every physical address there are raid_disks/copies virtual addresses,
1192 * which is always are least one, but is not necessarly an integer.
1193 * This means that a physical address can span multiple chunks, so we may
1194 * have to submit multiple io requests for a single sync request.
1197 * We check if all blocks are in-sync and only write to blocks that
1198 * aren't in sync
1200 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1202 conf_t *conf = mddev_to_conf(mddev);
1203 int i, first;
1204 struct bio *tbio, *fbio;
1206 atomic_set(&r10_bio->remaining, 1);
1208 /* find the first device with a block */
1209 for (i=0; i<conf->copies; i++)
1210 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1211 break;
1213 if (i == conf->copies)
1214 goto done;
1216 first = i;
1217 fbio = r10_bio->devs[i].bio;
1219 /* now find blocks with errors */
1220 for (i=0 ; i < conf->copies ; i++) {
1221 int j, d;
1222 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1224 tbio = r10_bio->devs[i].bio;
1226 if (tbio->bi_end_io != end_sync_read)
1227 continue;
1228 if (i == first)
1229 continue;
1230 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1231 /* We know that the bi_io_vec layout is the same for
1232 * both 'first' and 'i', so we just compare them.
1233 * All vec entries are PAGE_SIZE;
1235 for (j = 0; j < vcnt; j++)
1236 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1237 page_address(tbio->bi_io_vec[j].bv_page),
1238 PAGE_SIZE))
1239 break;
1240 if (j == vcnt)
1241 continue;
1242 mddev->resync_mismatches += r10_bio->sectors;
1244 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1245 /* Don't fix anything. */
1246 continue;
1247 /* Ok, we need to write this bio
1248 * First we need to fixup bv_offset, bv_len and
1249 * bi_vecs, as the read request might have corrupted these
1251 tbio->bi_vcnt = vcnt;
1252 tbio->bi_size = r10_bio->sectors << 9;
1253 tbio->bi_idx = 0;
1254 tbio->bi_phys_segments = 0;
1255 tbio->bi_hw_segments = 0;
1256 tbio->bi_hw_front_size = 0;
1257 tbio->bi_hw_back_size = 0;
1258 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1259 tbio->bi_flags |= 1 << BIO_UPTODATE;
1260 tbio->bi_next = NULL;
1261 tbio->bi_rw = WRITE;
1262 tbio->bi_private = r10_bio;
1263 tbio->bi_sector = r10_bio->devs[i].addr;
1265 for (j=0; j < vcnt ; j++) {
1266 tbio->bi_io_vec[j].bv_offset = 0;
1267 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1269 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1270 page_address(fbio->bi_io_vec[j].bv_page),
1271 PAGE_SIZE);
1273 tbio->bi_end_io = end_sync_write;
1275 d = r10_bio->devs[i].devnum;
1276 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1277 atomic_inc(&r10_bio->remaining);
1278 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1280 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1281 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1282 generic_make_request(tbio);
1285 done:
1286 if (atomic_dec_and_test(&r10_bio->remaining)) {
1287 md_done_sync(mddev, r10_bio->sectors, 1);
1288 put_buf(r10_bio);
1293 * Now for the recovery code.
1294 * Recovery happens across physical sectors.
1295 * We recover all non-is_sync drives by finding the virtual address of
1296 * each, and then choose a working drive that also has that virt address.
1297 * There is a separate r10_bio for each non-in_sync drive.
1298 * Only the first two slots are in use. The first for reading,
1299 * The second for writing.
1303 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1305 conf_t *conf = mddev_to_conf(mddev);
1306 int i, d;
1307 struct bio *bio, *wbio;
1310 /* move the pages across to the second bio
1311 * and submit the write request
1313 bio = r10_bio->devs[0].bio;
1314 wbio = r10_bio->devs[1].bio;
1315 for (i=0; i < wbio->bi_vcnt; i++) {
1316 struct page *p = bio->bi_io_vec[i].bv_page;
1317 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1318 wbio->bi_io_vec[i].bv_page = p;
1320 d = r10_bio->devs[1].devnum;
1322 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1323 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1324 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1325 generic_make_request(wbio);
1326 else
1327 bio_endio(wbio, wbio->bi_size, -EIO);
1332 * This is a kernel thread which:
1334 * 1. Retries failed read operations on working mirrors.
1335 * 2. Updates the raid superblock when problems encounter.
1336 * 3. Performs writes following reads for array syncronising.
1339 static void raid10d(mddev_t *mddev)
1341 r10bio_t *r10_bio;
1342 struct bio *bio;
1343 unsigned long flags;
1344 conf_t *conf = mddev_to_conf(mddev);
1345 struct list_head *head = &conf->retry_list;
1346 int unplug=0;
1347 mdk_rdev_t *rdev;
1349 md_check_recovery(mddev);
1351 for (;;) {
1352 char b[BDEVNAME_SIZE];
1353 spin_lock_irqsave(&conf->device_lock, flags);
1355 if (conf->pending_bio_list.head) {
1356 bio = bio_list_get(&conf->pending_bio_list);
1357 blk_remove_plug(mddev->queue);
1358 spin_unlock_irqrestore(&conf->device_lock, flags);
1359 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1360 if (bitmap_unplug(mddev->bitmap) != 0)
1361 printk("%s: bitmap file write failed!\n", mdname(mddev));
1363 while (bio) { /* submit pending writes */
1364 struct bio *next = bio->bi_next;
1365 bio->bi_next = NULL;
1366 generic_make_request(bio);
1367 bio = next;
1369 unplug = 1;
1371 continue;
1374 if (list_empty(head))
1375 break;
1376 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1377 list_del(head->prev);
1378 conf->nr_queued--;
1379 spin_unlock_irqrestore(&conf->device_lock, flags);
1381 mddev = r10_bio->mddev;
1382 conf = mddev_to_conf(mddev);
1383 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1384 sync_request_write(mddev, r10_bio);
1385 unplug = 1;
1386 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1387 recovery_request_write(mddev, r10_bio);
1388 unplug = 1;
1389 } else {
1390 int mirror;
1391 /* we got a read error. Maybe the drive is bad. Maybe just
1392 * the block and we can fix it.
1393 * We freeze all other IO, and try reading the block from
1394 * other devices. When we find one, we re-write
1395 * and check it that fixes the read error.
1396 * This is all done synchronously while the array is
1397 * frozen.
1399 int sect = 0; /* Offset from r10_bio->sector */
1400 int sectors = r10_bio->sectors;
1401 freeze_array(conf);
1402 if (mddev->ro == 0) while(sectors) {
1403 int s = sectors;
1404 int sl = r10_bio->read_slot;
1405 int success = 0;
1407 if (s > (PAGE_SIZE>>9))
1408 s = PAGE_SIZE >> 9;
1410 rcu_read_lock();
1411 do {
1412 int d = r10_bio->devs[sl].devnum;
1413 rdev = rcu_dereference(conf->mirrors[d].rdev);
1414 if (rdev &&
1415 test_bit(In_sync, &rdev->flags)) {
1416 atomic_inc(&rdev->nr_pending);
1417 rcu_read_unlock();
1418 success = sync_page_io(rdev->bdev,
1419 r10_bio->devs[sl].addr +
1420 sect + rdev->data_offset,
1421 s<<9,
1422 conf->tmppage, READ);
1423 rdev_dec_pending(rdev, mddev);
1424 rcu_read_lock();
1425 if (success)
1426 break;
1428 sl++;
1429 if (sl == conf->copies)
1430 sl = 0;
1431 } while (!success && sl != r10_bio->read_slot);
1432 rcu_read_unlock();
1434 if (success) {
1435 int start = sl;
1436 /* write it back and re-read */
1437 rcu_read_lock();
1438 while (sl != r10_bio->read_slot) {
1439 int d;
1440 if (sl==0)
1441 sl = conf->copies;
1442 sl--;
1443 d = r10_bio->devs[sl].devnum;
1444 rdev = rcu_dereference(conf->mirrors[d].rdev);
1445 if (rdev &&
1446 test_bit(In_sync, &rdev->flags)) {
1447 atomic_inc(&rdev->nr_pending);
1448 rcu_read_unlock();
1449 atomic_add(s, &rdev->corrected_errors);
1450 if (sync_page_io(rdev->bdev,
1451 r10_bio->devs[sl].addr +
1452 sect + rdev->data_offset,
1453 s<<9, conf->tmppage, WRITE) == 0)
1454 /* Well, this device is dead */
1455 md_error(mddev, rdev);
1456 rdev_dec_pending(rdev, mddev);
1457 rcu_read_lock();
1460 sl = start;
1461 while (sl != r10_bio->read_slot) {
1462 int d;
1463 if (sl==0)
1464 sl = conf->copies;
1465 sl--;
1466 d = r10_bio->devs[sl].devnum;
1467 rdev = rcu_dereference(conf->mirrors[d].rdev);
1468 if (rdev &&
1469 test_bit(In_sync, &rdev->flags)) {
1470 atomic_inc(&rdev->nr_pending);
1471 rcu_read_unlock();
1472 if (sync_page_io(rdev->bdev,
1473 r10_bio->devs[sl].addr +
1474 sect + rdev->data_offset,
1475 s<<9, conf->tmppage, READ) == 0)
1476 /* Well, this device is dead */
1477 md_error(mddev, rdev);
1478 rdev_dec_pending(rdev, mddev);
1479 rcu_read_lock();
1482 rcu_read_unlock();
1483 } else {
1484 /* Cannot read from anywhere -- bye bye array */
1485 md_error(mddev, conf->mirrors[r10_bio->devs[r10_bio->read_slot].devnum].rdev);
1486 break;
1488 sectors -= s;
1489 sect += s;
1492 unfreeze_array(conf);
1494 bio = r10_bio->devs[r10_bio->read_slot].bio;
1495 r10_bio->devs[r10_bio->read_slot].bio =
1496 mddev->ro ? IO_BLOCKED : NULL;
1497 bio_put(bio);
1498 mirror = read_balance(conf, r10_bio);
1499 if (mirror == -1) {
1500 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1501 " read error for block %llu\n",
1502 bdevname(bio->bi_bdev,b),
1503 (unsigned long long)r10_bio->sector);
1504 raid_end_bio_io(r10_bio);
1505 } else {
1506 rdev = conf->mirrors[mirror].rdev;
1507 if (printk_ratelimit())
1508 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1509 " another mirror\n",
1510 bdevname(rdev->bdev,b),
1511 (unsigned long long)r10_bio->sector);
1512 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1513 r10_bio->devs[r10_bio->read_slot].bio = bio;
1514 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1515 + rdev->data_offset;
1516 bio->bi_bdev = rdev->bdev;
1517 bio->bi_rw = READ;
1518 bio->bi_private = r10_bio;
1519 bio->bi_end_io = raid10_end_read_request;
1520 unplug = 1;
1521 generic_make_request(bio);
1525 spin_unlock_irqrestore(&conf->device_lock, flags);
1526 if (unplug)
1527 unplug_slaves(mddev);
1531 static int init_resync(conf_t *conf)
1533 int buffs;
1535 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1536 BUG_ON(conf->r10buf_pool);
1537 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1538 if (!conf->r10buf_pool)
1539 return -ENOMEM;
1540 conf->next_resync = 0;
1541 return 0;
1545 * perform a "sync" on one "block"
1547 * We need to make sure that no normal I/O request - particularly write
1548 * requests - conflict with active sync requests.
1550 * This is achieved by tracking pending requests and a 'barrier' concept
1551 * that can be installed to exclude normal IO requests.
1553 * Resync and recovery are handled very differently.
1554 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1556 * For resync, we iterate over virtual addresses, read all copies,
1557 * and update if there are differences. If only one copy is live,
1558 * skip it.
1559 * For recovery, we iterate over physical addresses, read a good
1560 * value for each non-in_sync drive, and over-write.
1562 * So, for recovery we may have several outstanding complex requests for a
1563 * given address, one for each out-of-sync device. We model this by allocating
1564 * a number of r10_bio structures, one for each out-of-sync device.
1565 * As we setup these structures, we collect all bio's together into a list
1566 * which we then process collectively to add pages, and then process again
1567 * to pass to generic_make_request.
1569 * The r10_bio structures are linked using a borrowed master_bio pointer.
1570 * This link is counted in ->remaining. When the r10_bio that points to NULL
1571 * has its remaining count decremented to 0, the whole complex operation
1572 * is complete.
1576 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1578 conf_t *conf = mddev_to_conf(mddev);
1579 r10bio_t *r10_bio;
1580 struct bio *biolist = NULL, *bio;
1581 sector_t max_sector, nr_sectors;
1582 int disk;
1583 int i;
1584 int max_sync;
1585 int sync_blocks;
1587 sector_t sectors_skipped = 0;
1588 int chunks_skipped = 0;
1590 if (!conf->r10buf_pool)
1591 if (init_resync(conf))
1592 return 0;
1594 skipped:
1595 max_sector = mddev->size << 1;
1596 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1597 max_sector = mddev->resync_max_sectors;
1598 if (sector_nr >= max_sector) {
1599 /* If we aborted, we need to abort the
1600 * sync on the 'current' bitmap chucks (there can
1601 * be several when recovering multiple devices).
1602 * as we may have started syncing it but not finished.
1603 * We can find the current address in
1604 * mddev->curr_resync, but for recovery,
1605 * we need to convert that to several
1606 * virtual addresses.
1608 if (mddev->curr_resync < max_sector) { /* aborted */
1609 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1610 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1611 &sync_blocks, 1);
1612 else for (i=0; i<conf->raid_disks; i++) {
1613 sector_t sect =
1614 raid10_find_virt(conf, mddev->curr_resync, i);
1615 bitmap_end_sync(mddev->bitmap, sect,
1616 &sync_blocks, 1);
1618 } else /* completed sync */
1619 conf->fullsync = 0;
1621 bitmap_close_sync(mddev->bitmap);
1622 close_sync(conf);
1623 *skipped = 1;
1624 return sectors_skipped;
1626 if (chunks_skipped >= conf->raid_disks) {
1627 /* if there has been nothing to do on any drive,
1628 * then there is nothing to do at all..
1630 *skipped = 1;
1631 return (max_sector - sector_nr) + sectors_skipped;
1634 /* make sure whole request will fit in a chunk - if chunks
1635 * are meaningful
1637 if (conf->near_copies < conf->raid_disks &&
1638 max_sector > (sector_nr | conf->chunk_mask))
1639 max_sector = (sector_nr | conf->chunk_mask) + 1;
1641 * If there is non-resync activity waiting for us then
1642 * put in a delay to throttle resync.
1644 if (!go_faster && conf->nr_waiting)
1645 msleep_interruptible(1000);
1647 /* Again, very different code for resync and recovery.
1648 * Both must result in an r10bio with a list of bios that
1649 * have bi_end_io, bi_sector, bi_bdev set,
1650 * and bi_private set to the r10bio.
1651 * For recovery, we may actually create several r10bios
1652 * with 2 bios in each, that correspond to the bios in the main one.
1653 * In this case, the subordinate r10bios link back through a
1654 * borrowed master_bio pointer, and the counter in the master
1655 * includes a ref from each subordinate.
1657 /* First, we decide what to do and set ->bi_end_io
1658 * To end_sync_read if we want to read, and
1659 * end_sync_write if we will want to write.
1662 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1663 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1664 /* recovery... the complicated one */
1665 int i, j, k;
1666 r10_bio = NULL;
1668 for (i=0 ; i<conf->raid_disks; i++)
1669 if (conf->mirrors[i].rdev &&
1670 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1671 int still_degraded = 0;
1672 /* want to reconstruct this device */
1673 r10bio_t *rb2 = r10_bio;
1674 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1675 int must_sync;
1676 /* Unless we are doing a full sync, we only need
1677 * to recover the block if it is set in the bitmap
1679 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1680 &sync_blocks, 1);
1681 if (sync_blocks < max_sync)
1682 max_sync = sync_blocks;
1683 if (!must_sync &&
1684 !conf->fullsync) {
1685 /* yep, skip the sync_blocks here, but don't assume
1686 * that there will never be anything to do here
1688 chunks_skipped = -1;
1689 continue;
1692 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1693 raise_barrier(conf, rb2 != NULL);
1694 atomic_set(&r10_bio->remaining, 0);
1696 r10_bio->master_bio = (struct bio*)rb2;
1697 if (rb2)
1698 atomic_inc(&rb2->remaining);
1699 r10_bio->mddev = mddev;
1700 set_bit(R10BIO_IsRecover, &r10_bio->state);
1701 r10_bio->sector = sect;
1703 raid10_find_phys(conf, r10_bio);
1704 /* Need to check if this section will still be
1705 * degraded
1707 for (j=0; j<conf->copies;j++) {
1708 int d = r10_bio->devs[j].devnum;
1709 if (conf->mirrors[d].rdev == NULL ||
1710 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1711 still_degraded = 1;
1712 break;
1715 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1716 &sync_blocks, still_degraded);
1718 for (j=0; j<conf->copies;j++) {
1719 int d = r10_bio->devs[j].devnum;
1720 if (conf->mirrors[d].rdev &&
1721 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1722 /* This is where we read from */
1723 bio = r10_bio->devs[0].bio;
1724 bio->bi_next = biolist;
1725 biolist = bio;
1726 bio->bi_private = r10_bio;
1727 bio->bi_end_io = end_sync_read;
1728 bio->bi_rw = 0;
1729 bio->bi_sector = r10_bio->devs[j].addr +
1730 conf->mirrors[d].rdev->data_offset;
1731 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1732 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1733 atomic_inc(&r10_bio->remaining);
1734 /* and we write to 'i' */
1736 for (k=0; k<conf->copies; k++)
1737 if (r10_bio->devs[k].devnum == i)
1738 break;
1739 bio = r10_bio->devs[1].bio;
1740 bio->bi_next = biolist;
1741 biolist = bio;
1742 bio->bi_private = r10_bio;
1743 bio->bi_end_io = end_sync_write;
1744 bio->bi_rw = 1;
1745 bio->bi_sector = r10_bio->devs[k].addr +
1746 conf->mirrors[i].rdev->data_offset;
1747 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1749 r10_bio->devs[0].devnum = d;
1750 r10_bio->devs[1].devnum = i;
1752 break;
1755 if (j == conf->copies) {
1756 /* Cannot recover, so abort the recovery */
1757 put_buf(r10_bio);
1758 r10_bio = rb2;
1759 if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1760 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1761 mdname(mddev));
1762 break;
1765 if (biolist == NULL) {
1766 while (r10_bio) {
1767 r10bio_t *rb2 = r10_bio;
1768 r10_bio = (r10bio_t*) rb2->master_bio;
1769 rb2->master_bio = NULL;
1770 put_buf(rb2);
1772 goto giveup;
1774 } else {
1775 /* resync. Schedule a read for every block at this virt offset */
1776 int count = 0;
1778 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1779 &sync_blocks, mddev->degraded) &&
1780 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1781 /* We can skip this block */
1782 *skipped = 1;
1783 return sync_blocks + sectors_skipped;
1785 if (sync_blocks < max_sync)
1786 max_sync = sync_blocks;
1787 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1789 r10_bio->mddev = mddev;
1790 atomic_set(&r10_bio->remaining, 0);
1791 raise_barrier(conf, 0);
1792 conf->next_resync = sector_nr;
1794 r10_bio->master_bio = NULL;
1795 r10_bio->sector = sector_nr;
1796 set_bit(R10BIO_IsSync, &r10_bio->state);
1797 raid10_find_phys(conf, r10_bio);
1798 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1800 for (i=0; i<conf->copies; i++) {
1801 int d = r10_bio->devs[i].devnum;
1802 bio = r10_bio->devs[i].bio;
1803 bio->bi_end_io = NULL;
1804 if (conf->mirrors[d].rdev == NULL ||
1805 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1806 continue;
1807 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1808 atomic_inc(&r10_bio->remaining);
1809 bio->bi_next = biolist;
1810 biolist = bio;
1811 bio->bi_private = r10_bio;
1812 bio->bi_end_io = end_sync_read;
1813 bio->bi_rw = 0;
1814 bio->bi_sector = r10_bio->devs[i].addr +
1815 conf->mirrors[d].rdev->data_offset;
1816 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1817 count++;
1820 if (count < 2) {
1821 for (i=0; i<conf->copies; i++) {
1822 int d = r10_bio->devs[i].devnum;
1823 if (r10_bio->devs[i].bio->bi_end_io)
1824 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1826 put_buf(r10_bio);
1827 biolist = NULL;
1828 goto giveup;
1832 for (bio = biolist; bio ; bio=bio->bi_next) {
1834 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1835 if (bio->bi_end_io)
1836 bio->bi_flags |= 1 << BIO_UPTODATE;
1837 bio->bi_vcnt = 0;
1838 bio->bi_idx = 0;
1839 bio->bi_phys_segments = 0;
1840 bio->bi_hw_segments = 0;
1841 bio->bi_size = 0;
1844 nr_sectors = 0;
1845 if (sector_nr + max_sync < max_sector)
1846 max_sector = sector_nr + max_sync;
1847 do {
1848 struct page *page;
1849 int len = PAGE_SIZE;
1850 disk = 0;
1851 if (sector_nr + (len>>9) > max_sector)
1852 len = (max_sector - sector_nr) << 9;
1853 if (len == 0)
1854 break;
1855 for (bio= biolist ; bio ; bio=bio->bi_next) {
1856 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1857 if (bio_add_page(bio, page, len, 0) == 0) {
1858 /* stop here */
1859 struct bio *bio2;
1860 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1861 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1862 /* remove last page from this bio */
1863 bio2->bi_vcnt--;
1864 bio2->bi_size -= len;
1865 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1867 goto bio_full;
1869 disk = i;
1871 nr_sectors += len>>9;
1872 sector_nr += len>>9;
1873 } while (biolist->bi_vcnt < RESYNC_PAGES);
1874 bio_full:
1875 r10_bio->sectors = nr_sectors;
1877 while (biolist) {
1878 bio = biolist;
1879 biolist = biolist->bi_next;
1881 bio->bi_next = NULL;
1882 r10_bio = bio->bi_private;
1883 r10_bio->sectors = nr_sectors;
1885 if (bio->bi_end_io == end_sync_read) {
1886 md_sync_acct(bio->bi_bdev, nr_sectors);
1887 generic_make_request(bio);
1891 if (sectors_skipped)
1892 /* pretend they weren't skipped, it makes
1893 * no important difference in this case
1895 md_done_sync(mddev, sectors_skipped, 1);
1897 return sectors_skipped + nr_sectors;
1898 giveup:
1899 /* There is nowhere to write, so all non-sync
1900 * drives must be failed, so try the next chunk...
1903 sector_t sec = max_sector - sector_nr;
1904 sectors_skipped += sec;
1905 chunks_skipped ++;
1906 sector_nr = max_sector;
1907 goto skipped;
1911 static int run(mddev_t *mddev)
1913 conf_t *conf;
1914 int i, disk_idx;
1915 mirror_info_t *disk;
1916 mdk_rdev_t *rdev;
1917 struct list_head *tmp;
1918 int nc, fc;
1919 sector_t stride, size;
1921 if (mddev->chunk_size == 0) {
1922 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1923 return -EINVAL;
1926 nc = mddev->layout & 255;
1927 fc = (mddev->layout >> 8) & 255;
1928 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1929 (mddev->layout >> 16)) {
1930 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1931 mdname(mddev), mddev->layout);
1932 goto out;
1935 * copy the already verified devices into our private RAID10
1936 * bookkeeping area. [whatever we allocate in run(),
1937 * should be freed in stop()]
1939 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1940 mddev->private = conf;
1941 if (!conf) {
1942 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1943 mdname(mddev));
1944 goto out;
1946 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1947 GFP_KERNEL);
1948 if (!conf->mirrors) {
1949 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1950 mdname(mddev));
1951 goto out_free_conf;
1954 conf->tmppage = alloc_page(GFP_KERNEL);
1955 if (!conf->tmppage)
1956 goto out_free_conf;
1958 conf->near_copies = nc;
1959 conf->far_copies = fc;
1960 conf->copies = nc*fc;
1961 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1962 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1963 stride = mddev->size >> (conf->chunk_shift-1);
1964 sector_div(stride, fc);
1965 conf->stride = stride << conf->chunk_shift;
1967 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1968 r10bio_pool_free, conf);
1969 if (!conf->r10bio_pool) {
1970 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1971 mdname(mddev));
1972 goto out_free_conf;
1975 ITERATE_RDEV(mddev, rdev, tmp) {
1976 disk_idx = rdev->raid_disk;
1977 if (disk_idx >= mddev->raid_disks
1978 || disk_idx < 0)
1979 continue;
1980 disk = conf->mirrors + disk_idx;
1982 disk->rdev = rdev;
1984 blk_queue_stack_limits(mddev->queue,
1985 rdev->bdev->bd_disk->queue);
1986 /* as we don't honour merge_bvec_fn, we must never risk
1987 * violating it, so limit ->max_sector to one PAGE, as
1988 * a one page request is never in violation.
1990 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1991 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1992 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1994 disk->head_position = 0;
1995 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1996 conf->working_disks++;
1998 conf->raid_disks = mddev->raid_disks;
1999 conf->mddev = mddev;
2000 spin_lock_init(&conf->device_lock);
2001 INIT_LIST_HEAD(&conf->retry_list);
2003 spin_lock_init(&conf->resync_lock);
2004 init_waitqueue_head(&conf->wait_barrier);
2006 /* need to check that every block has at least one working mirror */
2007 if (!enough(conf)) {
2008 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2009 mdname(mddev));
2010 goto out_free_conf;
2013 mddev->degraded = 0;
2014 for (i = 0; i < conf->raid_disks; i++) {
2016 disk = conf->mirrors + i;
2018 if (!disk->rdev) {
2019 disk->head_position = 0;
2020 mddev->degraded++;
2025 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2026 if (!mddev->thread) {
2027 printk(KERN_ERR
2028 "raid10: couldn't allocate thread for %s\n",
2029 mdname(mddev));
2030 goto out_free_conf;
2033 printk(KERN_INFO
2034 "raid10: raid set %s active with %d out of %d devices\n",
2035 mdname(mddev), mddev->raid_disks - mddev->degraded,
2036 mddev->raid_disks);
2038 * Ok, everything is just fine now
2040 size = conf->stride * conf->raid_disks;
2041 sector_div(size, conf->near_copies);
2042 mddev->array_size = size/2;
2043 mddev->resync_max_sectors = size;
2045 mddev->queue->unplug_fn = raid10_unplug;
2046 mddev->queue->issue_flush_fn = raid10_issue_flush;
2048 /* Calculate max read-ahead size.
2049 * We need to readahead at least twice a whole stripe....
2050 * maybe...
2053 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_SIZE;
2054 stripe /= conf->near_copies;
2055 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2056 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2059 if (conf->near_copies < mddev->raid_disks)
2060 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2061 return 0;
2063 out_free_conf:
2064 if (conf->r10bio_pool)
2065 mempool_destroy(conf->r10bio_pool);
2066 safe_put_page(conf->tmppage);
2067 kfree(conf->mirrors);
2068 kfree(conf);
2069 mddev->private = NULL;
2070 out:
2071 return -EIO;
2074 static int stop(mddev_t *mddev)
2076 conf_t *conf = mddev_to_conf(mddev);
2078 md_unregister_thread(mddev->thread);
2079 mddev->thread = NULL;
2080 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2081 if (conf->r10bio_pool)
2082 mempool_destroy(conf->r10bio_pool);
2083 kfree(conf->mirrors);
2084 kfree(conf);
2085 mddev->private = NULL;
2086 return 0;
2089 static void raid10_quiesce(mddev_t *mddev, int state)
2091 conf_t *conf = mddev_to_conf(mddev);
2093 switch(state) {
2094 case 1:
2095 raise_barrier(conf, 0);
2096 break;
2097 case 0:
2098 lower_barrier(conf);
2099 break;
2101 if (mddev->thread) {
2102 if (mddev->bitmap)
2103 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2104 else
2105 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2106 md_wakeup_thread(mddev->thread);
2110 static struct mdk_personality raid10_personality =
2112 .name = "raid10",
2113 .level = 10,
2114 .owner = THIS_MODULE,
2115 .make_request = make_request,
2116 .run = run,
2117 .stop = stop,
2118 .status = status,
2119 .error_handler = error,
2120 .hot_add_disk = raid10_add_disk,
2121 .hot_remove_disk= raid10_remove_disk,
2122 .spare_active = raid10_spare_active,
2123 .sync_request = sync_request,
2124 .quiesce = raid10_quiesce,
2127 static int __init raid_init(void)
2129 return register_md_personality(&raid10_personality);
2132 static void raid_exit(void)
2134 unregister_md_personality(&raid10_personality);
2137 module_init(raid_init);
2138 module_exit(raid_exit);
2139 MODULE_LICENSE("GPL");
2140 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2141 MODULE_ALIAS("md-raid10");
2142 MODULE_ALIAS("md-level-10");